Genome-wide identification and characterization of the TPS gene family in wheat (Triticum aestivum L.) and expression analysis in response to aphid damage
Zhao, Lei; College of Plant Protection, Shandong Agricultural University, No. 61 Daizong Road, Taian, 271000, Shandong, China
Zhao, Xiaojing; College of Plant Protection, Shandong Agricultural University, No. 61 Daizong Road, Taian, 271000, Shandong, China
Francis, Frédéric ; Université de Liège - ULiège > TERRA Research Centre > Gestion durable des bio-agresseurs ; College of Plant Protection, Shandong Agricultural University, No. 61 Daizong Road, Taian, 271000, Shandong, China
Liu, Yong; College of Plant Protection, Shandong Agricultural University, No. 61 Daizong Road, Taian, 271000, Shandong, China
Language :
English
Title :
Genome-wide identification and characterization of the TPS gene family in wheat (Triticum aestivum L.) and expression analysis in response to aphid damage
Publication date :
25 March 2021
Journal title :
Acta Physiologiae Plantarum
ISSN :
0137-5881
eISSN :
1861-1664
Publisher :
Springer Science and Business Media Deutschland GmbH
Volume :
43
Issue :
4
Peer reviewed :
Peer reviewed
Funding number :
2017YFD0201705; SYL2017XTTD11
Funding text :
This study was supported by the National Key
R&D Program of China (2017YFD0201705), and the Funds of Shandong
‘Double Tops’ Program (SYL2017XTTD11). The funding agent
only provided the financial support and did not involve in the design
of the experiment, collection, interpretation and analysis of data and
in the drafting of the manuscript.
Abbas F, Yu R (2017) Volatile terpenoids: multiple functions, biosynthesis, modulation and manipulation by genetic engineering. Planta 246:1–14. 10.1007/s00425-017-2749-x DOI: 10.1007/s00425-017-2749-x
Altschul SF, Madden TL, Schäffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. 10.1093/nar/25.17.3389 DOI: 10.1093/nar/25.17.3389
Arimura GI, Garms S, Maffei M et al (2008) Herbivore-induced terpenoid emission in Medicago truncatula: concerted action of jasmonate, ethylene and calcium signaling. Planta 227:453–464. 10.1007/s00425-007-0631-y DOI: 10.1007/s00425-007-0631-y
Aubourg S, Lecharny A, Bohlmann J (2002) Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana. Mol Genet Genom 267:730–745. 10.1007/s00438-002-0709-y DOI: 10.1007/s00438-002-0709-y
Bai JF, Wang YK, Wang P et al (2018) Genome-wide identification and analysis of the COI gene family in wheat (Triticum aestivum L.). BMC Genom 19:754. 10.1186/s12864-018-5116-9 DOI: 10.1186/s12864-018-5116-9
Bailey TL, Boden M, Buske FA et al (2009) MEME Suite: tools for motif discovery and searching. Nucleic Acids Res. 10.1093/nar/gkp335 DOI: 10.1093/nar/gkp335
Betsiashvili M, Ahern KR, Jander G (2015) Additive effects of two quantitative trait loci that confer Rhopalosiphum maidis (corn leaf aphid) resistance in maize inbred line Mo17. J Exp Bot 66:571–578. 10.1093/jxb/eru379 DOI: 10.1093/jxb/eru379
Block AK, Vaughan MM, Schmelz EA, Christensen SA (2018) Biosynthesis and function of terpenoid defense compounds in maize (Zea mays). Planta 249:21–30. 10.1007/s00425-018-2999-2 DOI: 10.1007/s00425-018-2999-2
Bohlmann J, Meyer-Gauen G, Croteau R (1998) Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci USA 95:4126–4133. 10.1073/pnas.95.8.4126 DOI: 10.1073/pnas.95.8.4126
Brillada C, Nishihara M, Shimoda T, Garms S, Boland W, Maffei ME, Arimura G (2013) Metabolic engineering of the C16 homoterpene TMTT in Lotus japonicus through overexpression of (E,E)-geranyllinalool synthase attracts generalist and specialist predators in different manners. New Phytol 200:1200–1211. 10.1111/nph.12442 DOI: 10.1111/nph.12442
Chen F, Tholl D, Bohlmann J, Pichersky E (2011) The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J 66:212–229. 10.1111/j.1365-313x.2011.04520.x DOI: 10.1111/j.1365-313x.2011.04520.x
Christianson DW (2006) Structural biology and chemistry of the terpenoid cyclases. Chem Rev 106:3412–3442. 10.1021/cr050286w DOI: 10.1021/cr050286w
Degenhardt J, Köllner TG, Gershenzon J (2009) Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 70:1621–1637. 10.1016/j.phytochem.2009.07.030 DOI: 10.1016/j.phytochem.2009.07.030
Dudareva N (2003) (E)-beta-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamily. Plant Cell 15:1227–1241. 10.1105/tpc.011015 DOI: 10.1105/tpc.011015
Falara V, Akhtar TA, Nguyen TT et al (2011) The tomato terpene synthase gene family. Plant Physiol 157:770–789. 10.1104/pp.111.179648 DOI: 10.1104/pp.111.179648
Finn RD, Tate J, Mistry J et al (2008) The Pfam protein families database. Nucleic Acids Res 32:D138. 10.1093/nar/gkh121 DOI: 10.1093/nar/gkh121
Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3:408–414. 10.1038/nchembio.2007.5 DOI: 10.1038/nchembio.2007.5
Glover NM, Daron J, Pingault L, Vandepoele K, Paux E, Feuillet C, Choulet F (2015) Small-scale gene duplications played a major role in the recent evolution of wheat chromosome 3B. Genome Biol 16:188. 10.1186/s13059-015-0754-6 DOI: 10.1186/s13059-015-0754-6
Goff SA, Ricke D, Lan TH et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. Japonica). Science 296:92–100.https://www.jstor.org/stable/3076391 DOI: 10.1126/science.1068275
Harborne JB (1991) Recent advances in the ecological chemistry of plant terpenoids. In: Harborne JB, Tomas-Barberan FA (eds) Ecological chemistry and biochemistry of plant terpenoids. Clarendon Press, Oxford, pp 399–426
Holub EB (2001) The arms race is ancient history in Arabidopsis, the wildflower. Nat Rev Genet 2:516–527. 10.1038/35080508 DOI: 10.1038/35080508
Hu B, Jin JP, Guo AY, Zhang H, Luo JC, Gao G (2014) GSDS 20: an upgraded gene feature visualization server. Bioinformatics 31:1296. 10.1093/bioinformatics/btu817 DOI: 10.1093/bioinformatics/btu817
Huang XS, Li KQ, Xu XY, Yao ZH, Jin C, Zhang SL (2015) Genome-wide analysis of WRKY transcription factors in white pear (Pyrus bretschneideri) reveals evolution and patterns under drought stress. BMC Genom 16:1104. 10.1186/s12864-015-2233-6 DOI: 10.1186/s12864-015-2233-6
Huang XZ, Xiao YT, Köllner TG et al (2018) The terpene synthase gene family in Gossypium hirsutum harbors a linalool synthase GhTPS12 implicated in direct defence responses against herbivores. Plant Cell Environ 41:261–274. 10.1111/pce.13088 DOI: 10.1111/pce.13088
Hyatt DC, Youn B, Zhao Y, Santhamma B, Coates RM, Croteau RB, Kang C (2007) Structure of limonene synthase, a simple model for terpenoid cyclase catalysis. Proc Natl Acad Sci USA 104:5360–5365. 10.1073/pnas.0700915104 DOI: 10.1073/pnas.0700915104
Irmisch S, Krause ST, Kunert G, Gershenzon J, Degenhardt J, Köllner TG (2012) The organ-specific expression of terpene synthase genes contributes to the terpene hydrocarbon composition of chamomile essential oils. BMC Plant Biol 12:84. 10.1186/1471-2229-12-84 DOI: 10.1186/1471-2229-12-84
Irmisch S, Mccormick AC, Günther J et al (2014a) Herbivore-induced poplar cytochrome P450 enzymes of the CYP71 family convert aldoximes to nitriles which repel a generalist caterpillar. Plant J 80:1095–1107. 10.1111/tpj.12711 DOI: 10.1111/tpj.12711
Irmisch S, Jiang Y, Chen F, Gershenzon J, Köllner TG (2014b) Terpene synthases and their contribution to herbivore-induced volatile emission in western balsam poplar (Populus trichocarpa). BMC Plant Biol 4:270. 10.1186/s12870-014-0270-y DOI: 10.1186/s12870-014-0270-y
Keeling CI, Bohlmann J (2006) Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens*. New Phytol 170:657–675. 10.1111/j.1469-8137.2006.01716.x DOI: 10.1111/j.1469-8137.2006.01716.x
Keeling CI, Weisshaar S, Ralph SG, Jancsik S, Hamberger B, Dullat HK, Bohlmann J (2011) Transcriptome mining, functional characterization, and phylogeny of a large terpene synthase gene family in spruce (Picea spp.). BMC Plant Biol 11:43. 10.1186/1471-2229-11-43 DOI: 10.1186/1471-2229-11-43
Kessler A (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144. 10.1126/science.291.5511.2141 DOI: 10.1126/science.291.5511.2141
Kiryu M, Hamanaka M, Yoshitomi K, Mochizuki S, Akimitsu K, Gomi K (2018) Rice terpene synthase 18 (OsTPS18) encodes a sesquiterpene synthase that produces an antibacterial (E)-nerolidol against a bacterial pathogen of rice. J Gen Plant Pathol 84:221–229. 10.1007/s10327-018-0774-7 DOI: 10.1007/s10327-018-0774-7
Köllner TG, Schnee C, Gershenzon J, Degenhardt J (2004) The variability of sesquiterpenes emitted from two Zea mays cultivars is controlled by allelic variation of two terpene synthase genes encoding stereoselective multiple product enzymes. Plant Cell 16:1115–1131. 10.1105/tpc.019877 DOI: 10.1105/tpc.019877
Köllner TG, Held M, Lenk C, Hiltpold I, Turlings TCJ, Gershenzon J, Degenhardt J (2008) A maize (E)-beta-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. Plant Cell 20:482–494. 10.1105/tpc.107.051672 DOI: 10.1105/tpc.107.051672
Krzywinski M, Schein J, Birol I (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645. 10.1101/gr.092759.109 DOI: 10.1101/gr.092759.109
Lescot M, Déhais P, Thijs G et al (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327. 10.1093/nar/30.1.325 DOI: 10.1093/nar/30.1.325
Li FQ, Li W, Lin YJ, Pickett JA, Birkett MA, Wu K, Wang G, Zhou JJ (2017) Expression of lima bean terpene synthases in rice enhances recruitment of a beneficial enemy of a major rice pest. Plant Cell Environ 41:111–120. 10.1111/pce.12959 DOI: 10.1111/pce.12959
Liu D, Huang X, Jing W et al (2017) Identification and functional analysis of two P450 enzymes of Gossypium hirsutum, involved in DMNT and TMTT biosynthesis. Plant Biotechnol J. 10.1111/pbi.12797 DOI: 10.1111/pbi.12797
Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155. 10.1126/science.290.5494.1151 DOI: 10.1126/science.290.5494.1151
Ma R, Chen JL, Cheng DF, Sun JR (2010) Activation of defense mechanism in wheat by polyphenol oxidase from aphid saliva. J Agric Food Chem 58:2410–2418. 10.1021/jf9037248 DOI: 10.1021/jf9037248
Ma J, Yang YJ, Wei L et al (2017) Genome-wide identification and analysis of the MADS-box gene family in bread wheat (Triticum aestivum L.). PLoS ONE 12:e0181443. 10.1371/journal.pone.0181443 DOI: 10.1371/journal.pone.0181443
Martin DM, Fäldt J, Bohlmann J (2004) Functional characterization of nine Norway spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily. Plant Physiol 135:1908–1927. 10.1104/pp.104.042028 DOI: 10.1104/pp.104.042028
Martin DM, Aubourg S, Schouwey MB et al (2010) Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays. BMC Plant Biol 10:226. 10.1186/1471-2229-10-226 DOI: 10.1186/1471-2229-10-226
Mccormick AC, Unsicker SB, Gershenzon J (2012) The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends Plant Sci 17:303–310. 10.1016/j.tplants.2012.03.012 DOI: 10.1016/j.tplants.2012.03.012
Miller DJ, Allemann RK (2012) Sesquiterpene synthases: passive catalysts or active players? Nat Prod Rep 29:60–71. 10.1039/C1NP00060H DOI: 10.1039/C1NP00060H
Moore RC, Purugganan MD (2005) The evolutionary dynamics of plant duplicate genes. Curr Opin Plant Biol 8:122–128. 10.1016/j.pbi.2004.12.001 DOI: 10.1016/j.pbi.2004.12.001
Nieuwenhuizen NJ, Green SA, Chen X, Bailleul EJ, Matich AJ, Wang MY, Atkinson RG (2013) Functional genomics reveals that a compact terpene synthase gene family can account for terpene volatile production in apple. Plant Physiol 161:787–804. 10.1104/pp.112.208249 DOI: 10.1104/pp.112.208249
Ning P, Liu CC, Kang JQ (2017) Genome-wide analysis of WRKY transcription factors in wheat (Triticum aestivum L.) and differential expression under water deficit condition. PeerJ 5:e3232. 10.7717/peerj.3232 DOI: 10.7717/peerj.3232
O’Maille PE, Malone A, Dellas N et al (2008) Quantitative exploration of the catalytic landscape separating divergent plant sesquiterpene synthases. Nat Chem Biol 4:617–623. 10.1038/nchembio.113 DOI: 10.1038/nchembio.113
Ozawa R, Arimura G, Takabayashi J, Shimoda T, Nishioka T (2000) Involvement of jasmonate- and salicylate-related signaling pathways for the production of specific herbivore-induced volatiles in plants. Plant Cell Physiol 41:391–398. 10.1093/pcp/41.4.391 DOI: 10.1093/pcp/41.4.391
Paterson AH, Bowers JE, Bruggmann R et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556. 10.1038/nature07723 DOI: 10.1038/nature07723
Pichersky E, Gershenzon J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol 5:237–243. 10.1016/S1369-5266(02)00251-0 DOI: 10.1016/S1369-5266(02)00251-0
Pichersky E, Noel JP, Dudareva N (2006) Biosynthesis of plant volatiles: nature’s diversity and ingenuity. Science 311:808–811. 10.1126/science.1118510 DOI: 10.1126/science.1118510
Popper ZA, Michel G, Hervé C et al (2011) Evolution and diversity of plant cell walls: from algae to flowering plants. Annu Rev Plant Biol 62:567–590. 10.1146/annurev-arplant-042110-103809 DOI: 10.1146/annurev-arplant-042110-103809
Prisic S, Xu J, Coates RM, Peters RJ (2007) Probing the role of the DXDD motif in Class II diterpene cyclases. ChemBioChem 8:869–874. 10.1002/cbic.200700045 DOI: 10.1002/cbic.200700045
Richter A, Seidl-Adams I, Köllner TG, Schaff C, Tumlinson JH, Degenhardt J (2015) A small, differentially regulated family of farnesyl diphosphate synthases in maize (Zea mays) provides farnesyl diphosphate for the biosynthesis of herbivore-induced sesquiterpenes. Planta 241:1351–1361. 10.1007/s00425-015-2254-z DOI: 10.1007/s00425-015-2254-z
Richter A, Schaff C, Zhang Z et al (2016) Characterization of biosynthetic pathways for the production of the volatile homoterpenes DMNT and TMTT in Zea mays. Plant Cell. 10.1105/tpc.15.00919 DOI: 10.1105/tpc.15.00919
Starks CM, Back K, Chappell J, Noel JP (2010) Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase. Science 29:1815–1820. 10.1002/chin.199804171 DOI: 10.1002/chin.199804171
Sun Y, Huang XZ, Ning YS et al (2017) TPS46, a rice terpene synthase conferring natural resistance to bird cherry-oat aphid, Rhopalosiphum padi (Linnaeus). Front Plant Sci. 10.3389/fpls.2017.00110 DOI: 10.3389/fpls.2017.00110
Tholl D (2006) Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 9:297–304. 10.1016/j.pbi.2006.03.014 DOI: 10.1016/j.pbi.2006.03.014
Trapp SC, Croteau RB (2001) Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics 158:811–832. 10.0000/PMID11404343 DOI: 10.0000/PMID11404343
Tuskan GA, Difazio S, Jansson S et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Sci 313:1596–1604. 10.1126/science.1128691 DOI: 10.1126/science.1128691
Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78. 10.1093/jhered/93.1.77 DOI: 10.1093/jhered/93.1.77
Wang XY, Shi XL, Hao BL, Ge S, Luo JC (2005) Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytol 165:937–946. 10.1111/j.1469-8137.2004.01293.x DOI: 10.1111/j.1469-8137.2004.01293.x
Wang YP, Tang HB, Debarry JD et al (2012) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 40:e49. 10.1093/nar/gkr1293 DOI: 10.1093/nar/gkr1293
Warren RL, Keeling CI, Yuen MMS et al (2015) Improved white spruce (Picea glauca) genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism. Plant J 83:189–212. 10.1111/tpj.12886 DOI: 10.1111/tpj.12886
Yoshikuni Y, Ferrin TE, Keasling JD (2006) Designed divergent evolution of enzyme function. Nature 440:1078–1082. 10.1038/nature04607 DOI: 10.1038/nature04607
Zebelo S, Song YY, Kloepper JW, Fadamiro H (2016) Rhizobacteria activates (+)-δ-cadinene synthase genes and induces systemic resistance in cotton against beet armyworm (Spodoptera exigua). Plant Cell Environ 39:935–943. 10.1111/pce.12704 DOI: 10.1111/pce.12704
Zhan HS, Hong Y, Zhao X, Wang M, Weining S, Nie XJ (2017) Genome-wide identification and analysis of MAPK and MAPKK gene families in bread wheat (Triticum aestivum L.). Genes. 10.3390/genes8100284 DOI: 10.3390/genes8100284
Zhang Y, Li ZX, Yu XD et al (2015) Molecular characterization of two isoforms of a farnesyl pyrophosphate synthase gene in wheat and their roles in sesquiterpene synthesis and inducible defence against aphid infestation. New Phytol 206:1101–1115. 10.1111/nph.13302 DOI: 10.1111/nph.13302
Zhang Y, Hu L, Yu D et al (2019) Integrative analysis of the wheat PHT1 gene family reveals a novel member involved in arbuscular mycorrhizal phosphate transport and immunity. Cells. 10.3390/cells8050490 DOI: 10.3390/cells8050490
Zhu Y, Wu NN, Song WL, Yin GJ, Qin YJ, Yan YM, Hu YK (2014) Soybean (Glycine max) expansin gene superfamily origins: segmental and tandem duplication events followed by divergent selection among subfamilies. BMC Plant Biol 14:93. 10.1186/1471-2229-14-93 DOI: 10.1186/1471-2229-14-93
Zimin AV, Puiu D, Hall R, Kingan S, Clavijo BJ, Salzberg SL (2017) The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum. GigaScience 6:1–7. 10.1093/gigascience/gix097 DOI: 10.1093/gigascience/gix097