Total replacement of fish meal by enriched-fatty acid Hermetia illucens meal did not substantially affect growth parameters or innate immune status and improved whole body biochemical quality of Nile tilapia juveniles
Agbohessou, Pamphile S.; Mandiki, Syaghalirwa N. M.; Gougbédji, Armelet al.
2021 • In Aquaculture Nutrition, 27 (3), p. 880 - 896
[en] The study was designed to evaluate the effects of total remplacement of fish meal (FM) and fish oil (FO) by vegetable oil and black soldier fly (BSF) larval meal enriched with fatty acids (FAs) in Nile tilapia juveniles. Fish were fed a FMFO control diet compared to a non-FA-enriched BSF diet (BSF/T0) and diets enriched in linolenic acid-ALA (BSF/T1) or in eicosapentanoic acid-EPA (BSF/T2). After 59 days, the BSF diets did not affect growth except for a decrease by the BSF/T1 diet. However, protein utilization and digestibility were reduced by all the BSF diets. FA-enriched diets did not improve the digestive enzyme activities or immune parameters, while lysozyme and ACH50 values were increased by the BSF/T0 diet. Levels of polyunsaturated FAs in the whole body of fish fed ALA or EPA-enriched BSF diets were comparable to those of FMFO controls. The results demonstrate that BSF meal can totally replace FM without substantially effect on growth or innate immune status. The decrease in fish carcass FA quality induced by the BSF meal can be prevented by a well defined protocol for PUFA enrichment. Nonetheless, investigation of the long-term effects of the BSF meal use during the ongrowing phase is still needed.
Disciplines :
Entomology & pest control
Author, co-author :
Agbohessou, Pamphile S. ; Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Namur, Belgium ; Laboratory of Hydrobiology and Aquaculture (LHA), Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin
Mandiki, Syaghalirwa N. M. ; Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Namur, Belgium
Gougbédji, Armel; Laboratory of Hydrobiology and Aquaculture (LHA), Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin ; Functional and Evolutionary Entomology–Gembloux Agro-Bio Tech (University of Liège), Gembloux, Belgium
Megido, Rudy Caparros; Functional and Evolutionary Entomology–Gembloux Agro-Bio Tech (University of Liège), Gembloux, Belgium
Hossain, Md. Sakhawat ; Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Namur, Belgium ; Department of Aquaculture, Faculty of Fisheries, Sylhet Agricultural University, Sylhet, Bangladesh
De Jaeger, Pauline; Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
Larondelle, Yvan; Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
Francis, Frédéric ; Université de Liège - ULiège > TERRA Research Centre > Gestion durable des bio-agresseurs
Lalèyè, Philippe A.; Laboratory of Hydrobiology and Aquaculture (LHA), Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin
Kestemont, Patrick; Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Namur, Belgium
Language :
English
Title :
Total replacement of fish meal by enriched-fatty acid Hermetia illucens meal did not substantially affect growth parameters or innate immune status and improved whole body biochemical quality of Nile tilapia juveniles
The authors are grateful to ARES‐CCD (Académie de Recherche et d’Enseignement Supérieur—Commission de Copopération au Développement‐ Fédération Wallonie Bruxelles) and DGD (General Directorate for Development, Ministry of Cooperation and Development, Federal Government of Belgium) for supporting this study as a part of the Concerted Initiative Project (Interuniversity programme: ‘Projet PIC Aquaculture ULg/UAC’ Bénin).The authors are grateful to ARES-CCD (Acad?mie de Recherche et d?Enseignement Sup?rieur?Commission de Copop?ration au D?veloppement- F?d?ration Wallonie Bruxelles) and DGD (General Directorate for Development, Ministry of Cooperation and Development, Federal Government of Belgium) for supporting this study as a part of the Concerted Initiative Project (Interuniversity programme: ?Projet PIC Aquaculture ULg/UAC? B?nin).
Abboudi, T., Mambrini, M., Larondelle, Y., & Rollin, X. (2009). The effect of dispensable amino acids on nitrogen and amino acid losses in Atlantic salmon (Salmo salar) fry fed a protein-free diet. Aquaculture, 289(3–4), 327–333.
Akinnawo, O., & Ketiku, A. O. (2000). Chemical composition and fatty acid profile of edible larva of Cirina forda (Westwood). African Journal of Biomedical Research, 3(2), 93–96.
Arts, M. T., Brett, M. T., & Kainz, M. (Eds.). (2009). Lipids in aquatic ecosystems. New York: Springer Science & Business Media.
Barroso, F. G., de Haro, C., Sánchez-Muros, M. J., Venegas, E., Martínez-Sánchez, A., & Pérez-Bañón, C. (2014). The potential of various insect species for use as food for fish. Aquaculture, 422, 193–201.
Barroso, F. G., Sánchez-Muros, M. J., Segura, M., Morote, E., Torres, A., Ramos, R., & Guil, J. L. (2017). Insects as food: Enrichment of larvae of Hermetia illucens with omega 3 fatty acids by means of dietary modifications. Journal of Food Composition and Analysis, 62, 8–13.
Becker, P. M., & Yu, P. (2013). What makes protein indigestible from tissue-related, cellular, and molecular aspects? Molecular Nutrition & Food Research, 57(10), 1695–1707.
Belghit, I., Liland, N. S., Gjesdal, P., Biancarosa, I., Menchetti, E., Li, Y., Waagbø, R., Krogdahl, Å., & Lock, E.-J. (2019). Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture, 503, 609–619.
Belghit, I., Liland, N. S., Waagbø, R., Biancarosa, I., Pelusio, N., Li, Y., Krogdahl, Å., & Lock, E.-J. (2018). Potential of insect-based diets for Atlantic salmon (Salmo salar). Aquaculture, 491, 72–81.
Bernfeld, P. (1951). Enzymes of starch degradation and synthesis. Advances in Enzymology and Related Areas of Molecular Biology, 12, 379–428.
Bessey, O. A., Lowry, O. H., & Brock, M. J. (1946). Rapid colorific method for determination of alkaline phosphatase in ve cubic millimeters of serum. Journal of Biological Chemistry, 164, 321329.
Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian journal of biochemistry and physiology, 37(8), 911–917.
Bondari, K., & Sheppard, D. C. (1987). Soldier fly, Hermetia illucens L., larvae as feed for channel catfish, Ictalurus punctatus (Rafinesque), and blue tilapia, Oreochromis aureus (Steindachner). Aquaculture Research, 18(3), 209–220.
Borgeson, T. L., Racz, V. J., Wilkie, D. C., White, L. J., & Drew, M. D. (2006). Effect of replacing fishmeal and oil with simple or complex mixtures of vegetable ingredients in diets fed to Nile tilapia (Oreochromis niloticus). Aquaculture Nutrition, 12(2), 141–149.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254.
Cara, B., Moyano, F. J., Zambonino, J. L., & Fauvel, C. (2007). Trypsin and chymotrypsin as indicators of nutritional status of post-weaned sea bass larvae. Journal of Fish Biology, 70(6), 1798–1808.
Chatzifotis, S., Panagiotidou, M., Papaioannou, N., Pavlidis, M., Nengas, L., & Mylonas, C. (2010). Effect of dietary lipid levels on growth, feed utilization, body composition and serum metabolites of meager (Argyrosomus regius) juveniles. Aquaculture, 307, 65–70.
Christie, W. W. (1982). Lipid analysis, 2nd ed. (pp. 207). Oxford: Pergamon Press.
Cooper, D., & Eleftherianos, I. (2017). Memory and specificity in the insect immune system: Current perspectives and future challenges. Frontiers in Immunology, 8, 539.
Cornet, V., Ouaach, A., Mandiki, S., Flamion, E., Ferain, A., Van Larebeke, M., Lemaire, B., Reyes López, F. E., Tort, L., Larondelle, Y., & Kestemont, P. (2018). Environmentally-realistic concentration of cadmium combined with polyunsaturated fatty acids enriched diets modulated non-specific immunity in rainbow trout. Aquatic Toxicology, 196, 104–116.
Cuvier-Péres, A., & Kestemont, P. (2001). Development of some digestive enzymes in Eurasian perch larvae Perca fluviatilis. Fish Physiology and Biochemistry, 24(4), 279–285.
Devic, E., Leschen, W., Murray, F., & Little, D. C. (2018). Growth performance, feed utilization and body composition of advanced nursing Nile tilapia (Oreochromis niloticus) fed diets containing Black Soldier Fly (Hermetia illucens) larval meal. Aquaculture Nutrition, 24(1), 416–423.
Ducasse-Cabanot, S., Zambonino-Infante, J., Richard, N., Medale, F., Corraze, G., Mambrini, M., Robin, J., Cahu, C., Kaushik, S., & Panserat, S. (2007). Reduced lipid intake leads to changes in lipid digestive enzymes in the intestine but has minor effects on key enzymes of hepatic intermediary metabolism in rainbow trout (Oncorhynchus mykiss). Animal, 1, 1272–1282.
Ekpo, K. E., & Onigbinde, A. O. (2007). Characterization of lipids in winged reproductives of the termite Macrotermis bellicosus. Pakistan Journal of Nutrition, 6(3), 247–251.
Ellis, A. E. (1990). Lysozyme assays. Techniques in Fish Immunology, 1, 101–103.
Ellis, A. E. (2001). Innate host defense mechanisms of fish against viruses and bacteria. Developmental & Comparative Immunology, 25(8–9), 827–839.
Esteban, M. A., Cuesta, A., Ortuno, J., & Meseguer, J. (2001). Immunomodulatory effects of dietary intake of chitin on gilthead seabream (Sparus aurata L.) innate immune system. Fish & Shellfish Immunology, 11(4), 303–315.
Finke, M. D. (2002). Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biology: Published in Affiliation with the American Zoo and Aquarium Association, 21(3), 269–285.
Finke, M. D. (2007). Estimate of chitin in raw whole insects. Zoo Biology: Published in Affiliation with the American Zoo and Aquarium Association, 26(2), 105–115.
Fletcher, G. L., Hobbs, R. S., Evans, R. P., Shears, M. A., Hahn, A. L., & Hew, C. L. (2011). Lysozyme transgenic Atlantic salmon (Salmo salar L.). Aquaculture Research, 42(3), 427–440.
Folch, J., Lees, M., & Stanley, G. S. (1957). A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry, 226(1), 497–509.
Furukawa, A., & Tsukahara, H. (1966). On the acid digestion method for the determination of chromic oxide as index substance in the study of fish feeds. Bulletin of the Japanese Society of Science and Fisheries, 32, 502–506.
Geay, F., Santigosa I Culi, E., Corporeau, C., Boudry, P., Dreano, Y., Corcos, L., Bodin, N., Vandeputte, M., Zambonino-Infante, J. L., Mazurais, D., & Cahu, C. L. (2010). Regulation of FADS2 expression and activity in European sea bass (Dicentrarchus labrax, L.) fed a vegetable diet. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 156(4), 237–243.
Geay, F., Wenon, D., Mellery, J., Tinti, E., Mandiki, S. N. M., Tocher, D. R., Debier, C., Larondelle, Y., & Kestemont, P. (2015). Dietary linseed oil reduces growth while differentially impacting LC-PUFA synthesis and accretion into tissues in Eurasian perch (Perca fluviatilis). Lipids, 50(12), 1219–1232.
Giri, S. S., Sahoo, S. K., Paul, B. N., Mohanty, S. N., & Sahu, S. H. (2011). Effect of dietary protein levels on growth, feed utilization and carcass composition of endangered bagrid catfish Horabagrus brachysoma (Gunther 1864) fingerlings. Aquaculture Nutrition, 17, 332–337.
Gisbert, E., Giménez, G., Fernández, I., Kotzamanis, Y., & Estévez, A. (2009). Development of digestive enzymes in common dentex (Dentex dentex) during early ontogeny. Aquaculture, 287(3–4), 381–387.
Gopalakannan, A., & Arul, V. (2006). Immunomodulatory effects of dietary intake of chitin, chitosan and levamisole on the immune system of Cyprinus carpio and control of Aeromonas hydrophila infection in ponds. Aquaculture, 255(1–4), 179–187.
Han, T., Li, X., Wang, J., Hu, S., Jiang, Y., & Zhong, X. (2014). Effect of dietary lipid level on growth, feed utilization and body composition of juvenile giant croaker Nibea japonica. Aquaculture, 434, 145–150.
Henry, M., Gasco, L., Piccolo, G., & Fountoulaki, E. (2015). Review on the use of insects in the diet of farmed fish: past and future. Animal Feed Science and Technology, 203, 1–22.
Holm, H., Hanssen, L. E., Krogdahl, Å., & Florholmen, J. (1988). High and low inhibitor soybean meals affect human duodenal proteinase activity differently: In vivo comparison with bovine serum albumin. The Journal of Nutrition, 118(4), 515–520.
Hossain, M. S., & Koshio, S. (2017). Dietary substitution of fishmeal by alternative protein with guanosine monophosphate supplementation influences growth, digestibility, blood chemistry profile, immunity, and stress resistance of red sea bream, Pagrus major. Fish Physiology and Biochemistry, 43(6), 1629–1644.
Huang, C. H., Huang, M. C., & Hou, P. C. (1998). Effect of dietary lipids on fatty acid composition and lipid peroxidation in sarcoplasmic reticulum of hybrid tilapia, Oreochromis niloticus × O. aureus. Comparative Biochemistry and Physiology, 120B, 331–336.
Janssen, R. H., Vincken, J.-P., Van Den Broek, L. A. M., Fogliano, V., & Lakemond, C. M. M. (2017). Nitrogen-to protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. Journal of Agricultural and Food Chemistry, 65(11), 2275–2278.
Jozefiak, A., & Engberg, R. M. (2017). Insect proteins as a potential source of antimicrobial peptides in livestock production. A review. Journal of Animal and Feed Sciences, 26(2), 87–99.
Kanazawa, A., Teshima, S. I., Sakamoto, M., & Awal, M. A. (1980). Requirement of Tilapia zillii for essential fatty acids. Bulletin of the Japanese Society of Scientific Fisheries, 46, 1353–1356.
Karlsen, O., Amlund, H., Berg, A., & Olsen, R. E. (2017). The effect of dietary chitin on growth and nutrient digestibility in farmed Atlantic cod, Atlantic salmon and Atlantic halibut. Aquaculture Research, 48(1), 123–133.
Katayama, N., Ishikawa, Y., Takaoki, M., Yamashita, M., Nakayama, S., Kiguchi, K., Kok, R., Wada, H., & Mitsuhashi, J. (2008). Entomophagy: A key to space agriculture. Advances in Space Research, 41(5), 701–705.
Kirk, P. L. (1950). Kjeldahl method for total nitrogen. Analytical Chemistry, 22(2), 354–358.
Kroeckel, S., Harjes, A. G., Roth, I., Katz, H., Wuertz, S., Susenbeth, A., & Schulz, C. (2012). When a turbot catches a fly: Evaluation of a pre-pupae meal of the Black Soldier Fly (Hermetia illucens) as fish meal substitute-growth performance and chitin degradation in juvenile turbot (Psetta maxima). Aquaculture, 364, 345–352.
Krogdahl, Å., Hemre, G. I., & Mommsen, T. P. (2005). Carbohydrates in fish nutrition: Digestion and absorption in postlarval stages. Aquaculture Nutrition, 11(2), 103–122.
Kumar, S., Garcia-Carreno, F. L., Chakrabarti, R., Toro, M. A. N., & Cordova-Murueta, J. H. (2007). Digestive proteases of three carps Catla catla, Labeo rohita and Hypophthalmichthys molitrix: partial characterization and protein hydrolysis efficiency. Aquaculture Nutrition, 13(5), 381–388.
Li, Y., Kortner, T. M., Chikwati, E. M., Munang'andu, H. M., Lock, E. J., & Krogdahl, Å. (2019). Gut health and vaccination response in pre-smolt Atlantic salmon (Salmo salar) fed black soldier fly (Hermetia illucens) larvae meal. Fish & Shellfish Immunology, 86, 1106–1113.
Liland, N. S., Biancarosa, I., Araujo, P., Biemans, D., Bruckner, C. G., Waagbø, R., Torstensen, B. E., & Lock, E.-J. (2017). Modulation of nutrient composition of black soldier fly (Hermetia illucens) larvae by feeding seaweed-enriched media. PLoS One, 12(8), e0183188.
Liu, H., Wang, S., Cai, Y., Guo, X., Cao, Z., Zhang, Y., Liu, S., Yuan, W., Zhu, W., Zheng, Y. U., Xie, Z., Guo, W., & Zhou, Y. (2017). Dietary administration of Bacillus subtilis HAINUP40 enhances growth, digestive enzyme activities, innate immune responses and disease resistance of tilapia, Oreochromis niloticus. Fish & Shellfish Immunology, 60, 326–333.
Looy, H., Dunkel, F. V., & Wood, J. R. (2014). How then shall we eat? Insect-eating attitudes and sustainable foodways. Agriculture and Human Values, 31(1), 131–141.
Luo, Z., Liu, Y. J., Mai, K. S., Tian, L. X., Liu, D. H., Tan, X. Y., & Lin, H. Z. (2005). Effect of dietary lipid level on growth performance, feed utilization and body composition of grouper Epinephelus coioides juveniles fed isonitrogenous diets in floating netcages. Aquaculture International, 13, 257–269.
Luo, Z., Tan, X. Y., Liu, C. X., Li, X. D., Liu, X. J., & Xi, W. Q. (2012). Effect of dietary conjugated linoleic acid levels on growth performance, muscle fatty acid profile, hepatic intermediary metabolism and antioxidant responses in genetically improved farmed Tilapia strain of Nile tilapia Oreochromis niloticus. Aquaculture Research, 43, 1392–1403.
Mariotti, F., Tomé, D., & Mirand, P. P. (2008). Converting nitrogen into protein—Beyond 6.25 and Jones’ Factors. Critical Reviews in Food Science and Nutrition, 48(2), 177–184.
Maroux, S., Louvard, D., & Barath, J. (1973). The aminopeptidase from hog intestinal brush border. Biochimica Et Biophysica Acta, 321, 282–295.
Mellery, J., Brel, J., Dort, J., Geay, F., Kestemont, P., Francis, D. S., & Rollin, X. (2017). A n-3 PUFA depletion applied to rainbow trout fry (Oncorhynchus mykiss) does not modulate its subsequent lipid bioconversion capacity. British Journal of Nutrition, 117(2), 187–199.
Métais, P. (1968). Détermination de l'α-amylase par une microtechnique. Annales De Biologie Clinique, 26, 133–142.
Milla, S., Mathieu, C., Wang, N., Lambert, S., Nadzialek, S., Massart, S., Henrotte, E., Douxfils, J., Mélard, C., & Mandiki, S. (2010). Spleen immune status is affected after acute handling stress but not regulated by cortisol in Eurasian perch, Perca fluviatilis. Fish & Shellfish Immunology, 28(5–6), 931–941.
Müller, A., Wolf, D., & Gutzeit, H. O. (2017). The black soldier fly, Hermetia illucens—A promising source for sustainable production of proteins, lipids and bioactive substances. Zeitschrift Für Naturforschung C, 72(9–10), 351–363.
National Research Council. (2011). Nutrient requirements of fish and shrimp. Washington, DC: National Academies Press.
Nayak, M., Saha, A., Pradhan, A., Samanta, M., Mohanty, T. K., & Giri, S. S. (2018). Influence of dietary lipid levels on growth, nutrient utilization, tissue fatty acid composition and desaturase gene expression in silver barb (Puntius gonionotous) fingerlings. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 226, 18–25.
Ng, W. K., & Romano, N. (2013). A review of the nutrition and feeding management of farmed tilapia throughout the culture cycle. Reviews in Aquaculture, 5(4), 220–254.
Nguyen, T. M., Mandiki, S. N., Gense, C., Tran, T. N. T., Nguyen, T. H., & Kestemont, P. (2020). A combined in vivo and in vitro approach to evaluate the influence of linseed oil or sesame oil and their combination on innate immune competence and eicosanoid metabolism processes in common carp (Cyprinus carpio). Developmental & Comparative Immunology, 102, 103488.
Nguyen, T. M., Mandiki, S. N. M., Tran, T. N. T., Larondelle, Y., Mellery, J., Mignolet, E., Cornet, V., Flamion, E., & Kestemont, P. (2019). Growth performance and immune status in common carp Cyprinus carpio as affected by plant oil-based diets complemented with β-glucan. Fish & Shellfish Immunology, 92, 288–299.
Nogales-Mérida, S., Gobbi, P., Józefiak, D., Mazurkiewicz, J., Dudek, K., Rawski, M., Kierończyk, B., & Józefiak, A. (2019). Insect meals in fish nutrition. Reviews in Aquaculture, 11(4), 1080–1103.
Ogunji, J. O., Kloas, W., Wirth, M., Neumann, N., & Pietsch, C. (2008). Effect of housefly maggot meal (magmeal) diets on the performance, concentration of plasma glucose, cortisol and blood characteristics of Oreochromis niloticus fingerlings. Journal of Animal Physiology and Animal Nutrition, 92(4), 511–518.
Ogunji, J. O., Kloas, W., Wirth, M., Schulz, C., & Rennert, B. (2008). Housefly maggot meal (magmeal) as a protein source for Oreochromis niloticus (Linn.). Asian Fisheries Science, 21(3), 319–331.
Ogunji, J., Pagel, T., Schulz, C., & Kloas, W. (2009). Apparent digestibility coefficient of housefly maggot meal (magmeal) for Nile tilapia (Oreochromis niloticus L.) and carp (Cyprinus carpio). Asian Fisheries Science, 22(4), 1095–1105.
Ogunji, J., Schulz, C., & Kloas, W. (2008). Growth performance, nutrient utilization of Nile tilapia Oreochromis niloticus fed housefly maggot meal (magmeal) diets. Turkish Journal of Fisheries and Aquatic Sciences, 8(1), 141–147.
Ohta, T., Ido, A., Kusano, K., Miura, C., & Miura, T. (2014). A novel polysaccharide in insects activates the innate immune system in mouse macrophage RAW264 cells. PLoS One, 9(12), e114823.
Ohta, T., Kusano, K., Ido, A., Miura, C., & Miura, T. (2016). Silkrose: A novel acidic polysaccharide from the silkmoth that can stimulate the innate immune response. Carbohydrate Polymers, 136, 995–1001.
Oliva-Teles, A. (2012). Nutrition and health of aquaculture fish. Journal of Fish Diseases, 35(2), 83–108.
Olsen, R. E., Suontama, J., Langmyhr, E., Mundheim, H., Ringo, E., Melle, W., Malde, M. K., & Hemre, G.-I. (2006). The replacement of fish meal with Antarctic krill, Euphausia superba in diets for Atlantic salmon, Salmo salar. Aquaculture Nutrition, 12(4), 280–290.
Papoutsoglou, E. S., & Lyndon, A. R. (2006). Digestive enzymes of Anarhichas minor and the effect of diet composition on their performance. Journal of Fish Biology, 69(2), 446–460.
Park, S. I., Chang, B. S., & Yoe, S. M. (2014). Detection of antimicrobial substances from larvae of the black soldier fly, Hermetia illucens (Diptera: S tratiomyidae). Entomological Research, 44(2), 58–64.
Ringo, E., Sperstad, S., Myklebust, R., Mayhew, T. M., Mjelde, A., Melle, W., & Olsen, R. E. (2006). The effect of dietary krill supplementation on epithelium-associated bacteria in the hindgut of Atlantic salmon (Salmo salar L.): A microbial and electron microscopical study. Aquaculture Research, 37(16), 1644–1653.
Ruxton, C. H. S., Reed, S. C., Simpson, M. J. A., & Millington, K. J. (2004). The health benefits of omega-3 polyunsaturated fatty acids: A review of the evidence. Journal of Human Nutrition and Dietetics, 17(5), 449–459.
Sakai, M. (1992). The immunostimulating effects of chitin in rainbow trout, Oncorhynchus mykiss. Diseases in Asian Aquaculture (pp. 413-417). Manila, Philippines: Asian Fisheries Society.
Sánchez-Muros, M. J., Barroso, F. G., & Manzano-Agugliaro, F. (2014). Insect meal as renewable source of food for animal feeding: A review. Journal of Cleaner Production, 65, 16–27.
Sánchez-Muros, M., De Haro, C., Sanz, A., Trenzado, C. E., Villareces, S., & Barroso, F. G. (2016). Nutritional evaluation of Tenebrio molitor meal as fishmeal substitute for tilapia (Oreochromis niloticus) diet. Aquaculture Nutrition, 22(5), 943–955.
Santos, J. F., Soares, K. L. S., Assis, C. R. D., Guerra, C. A. M., Lemos, D., Carvalho, L. B., & Bezerra, R. S. (2016). Digestive enzyme activity in the intestine of Nile tilapia (Oreochromis niloticus L.) under pond and cage farming systems. Fish Physiology and Biochemistry, 42(5), 1259–1274.
Santos, L. D., Furuya, W. M., da Silva, L. C. R., Matsushita, M., & de Castro Silva, T. S. (2011). Dietary conjugated linoleic acid (CLA) for finishing Nile tilapia. Aquaculture Nutrition, 17, e70–e81.
Schalekamp, D., van den Hill, K., & Huisman, Y. (2016). A horizon scan on aquaculture 2015: Fish feed. In Brief for GSDR-2016. United Nations, USA.
Shiau, S. Y., & Yu, Y. P. (1999). Dietary supplementation of chitin and chitosan depresses growth in tilapia, Oreochromis niloticus × O. aureus. Aquaculture, 179(1–4), 439–446.
Sing, K. W., Kamarudin, M. S., Wilson, J. J., & Sofian-Azirun, M. (2014). Evaluation of blowfly (Chrysomya megacephala) maggot meal as an effective, sustainable replacement for fishmeal in the diet of farmed juvenile red tilapia (Oreochromis sp.). Pakistan Veterinary Journal, 8318, 85–92.
Song, L. P., An, L., Zhu, Y. A., Li, X., & Wang, A. Y. (2009). Effects of dietary lipids on growth and feed utilization of jade perch, Scortum barcoo. Journal of the World Aquaculture Society, 40, 266–273.
Sourabié, A., Mandiki, S. N. M., Geay, F., Sene, T., Toguyeni, A., & Kestemont, P. (2018). Fish proteins not lipids are the major nutrients limiting the use of vegetable ingredients in catfish nutrition. Aquaculture Nutrition, 24(5), 1393–1405.
Stickney, R. R., & McGeachin, R. B. (1983). Responses of Tilapia aurea to semipurified diets of differing fatty acid composition. In Proceedings of the International Symposium on Tilapia in Aquaculture (pp. 346–355; 8–13). Nazareth: Tel Aviv University Press.
Stoneham, T. R., Kuhn, D. D., Taylor, D. P., Neilson, A. P., Smith, S. A., Gatlin, D. M., Chu, H. S. S., & O’Keefe, S. F. (2018). Production of omega-3 enriched tilapia through the dietary use of algae meal or fish oil: Improved nutrient value of fillet and offal. PLoS One, 13(4), e0194241.
Sugita, H., Kawasaki, J., & Deguchi, Y. (1997). Production of amylase by the intestinal microflora in cultured freshwater fish. Letters in Applied Microbiology, 24, 105–108.
Sunyer, J. O., & Tort, L. (1995). Natural hemolytic and bactericidal activities of sea bream Sparus aurata serum are effected by the alternative complement pathway. Veterinary Immunology and Immunopathology, 45(3–4), 333–345.
Takeuchi, T., Satoh, S., & Watanabe, T. (1983). Requirement of Tilapia nilotica for essential fatty acids. Bulletin of the Japanese Society of Scientific Fisheries, 49, 1127–1134.
Tocher, D. R. (2003). Metabolism and functions of lipids and fatty acids in teleost fish. Reviews in Fisheries Science, 11(2), 107–184.
Tocher, D. R. (2015). Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture, 449, 94–107.
Tocher, D. R., Bell, J. G., McGhee, F., Dick, J. R., & Fonseca-Madrigal, J. (2003). Effects of dietary lipid level and vegetable oil on fatty acid metabolism in Atlantic salmon (Salmo salar L.) over the whole production cycle. Fish Physiology and Biochemistry, 29(3), 193–209.
Tonial, I. B., Stevanato, F. B., Matsushita, M., De Souza, N. E., Furuya, W. M., & Visentainer, J. V. (2009). Optimization of flaxseed oil feeding time length in adult Nile tilapia (Oreochromis niloticus) as a function of muscle omega-3 fatty acids composition. Aquaculture Nutrition, 15(6), 564–568.
Tran-Ngoc, K. T., Haidar, M. N., Roem, A. J., Sendão, J., Verreth, J. A., & Schrama, J. W. (2019). Effects of feed ingredients on nutrient digestibility, nitrogen/energy balance and morphology changes in the intestine of Nile tilapia (Oreochromis niloticus). Aquaculture Research, 50(9), 2577–2590.
Van Huis, A. (2013). Potential of insects as food and feed in assuring food security. Annual review of entomology, 58, 563–583.
Van Huis, A., Van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G., & Vantomme, P. (2013). Edible insects: Future prospects for food and feed security (No. 171). Food and Agriculture Organization of the United Nations.
Wang, D., Zhai, S. W., Zhang, C. X., Zhang, Q., & Chen, H. (2007). Nutrition value of the Chinese grasshopper Acrida cinerea (Thunberg) for broilers. Animal Feed Science and Technology, 135(1–2), 66–74.
Watters, C., Iwamura, S., Ako, H., & Deng, D. (2012).Nutrition Considerations in Aquaculture: The Importance of Omega-3 Fatty Acids in Fish Development and Human Health, College of Tropical Agriculture and Human Resources (pp. 7, FN-11). Food and Nutrition. University of Hawaii at Manoa.
Worthington, T. M., & Manual, W. E. (1982). Enzymes and related biochemicals. In Biochemical products division. New Jersey: Worthington Diagnostic System Freehold.