[en] Despite the implementation of personalized medicine, patients with metastatic CRC (mCRC) still have a dismal overall survival due to the frequent occurrence of acquired resistance mechanisms thereby leading to clinical relapse. Understanding molecular mechanisms that support acquired resistance to anti-EGFR targeted therapy in mCRC is therefore clinically relevant and key to improving patient outcomes. Here, we observe distinct metabolic changes between cetuximab-resistant CRC cell populations, with in particular an increased glycolytic activity in KRAS-mutant cetuximab-resistant CRC cells (LIM1215 and OXCO2) but not in KRAS-amplified resistant DiFi cells. We show that cetuximab-resistant LIM1215 and OXCO2 cells have the capacity to recycle glycolysis-derived lactate to sustain their growth capacity. This is associated with an upregulation of the lactate importer MCT1 at both transcript and protein levels. Pharmacological inhibition of MCT1, with AR-C155858, reduces the uptake and oxidation of lactate and impairs growth capacity in cetuximab-resistant LIM1215 cells both in vitro and in vivo. This study identifies MCT1-dependent lactate utilization as a clinically actionable, metabolic vulnerability to overcome KRAS-mutant-mediated acquired resistance to anti-EGFR therapy in CRC.
Disciplines :
Oncology
Author, co-author :
Richiardone, Elena ; Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium
Al Roumi, Rim; Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium
Giolito, Maria Virginia ; Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium
Ambroise, Jérôme; Centre des Technologies Moléculaires Appliquées (CTMA), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 54, B-1200, Brussels, Belgium
Boidot, Romain; Unit of Molecular Biology, Department of Biology and Pathology of Tumors, Georges-François Leclerc Cancer Center-UNICANCER, 21079, Dijon, France
Ghesquière, Bart ; Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium, Metabolomics Core Facility Leuven, Center for Cancer Biology, VIB, Leuven, Belgium
Bellahcene, Akeila ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques
Bardelli, Alberto; Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy, IFOM ETS - the AIRC Institute of Molecular Oncology, Milan, Italy
Arena, Sabrina ; Department of Oncology, University of Torino, Candiolo, TO, Italy, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy. Electronic address: sabrina.arena@unito.it
Corbet, Cyril ; Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium. Electronic address: cyril.corbet@uclouvain.be
Language :
English
Title :
MCT1-dependent lactate recycling is a metabolic vulnerability in colorectal cancer cells upon acquired resistance to anti-EGFR targeted therapy.
This work was supported by research grants from the Fonds National de la Recherche Scientifique (F.R.S.-FNRS), the Belgian Foundation against Cancer, and the J. Maisin Foundation. The research leading to these results has also received funding from: AIRC under BRIDGE 2022-ID 27321 project (S.A.), MUR Dipartimento di Eccellenza 2023\u20132027 14586 DIORAMA (S.A.), Finanziamento dell'Unione Europea NextGeneration EU M4 C2 investimento 1.1.- PRIN 2022 PNRR P2022E3BTH (S.A.), Italian Ministry of Health, Ricerca Corrente 2024 (S.A.), AIRC under 5 per Mille 2018 - ID. 21091 program (A.Ba.); International Accelerator Award, ACRCelerate, jointly funded by Cancer Research UK (A26825 and A28223), FC AECC (GEACC18004TAB) and AIRC (22795) (A.Ba.); AIRC under IG 2023 - ID. 28922 project (A.Ba.) and PRIN 2022 - Prot. 2022CHB9BA (A.Ba.). CC is a FNRS Research Associate. ER is a FNRS-FRIA PhD fellow. AB is a FNRS Research Director.This work was supported by research grants from the Fonds National de la Recherche Scientifique (F.R.S.-FNRS), the Belgian Foundation against Cancer, and the J. Maisin Foundation. The research leading to these results has also received funding from: AIRC under BRIDGE 2022-ID 27321 project (S.A.), MUR Dipartimento di Eccellenza 2023-2027 14586 DIORAMA (S.A.), Finanziamento dell\u2019Unione Europea NextGeneration EU M4 C2 investimento 1.1.- PRIN 2022 PNRR P2022E3BTH (S.A.), AIRC under 5 per Mille 2018 - ID. 21091 program (A.Ba.); International Accelerator Award, ACRCelerate, jointly funded by Cancer Research UK (A26825 and A28223), FC AECC (GEACC18004TAB) and AIRC (22795) (A.Ba.); AIRC under IG 2023 - ID. 28922 project (A.Ba.) and PRIN 2022 - Prot. 2022CHB9BA (A.Ba.). CC is a FNRS Research Associate. ER is a FNRS-FRIA PhD fellow. AB is a FNRS Research Director.
Bokemeyer, C., Bondarenko, I., Makhson, A., Hartmann, J.T., Aparicio, J., de Braud, F., et al. Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J. Clin. Oncol. 27:5 (2009), 663–671.
Douillard, J.Y., Siena, S., Cassidy, J., Tabernero, J., Burkes, R., Barugel, M., et al. Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J. Clin. Oncol. 28:31 (2010), 4697–4705.
Van Cutsem, E., Kohne, C.H., Hitre, E., Zaluski, J., Chang Chien, C.R., Makhson, A., et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N. Engl. J. Med. 360:14 (2009), 1408–1417.
Cunningham, D., Humblet, Y., Siena, S., Khayat, D., Bleiberg, H., Santoro, A., et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N. Engl. J. Med. 351:4 (2004), 337–345.
De Roock, W., De Vriendt, V., Normanno, N., Ciardiello, F., Tejpar, S., KRAS, BRAF, PIK3CA, and PTEN mutations: implications for targeted therapies in metastatic colorectal cancer. Lancet Oncol. 12:6 (2011), 594–603.
Bertotti, A., Papp, E., Jones, S., Adleff, V., Anagnostou, V., Lupo, B., et al. The genomic landscape of response to EGFR blockade in colorectal cancer. Nature 526:7572 (2015), 263–267.
Medico, E., Russo, M., Picco, G., Cancelliere, C., Valtorta, E., Corti, G., et al. The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets. Nat. Commun., 6, 2015, 7002.
Imkeller, K., Ambrosi, G., Klemm, N., Claveras Cabezudo, A., Henkel, L., Huber, W., et al. Metabolic balance in colorectal cancer is maintained by optimal Wnt signaling levels. Mol. Syst. Biol., 18(8), 2022, e10874.
Satoh, K., Yachida, S., Sugimoto, M., Oshima, M., Nakagawa, T., Akamoto, S., et al. Global metabolic reprogramming of colorectal cancer occurs at adenoma stage and is induced by MYC. Proc. Natl. Acad. Sci. U. S. A. 114:37 (2017), E7697–E7706.
La Vecchia, S., Sebastian, C., Metabolic pathways regulating colorectal cancer initiation and progression. Semin. Cell Dev. Biol. 98 (2020), 63–70.
Fendt, S.M., Frezza, C., Erez, A., Targeting metabolic plasticity and flexibility dynamics for cancer therapy. Cancer Discov. 10:12 (2020), 1797–1807.
Hirpara, J., Eu, J.Q., Tan, J.K.M., Wong, A.L., Clement, M.V., Kong, L.R., et al. Metabolic reprogramming of oncogene-addicted cancer cells to OXPHOS as a mechanism of drug resistance. Redox Biol., 25, 2019, 101076.
Aloia, A., Mullhaupt, D., Chabbert, C.D., Eberhart, T., Fluckiger-Mangual, S., Vukolic, A., et al. A fatty acid oxidation-dependent metabolic shift regulates the adaptation of BRAF-mutated melanoma to MAPK inhibitors. Clin. Cancer Res. 25:22 (2019), 6852–6867.
Talebi, A., Dehairs, J., Rambow, F., Rogiers, A., Nittner, D., Derua, R., et al. Sustained SREBP-1-dependent lipogenesis as a key mediator of resistance to BRAF-targeted therapy. Nat. Commun., 9(1), 2018, 2500.
Feng, W.W., Wilkins, O., Bang, S., Ung, M., Li, J., An, J., et al. CD36-Mediated metabolic rewiring of breast cancer cells promotes resistance to HER2-targeted therapies. Cell Rep. 29:11 (2019), 3405–34020 e5.
Whitehead, R.H., Macrae, F.A., St John, D.J., Ma, J., A colon cancer cell line (LIM1215) derived from a patient with inherited nonpolyposis colorectal cancer. J. Natl. Cancer Inst. 74:4 (1985), 759–765.
Misale, S., Yaeger, R., Hobor, S., Scala, E., Janakiraman, M., Liska, D., et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486:7404 (2012), 532–536.
Orjuela, S., Huang, R., Hembach, K.M., Robinson, M.D., Soneson, C., ARMOR: an automated reproducible MOdular workflow for preprocessing and differential analysis of RNA-seq data. G3 (Bethesda). 9:7 (2019), 2089–2096.
Patro, R., Duggal, G., Love, M.I., Irizarry, R.A., Kingsford, C., Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14:4 (2017), 417–419.
Robinson, M.D., McCarthy, D.J., Smyth, G.K., edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:1 (2010), 139–140.
Tsugawa, H., Cajka, T., Kind, T., Ma, Y., Higgins, B., Ikeda, K., et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 12:6 (2015), 523–526.
Lu, H., Li, X., Luo, Z., Liu, J., Fan, Z., Cetuximab reverses the Warburg effect by inhibiting HIF-1-regulated LDH-A. Mol. Cancer Therapeut. 12:10 (2013), 2187–2199.
Li, X., Lu, Y., Liang, K., Pan, T., Mendelsohn, J., Fan, Z., Requirement of hypoxia-inducible factor-1alpha down-regulation in mediating the antitumor activity of the anti-epidermal growth factor receptor monoclonal antibody cetuximab. Mol. Cancer Therapeut. 7:5 (2008), 1207–1217.
Luwor, R.B., Lu, Y., Li, X., Mendelsohn, J., Fan, Z., The antiepidermal growth factor receptor monoclonal antibody cetuximab/C225 reduces hypoxia-inducible factor-1 alpha, leading to transcriptional inhibition of vascular endothelial growth factor expression. Oncogene 24:27 (2005), 4433–4441.
Payen, V.L., Mina, E., Van Hee, V.F., Porporato, P.E., Sonveaux, P., Monocarboxylate transporters in cancer. Mol. Metabol. 33 (2020), 48–66.
Ovens, M.J., Davies, A.J., Wilson, M.C., Murray, C.M., Halestrap, A.P., AR-C155858 is a potent inhibitor of monocarboxylate transporters MCT1 and MCT2 that binds to an intracellular site involving transmembrane helices 7-10. Biochem. J. 425:3 (2010), 523–530.
Vander Linden, C., Corbet, C., Bastien, E., Martherus, R., Guilbaud, C., Petit, L., et al. Therapy-induced DNA methylation inactivates MCT1 and renders tumor cells vulnerable to MCT4 inhibition. Cell Rep., 35(9), 2021, 109202.
Birsoy, K., Wang, T., Possemato, R., Yilmaz, O.H., Koch, C.E., Chen, W.W., et al. MCT1-mediated transport of a toxic molecule is an effective strategy for targeting glycolytic tumors. Nat. Genet. 45:1 (2013), 104–108.
Li, X., Yang, Y., Zhang, B., Lin, X., Fu, X., An, Y., et al. Lactate metabolism in human health and disease. Signal Transduct. Targeted Ther., 7(1), 2022, 305.
Marine, J.C., Dawson, S.J., Dawson, M.A., Non-genetic mechanisms of therapeutic resistance in cancer. Nat. Rev. Cancer 20:12 (2020), 743–756.
Zhou, J., Ji, Q., Li, Q., Resistance to anti-EGFR therapies in metastatic colorectal cancer: underlying mechanisms and reversal strategies. J. Exp. Clin. Cancer Res., 40(1), 2021, 328.
Parseghian, C.M., Sun, R., Woods, M., Napolitano, S., Lee, H.M., Alshenaifi, J., et al. Resistance mechanisms to anti-epidermal growth factor receptor therapy in RAS/RAF wild-type colorectal cancer vary by regimen and line of therapy. J. Clin. Oncol. 41:3 (2023), 460–471.
Diaz, L.A. Jr., Williams, R.T., Wu, J., Kinde, I., Hecht, J.R., Berlin, J., et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486:7404 (2012), 537–540.
Lu, Y., Zhao, X., Liu, Q., Li, C., Graves-Deal, R., Cao, Z., et al. lncRNA MIR100HG-derived miR-100 and miR-125b mediate cetuximab resistance via Wnt/beta-catenin signaling. Nat. Med. 23:11 (2017), 1331–1341.
Xiao, Y., Yu, T.J., Xu, Y., Ding, R., Wang, Y.P., Jiang, Y.Z., et al. Emerging therapies in cancer metabolism. Cell Metabol. 35:8 (2023), 1283–1303.
Stine, Z.E., Schug, Z.T., Salvino, J.M., Dang, C.V., Targeting cancer metabolism in the era of precision oncology. Nat. Rev. Drug Discov. 21:2 (2022), 141–162.
Apicella, M., Giannoni, E., Fiore, S., Ferrari, K.J., Fernandez-Perez, D., Isella, C., et al. Increased lactate secretion by cancer cells sustains non-cell-autonomous adaptive resistance to MET and EGFR targeted therapies. Cell Metabol. 28:6 (2018), 848–865 e6.
Park, S., Chang, C.Y., Safi, R., Liu, X., Baldi, R., Jasper, J.S., et al. ERRalpha-regulated lactate metabolism contributes to resistance to targeted therapies in breast cancer. Cell Rep. 15:2 (2016), 323–335.
Barnes, E.M.E., Xu, Y., Benito, A., Herendi, L., Siskos, A.P., Aboagye, E.O., et al. Lactic acidosis induces resistance to the pan-Akt inhibitor uprosertib in colon cancer cells. Br. J. Cancer 122:9 (2020), 1298–1308.
Pisarsky, L., Bill, R., Fagiani, E., Dimeloe, S., Goosen, R.W., Hagmann, J., et al. Targeting metabolic symbiosis to overcome resistance to anti-angiogenic therapy. Cell Rep. 15:6 (2016), 1161–1174.
Monteith, A.J., Ramsey, H.E., Silver, A.J., Brown, D., Greenwood, D., Smith, B.N., et al. Lactate utilization enables metabolic escape to confer resistance to BET inhibition in acute myeloid leukemia. Cancer Res. 84:7 (2024), 1101–1114.
Wu, H., Ding, Z., Hu, D., Sun, F., Dai, C., Xie, J., et al. Central role of lactic acidosis in cancer cell resistance to glucose deprivation-induced cell death. J. Pathol. 227:2 (2012), 189–199.
McCleland, M.L., Adler, A.S., Deming, L., Cosino, E., Lee, L., Blackwood, E.M., et al. Lactate dehydrogenase B is required for the growth of KRAS-dependent lung adenocarcinomas. Clin. Cancer Res. 19:4 (2013), 773–784.
Doherty, J.R., Yang, C., Scott, K.E., Cameron, M.D., Fallahi, M., Li, W., et al. Blocking lactate export by inhibiting the Myc target MCT1 Disables glycolysis and glutathione synthesis. Cancer Res. 74:3 (2014), 908–920.
Sabe, H., KRAS, MYC, and ARF6: inseparable relationships cooperatively promote cancer malignancy and immune evasion. Cell Commun. Signal., 21(1), 2023, 106.
Kerkhoff, E., Houben, R., Loffler, S., Troppmair, J., Lee, J.E., Rapp, U.R., Regulation of c-myc expression by Ras/Raf signalling. Oncogene 16:2 (1998), 211–216.
Tong, Z., Wang, X., Shi, S., Hou, T., Gao, G., Li, D., et al. Development of lactate-related gene signature and prediction of overall survival and chemosensitivity in patients with colorectal cancer. Cancer Med. 12:8 (2023), 10105–10122.
Yang, W.H., Qiu, Y., Stamatatos, O., Janowitz, T., Lukey, M.J., Enhancing the efficacy of glutamine metabolism inhibitors in cancer therapy. Trends Cancer 7:8 (2021), 790–804.
Cohen, A.S., Geng, L., Zhao, P., Fu, A., Schulte, M.L., Graves-Deal, R., et al. Combined blockade of EGFR and glutamine metabolism in preclinical models of colorectal cancer. Transl Oncol, 13(10), 2020, 100828.
Ma, H., Wu, Z., Peng, J., Li, Y., Huang, H., Liao, Y., et al. Inhibition of SLC1A5 sensitizes colorectal cancer to cetuximab. Int. J. Cancer 142:12 (2018), 2578–2588.
Vander Linden, C., Corbet, C., Reconciling environment-mediated metabolic heterogeneity with the oncogene-driven cancer paradigm in precision oncology. Semin. Cell Dev. Biol. 98 (2020), 202–210.