Li, Bo; The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China ; Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
Zhang, Yi; The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
Qiu, Dewen; The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
Francis, Frédéric ; Université de Liège - ULiège > TERRA Research Centre > Gestion durable des bio-agresseurs
Wang, Shuangchao; The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
Language :
English
Title :
Comparative Proteomic Analysis of Sweet Orange Petiole Provides Insights Into the Development of Huanglongbing Symptoms
Arce-Leal ÁP., Bautista R., Rodríguez-Negrete E. A., Manzanilla-Ramírez M. Á, Velázquez-Monreal J. J., Santos-Cervantes M. E., et al. (2020). Gene expression profile of Mexican Lime (Citrus aurantifolia) trees in response to Huanglongbing disease caused by Candidatus Liberibacter asiaticus. Microorganisms 8:528. 10.3390/microorganisms8040528 32272632
Aritua V., Achor D., Gmitter F. G., Albrigo G., Wang N., (2013). Transcriptional and microscopic analyses of Citrus stem and root responses to Candidatus Liberibacter asiaticus infection. PLoS One 8:0073742. 10.1371/journal.pone.0073742 24058486
Bindea G., Mlecnik B., Hackl H., Charoentong P., Tosolini M., Kirilovsky A., et al. (2009). ClueGO: a cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25 1091–1093. 10.1093/bioinformatics/btp101 19237447
Chin E. L., Ramsey J. S., Mishchuk D. O., Saha S., Foster E., Chavez J. D., et al. (2020). Longitudinal transcriptomic, proteomic, and metabolomic analyses of Citrus sinensis (L.) Osbeck graft-Inoculated with “Candidatus Liberibacter asiaticus.”. J. Proteome Res. 19 719–732. 10.1021/acs.jproteome.9b00616 31885275
Cruz-Munoz M., Petrone J. R., Cohn A. R., Munoz-Beristain A., Killiny N., Drew J. C., et al. (2018). Development of chemically defined media reveals citrate as preferred carbon source for Liberibacter growth. Front. Microbiol. 9:668. 10.3389/fmicb.2018.00668 29675013
Deng H., Achor D., Exteberria E., Yu Q., Du D., Stanton D., et al. (2019). Phloem regeneration is a mechanism for Huanglongbing-tolerance of “Bearss” Lemon and “LB8-9” Sugar Belle® mandarin. Front. Plant Sci. 10:227. 10.3389/fpls.2019.00277 30949186
Etxeberria E., Gonzalez P., Achor D., Albrigo G., (2009). Anatomical distribution of abnormally high levels of starch in HLB-affected Valencia orange trees. Physiol. Mol. Plant Pathol. 74 76–83. 10.1016/j.pmpp.2009.09.004
Etxeberria E., Narciso C., (2015). Anatomy of the citrus leaf petiole: healthy vs. Huanglongbing. Acta Hortic. 1065 891–898. 10.17660/ActaHortic.2015.1065.110
Fan J., Chen C., Yu Q., Khalaf A., Achor D. S., Brlansky R. H., et al. (2012). Comparative transcriptional and anatomical analyses of tolerant rough lemon and susceptible sweet orange in response to ‘ Candidatus Liberibacter asiaticus’ Infection. Mol. Plant Microbe Interact. 25 1396–1407. 10.1094/MPMI-06-12-0150-R 22809274
Gottwald T. R., da Graça J. V., Bassanezi R. B., (2007). Citrus Huanglongbing: the pathogen and its impact. Plant Heal. Prog. 8:31. 10.1094/php-2007-0906-01-rv
Graça J. V., Douhan G. W., Halbert S. E., Keremane M. L., Lee R. F., Vidalakis G., et al. (2016). Huanglongbing: an overview of a complex pathosystem ravaging the world’s citrus. J. Integr. Plant Biol. 58 373–383. 10.1111/jipb.12437 26466921
Hu J., Jiang J., Wang N., (2018). Control of citrus Huanglongbing via trunk injection of plant defense activators and antibiotics. Phytopathology 108 186–195. 10.1094/PHYTO-05-17-0175-R 28945516
Hu Y., Zhong X., Liu X., Lou B., Zhou C., Wang X., (2017). Comparative transcriptome analysis unveils the tolerance mechanisms of Citrus hystrix in response to ‘Candidatus Liberibacter asiaticus’ infection. PLoS One 12:e0189229. 10.1371/journal.pone.0189229 29232716
Huot B., Yao J., Montgomery B. L., He S. Y., (2014). Growth–defense tradeoffs in plants: a balancing act to optimize fitness. Mol. Plant 7 1267–1287. 10.1093/mp/ssu049 24777989
Jain M., Munoz-Bodnar A., Gabriel D. W., (2017). Concomitant loss of the glyoxalase system and glycolysis makes the uncultured pathogen “Candidatus Liberibacter asiaticus” an energy scavenger. Appl. Environ. Microbiol. 83 e1670–e1617. 10.1128/AEM.01670-17 28939611
Kangasjärvi S., Neukermans J., Li S., Aro E. M., Noctor G., (2012). Photosynthesis, photorespiration, and light signalling in defence responses. J. Exp. Bot. 63 1619–1636. 10.1093/jxb/err402 22282535
Karasov T. L., Chae E., Herman J. J., Bergelson J., (2017). Mechanisms to mitigate the trade-off between growth and defense. Plant Cell 29 666–680. 10.1105/tpc.16.00931 28320784
Killiny N., Jones S. E., Nehela Y., Hijaz F., Dutt M., Gmitter F. G., et al. (2018). All roads lead to Rome: towards understanding different avenues of tolerance to huanglongbing in citrus cultivars. Plant Physiol. Biochem. 129 1–10. 10.1016/j.plaphy.2018.05.005 29783096
Killiny N., Nehela Y., (2017a). Metabolomic response to Huanglongbing: role of carboxylic compounds in citrus sinensis response to “Candidatus liberibacter asiaticus” and its vector, diaphorina citri. Mol. Plant Microbe Interact. 30 666–678. 10.1094/MPMI-05-17-0106-R 28510485
Killiny N., Nehela Y., (2017b). One target, two mechanisms: the impact of ‘ Candidatus Liberibacter asiaticus’ and its vector, Diaphorina citri, on Citrus leaf pigments. Mol. Plant Microbe Interact. 30 543–556. 10.1094/MPMI-02-17-0045-R 28358623
Li B., Wang S., Zhang Y., Qiu D., (2019). Proteomic analyses of Citrus petiole responses to early Huanglongbing disease. Res. Square [Epub ahead of print]. 10.21203/rs.2.14879/v1
Li J., Pang Z., Trivedi P., Zhou X., Ying X., Jia H., et al. (2017). “Candidatus liberibacter asiaticus” encodes a functional salicylic acid (SA) hydroxylase that degrades SA to suppress plant defenses. Mol. Plant-Microbe Interact. 30 620–630. 10.1094/MPMI-12-16-0257-R 28488467
Li W., Hartung J. S., Levy L., (2006). Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus huanglongbing. J. Microbiol. Methods 66, 104–115. 10.1016/j.mimet.2005.10.018 16414133
Li W., Levy L., Hartung J. S., (2009). Quantitative distribution of ‘Candidatus Liberibacter asiaticus’ in citrus plants with citrus huanglongbing. Phytopathology 99 139–144.
Liu L., Sonbol F. M., Huot B., Gu Y., Withers J., Mwimba M., et al. (2016). Salicylic acid receptors activate jasmonic acid signalling through a non-canonical pathway to promote effector-triggered immunity. Nat. Commun. 7 1–10. 10.1038/ncomms13099 27725643
Lopes S. A., Bertolini E., Frare G. F., Martins E. C., Wulff N. A., Teixeira D. C., et al. (2009). Graft transmission efficiencies and multiplication of ‘ Candidatus Liberibacter americanus’ and ‘ Ca. Liberibacter asiaticus’ in citrus plants. Phytopathology® 99 301–306. 10.1094/PHYTO-99-3-0301 19203283
Manzanilla-Ramírez M. Á, Villegas-Monter Á, Velázquez-Monreal J. J., Zavaleta-Manceral H. A., Sandoval-Villal M., Muñoz-Orozco A., (2019). Physiological changes in Mexican lemon trees in production infected with HLB. Rev. Mex. Ciencias Agríc. 10 1063–1614.
Martinelli F., Reagan R. L., Dolan D., Fileccia V., Dandekar A. M., (2016). Proteomic analysis highlights the role of detoxification pathways in increased tolerance to Huanglongbing disease. BMC Plant Biol. 16:167. 10.1186/s12870-016-0858-5 27465111
Martinelli F., Reagan R. L., Uratsu S. L., Phu M. L., Albrecht U., Zhao W., et al. (2013). Gene regulatory networks elucidating Huanglongbing disease mechanisms. PLoS One 8:e74256. 10.1371/journal.pone.0074256 24086326
Martinelli F., Uratsu S. L., Albrecht U., Reagan R. L., Phu M. L., Britton M., et al. (2012). Transcriptome profiling of Citrus fruit response to Huanglongbing disease. PLoS One 7:e38039. 10.1371/journal.pone.0038039 22675433
Matsuura H., Aoi A., Satou C., Nakaya M., Masuta C., Nabeta K., (2009). Simultaneous UPLC MS/MS analysis of endogenous jasmonic acid, salicylic acid, and their related compounds. Plant Growth Regul. 57 293–301. 10.1007/s10725-008-9347-7
Miles G. P., Stover E., Ramadugu C., Keremane M. L., Lee R. F., (2017). Apparent tolerance to huanglongbing in citrus and citrus-related germplasm. HortScience 52 31–39. 10.21273/HORTSCI11374-16
Munir S., He P. P. P., Wu Y., He P. P. P., Khan S., Huang M., et al. (2018). Huanglongbing control: perhaps the end of the beginning. Microb. Ecol. 76 192–204. 10.1007/s00248-017-1123-7 29196843
Nehela Y., Hijaz F., Elzaawely A. A., El-Zahaby H. M., Killiny N., (2018). Citrus phytohormonal response to Candidatus Liberibacter asiaticus and its vector Diaphorina citri. Physiol. Mol. Plant Pathol. 102 24–35. 10.1016/j.pmpp.2017.11.004
Nehela Y., Killiny N., (2019). ‘Candidatus Liberibacter asiaticus’ and its vector, Diaphorina citri, augment the tricarboxylic acid cycle of their host via the g-aminobutyric acid shunt and polyamines pathway. Mol. Plant Microbe Interact. 32 413–427. 10.1094/MPMI-09-18-0238-R 30284953
Nehela Y., Killiny N., (2020). Melatonin is involved in citrus response to the pathogen huanglongbing via modulation of phytohormonal biosynthesis. Plant Physiol. 184 2216–2239. 10.1104/pp.20.00393 32843523
Nepusz T., Yu H., Paccanaro A., (2012). Detecting overlapping protein complexes in protein-protein interaction networks. Nat. Methods 9 471–472. 10.1038/nmeth.1938 22426491
Neuser J., Metzen C. C., Dreyer B. H., Feulner C., van Dongen J. T., Schmidt R. R., et al. (2019). HBI1 mediates the trade-off between growth and immunity through its impact on apoplastic ROS homeostasis. Cell Rep. 28 1670.e3–1678.e3. 10.1016/j.celrep.2019.07.029 31412238
Oberg A. L., Mahoney D. W., Eckel-Passow J. E., Malone C. J., Wolfinger R. D., Hill E. G., et al. (2008). Statistical analysis of relative labeled mass spectrometry data from complex samples using ANOVA. J. Proteome Res. 7 225–233. 10.1021/pr700734f 18173221
Padhi E. M. T., Maharaj N., Lin S.-Y., Mishchuk D. O., Chin E., Godfrey K., et al. (2019). Metabolome and microbiome signatures in the roots of Citrus affected by Huanglongbing. Phytopathology 109 2022–2032. 10.1094/PHYTO-03-19-0103-R 31433274
Porra R. J., Thompson W. A., Kriedemann P. E., (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. BBA Bioenerg. 3 384–394. 10.1016/S0005-2728(89)80347-0
Ramsey J. S., Chin E. L., Chavez J. D., Saha S., Mischuk D., Mahoney J., et al. (2020). Longitudinal transcriptomic, proteomic, and metabolomic analysis of Citrus limon response to graft inoculation by Candidatus Liberibacter asiaticus. J. Proteome Res. 19 2247–2263. 10.1021/acs.jproteome.9b00802 32338516
Schmittgen T. D., Livak K. J., (2008). Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3 1101–1108. 10.1038/nprot.2008.73 18546601
Schwacke R., Ponce-Soto G. Y., Krause K., Bolger A. M., Arsova B., Hallab A., et al. (2019). MapMan4: a refined protein classification and annotation framework applicable to multi-Omics data analysis. Mol. Plant 12 879–892. 10.1016/j.molp.2019.01.003 30639314
Tanou G., Fotopoulos V., Molassiotis A., (2012). Priming against environmental challenges and proteomics in plants: update and agricultural perspectives. Front. Plant Sci. 3:216. 10.3389/fpls.2012.00216 22973291
Tanou G., Job C., Rajjou L., Arc E., Belghazi M., Diamantidis G., et al. (2009). Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant J. 60 795–804. 10.1111/j.1365-313X.2009.04000.x 19682288
Tian T., Liu Y., Yan H., You Q., Yi X., Du Z., et al. (2017). AgriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 45 w122–w129. 10.1093/nar/gkx382 28472432
Wang N., (2019). The Citrus Huanglongbing crisis and potential solutions. Mol. Plant 12 607–609. 10.1016/j.molp.2019.03.008 30947021
Wang N., Stelinski L. L., Pelz-Stelinski K. S., Graham J. H., Zhang Y., (2017). Tale of the Huanglongbing disease pyramid in the context of the citrus microbiome. Phytopathology 107 380–387. 10.1094/PHYTO-12-16-0426-RVW 28095208
Wulff N. A., Zhang S., Setubal J. C., Almeida N. F., Martins E. C., Harakava R., et al. (2014). The complete genome sequence of ‘ Candidatus Liberibacter americanus’, associated with Citrus Huanglongbing. Mol. Plant Microbe Interact. 27 163–176. 10.1094/MPMI-09-13-0292-R 24200077
Yao L., Yu Q., Huang M., Hung W., Grosser J., Chen S., et al. (2019). Proteomic and metabolomic analyses provide insight into the off-flavour of fruits from citrus trees infected with ‘Candidatus Liberibacter asiaticus.’. Hortic. Res. 6:31. 10.1038/s41438-018-0109-z 30792870
Yao L., Yu Q., Huang M., Song Z., Grosser J., Chen S., et al. (2020). Comparative iTRAQ proteomic profiling of sweet orange fruit on sensitive and tolerant rootstocks infected by ‘Candidatus Liberibacter asiaticus,’. PLoS One 15:e0228876. 10.1371/journal.pone.0228876 32059041
Zhao W., Baldwin E. A., Bai J., Plotto A., Irey M., (2019). Comparative analysis of the transcriptomes of the calyx abscission zone of sweet orange insights into the Huanglongbing-associated fruit abscission. Hortic. Res. 6:71. 10.1038/s41438-019-0152-4 31231529
Zhong Y., Cheng C. Z., Jiang N. H., Jiang B., Zhang Y. Y., Wu B., et al. (2015). Comparative transcriptome and iTRAQ proteome analyses of citrus root responses to Candidatus liberibacter asiaticus infection. PLoS One 10:e0126973. 10.1371/journal.pone.0126973 26046530
Züst T., Agrawal A. A., (2017). Trade-offs between plant growth and defense against insect herbivory: an emerging mechanistic synthesis. Annu. Rev. Plant Biol. 68 513–534. 10.1146/annurev-arplant-042916-040856 28142282