[en] The production of biomass ash (BA) is expected to increase in the future, as biomass is generally considered a carbon-neutral fuel. BA potentially concentrates heavy metals and trace elements at high levels. With the growing production of BA, its disposal in landfills or recycling must be addressed through solid waste policies and within the framework of a circular economy. Utilizing BA as a cement substitute solves disposal issues while offering environmental benefits aligned with the circular economy. However, the varying physical and chemical properties of BA, influenced by factors such as biomass type and combustion technique, necessitate more effective utilization strategies. Consequently, researchers are developing various treatment methods to ensure that BA meet the necessary requirements and do not pose problems such as heavy metal or chlorine leaching. These treatments facilitate the production of concrete with higher compressive strength at greater cement replacement levels, supporting greener construction practices. This review consolidates existing BA data and treatment methods, focusing on their impacts and efficiency. It also explores combined treatments and potential new approaches. By providing a foundation for future research and practical applications, this study aims to improve treatment techniques, helping the industry mitigate environmental risks and advance carbon-neutral construction solutions.
Precision for document type :
Review article
Disciplines :
Civil engineering
Author, co-author :
Bülbül, Fatih ; Université de Liège - ULiège > Urban and Environmental Engineering
Courard, Luc ; Université de Liège - ULiège > Département ArGEnCo > Matériaux de construction non métalliques du génie civil
Language :
English
Title :
Turning Waste into Greener Cementitious Building Material: Treatment Methods for Biomass Ashes—A Review
Publication date :
14 February 2025
Journal title :
Materials
eISSN :
1996-1944
Publisher :
MDPI AG
Special issue title :
Preparation and Properties of New Cementitious Materials (2nd Edition)
Andrew R.M. Global CO2 Emissions from Cement Production Earth Syst. Sci. Data 2018 10 195 217 10.5194/essd-10-195-2018
Ritchie H. Rosado P. Roser M. CO2 Emissions by Fuel Our World in Data 2024 Available online: https://ourworldindata.org/emissions-by-fuel (accessed on 20 September 2024)
Boden T.A. Marland G. Andres R.J. Estimates of Global, Regional, and National Annual CO2 Emissions from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring: 1950–1992 ORNL/CDIAC–90, NDP–030/R6, 207068 USDOE Washington, DC, USA December 1995
Ritchie H. Roser M. Rosado P. Energy Our World in Data 2022 Available online: https://ourworldindata.org/energy (accessed on 20 September 2024)
International Energy Agency Energy Technology Perspectives 2023 International Energy Agency Paris, France OECD Paris, France 2023 978-92-64-80416-6
Lim J.S. Abdul Manan Z. Wan Alwi S.R. Hashim H. A Review on Utilisation of Biomass from Rice Industry as a Source of Renewable Energy Renew. Sustain. Energy Rev. 2012 16 3084 3094 10.1016/j.rser.2012.02.051
Ashik U.P.M. Wan Daud W.M.A. Abbas H.F. Production of Greenhouse Gas Free Hydrogen by Thermocatalytic Decomposition of Methane–A Review Renew. Sustain. Energy Rev. 2015 44 221 256 10.1016/j.rser.2014.12.025
Munawar M.A. Khoja A.H. Naqvi S.R. Mehran M.T. Hassan M. Liaquat R. Dawood U.F. Challenges and Opportunities in Biomass Ash Management and Its Utilization in Novel Applications Renew. Sustain. Energy Rev. 2021 150 111451 10.1016/j.rser.2021.111451
Vassilev S.V. Vassileva C.G. Water-Soluble Fractions of Biomass and Biomass Ash and Their Significance for Biofuel Application Energy Fuels 2019 33 2763 2777 10.1021/acs.energyfuels.9b00081
Motghare K.A. Rathod A.P. Wasewar K.L. Labhsetwar N.K. Comparative Study of Different Waste Biomass for Energy Application Waste Manag. 2016 47 40 45 10.1016/j.wasman.2015.07.032
Wang L. Hustad J.E. Skreiberg Ø. Skjevrak G. Grønli M. A Critical Review on Additives to Reduce Ash Related Operation Problems in Biomass Combustion Applications Energy Procedia 2012 20 20 29 10.1016/j.egypro.2012.03.004
Vassilev S.V. Baxter D. Andersen L.K. Vassileva C.G. An Overview of the Composition and Application of Biomass Ash. Part 1. Phase–Mineral and Chemical Composition and Classification Fuel 2013 105 40 76 10.1016/j.fuel.2012.09.041
Rajamma R. Ball R.J. Tarelho L.A.C. Allen G.C. Labrincha J.A. Ferreira V.M. Characterisation and Use of Biomass Fly Ash in Cement-Based Materials J. Hazard. Mater. 2009 172 1049 1060 10.1016/j.jhazmat.2009.07.109
Energy Institute Statistical Review of World Energy; Smil (2017)–with Major Processing by Our World in Data 2024 Available online: https://ourworldindata.org/grapher/global-energy-substitution?time=2000.latest&facet=none (accessed on 20 September 2024)
European Commission: Eurostat Energy, Transport and Environment Statistics: 2020 Edition Publications Office Luxemburg 2020 978-92-76-20736-8
IEA CO2 Total Emissions by Region, 2000-2023–Charts–Data & Statistics Available online: https://www.iea.org/data-and-statistics/charts/co2-total-emissions-by-region-2000-2023 (accessed on 20 September 2024)
Agrela F. Cabrera M. Morales M.M. Zamorano M. Alshaaer M. Biomass Fly Ash and Biomass Bottom Ash New Trends in Eco-Efficient and Recycled Concrete Elsevier Amsterdam, The Netherlands 2019 23 58 978-0-08-102480-5
Vassilev S.V. Baxter D. Vassileva C.G. An Overview of the Behaviour of Biomass during Combustion: Part I. Phase-Mineral Transformations of Organic and Inorganic Matter Fuel 2013 112 391 449 10.1016/j.fuel.2013.05.043
Belviso C. State-of-the-Art Applications of Fly Ash from Coal and Biomass: A Focus on Zeolite Synthesis Processes and Issues Prog. Energy Combust. Sci. 2018 65 109 135 10.1016/j.pecs.2017.10.004
Aprianti E. Shafigh P. Bahri S. Farahani J.N. Supplementary Cementitious Materials Origin from Agricultural Wastes–A Review Constr. Build. Mater. 2015 74 176 187 10.1016/j.conbuildmat.2014.10.010
Chen L. Liao Y. Xia Y. Ma X. Combustion Characteristics of Co-Combusted Municipal Solid Wastes and Sewage Sludge Energy Sources Part Recovery Util. Environ. Eff. 2020 46 5730 5742 10.1080/15567036.2020.1739175
Tursi A. A Review on Biomass: Importance, Chemistry, Classification, and Conversion Biofuel Res. J. 2019 6 962 979 10.18331/BRJ2019.6.2.3
Tun M.M. Juchelkova D. Win M.M. Thu A.M. Puchor T. Biomass Energy: An Overview of Biomass Sources, Energy Potential, and Management in Southeast Asian Countries Resources 2019 8 81 10.3390/resources8020081
Chinnici G. D’Amico M. Rizzo M. Pecorino B. Analysis of Biomass Availability for Energy Use in Sicily Renew. Sustain. Energy Rev. 2015 52 1025 1030 10.1016/j.rser.2015.07.174
Kumar A. Adamopoulos S. Jones D. Amiandamhen S.O. Forest Biomass Availability and Utilization Potential in Sweden: A Review Waste Biomass Valorization 2021 12 65 80 10.1007/s12649-020-00947-0
Barreiro S. Schelhaas M.-J. Kändler G. Antón-Fernández C. Colin A. Bontemps J.-D. Alberdi I. Condés S. Dumitru M. Ferezliev A. et al. Overview of Methods and Tools for Evaluating Future Woody Biomass Availability in European Countries Ann. For. Sci. 2016 73 823 837 10.1007/s13595-016-0564-3
Ferreira-Leitão V. Gottschalk L.M.F. Ferrara M.A. Nepomuceno A.L. Molinari H.B.C. Bon E.P.S. Biomass Residues in Brazil: Availability and Potential Uses Waste Biomass Valorization 2010 1 65 76 10.1007/s12649-010-9008-8
Lozano-García D.F. Santibañez-Aguilar J.E. Lozano F.J. Flores-Tlacuahuac A. GIS-Based Modeling of Residual Biomass Availability for Energy and Production in Mexico Renew. Sustain. Energy Rev. 2020 120 109610 10.1016/j.rser.2019.109610
Balat M. Use of Biomass Sources for Energy in Turkey and a View to Biomass Potential Biomass Bioenergy 2005 29 32 41 10.1016/j.biombioe.2005.02.004
Brosowski A. Thrän D. Mantau U. Mahro B. Erdmann G. Adler P. Stinner W. Reinhold G. Hering T. Blanke C. A Review of Biomass Potential and Current Utilisation–Status Quo for 93 Biogenic Wastes and Residues in Germany Biomass Bioenergy 2016 95 257 272 10.1016/j.biombioe.2016.10.017
Galik C.S. Abt R. Wu Y. Forest Biomass Supply in the Southeastern United States—Implications for Industrial Roundwood and Bioenergy Production J. For. 2009 107 69 77 10.1093/jof/107.2.69
Okafor C.C. Nzekwe C.A. Ajaero C.C. Ibekwe J.C. Otunomo F.A. Biomass Utilization for Energy Production in Nigeria: A Review Clean. Energy Syst. 2022 3 100043 10.1016/j.cles.2022.100043
Frías M. Moreno De Los Reyes A.M. Villar-Cociña E. García R. Vigil De La Villa R. Vasić M.V. New Eco-Cements Made with Marabou Weed Biomass Ash Materials 2024 17 5012 10.3390/ma17205012
Rosales J. Cabrera M. Beltrán M.G. López M. Agrela F. Effects of Treatments on Biomass Bottom Ash Applied to the Manufacture of Cement Mortars J. Clean. Prod. 2017 154 424 435 10.1016/j.jclepro.2017.04.024
Chang C.-Y. Wang C.-F. Mui D.T. Chiang H.-L. Application of Methods (Sequential Extraction Procedures and High-Pressure Digestion Method) to Fly Ash Particles to Determine the Element Constituents: A Case Study for BCR 176 J. Hazard. Mater. 2009 163 578 587 10.1016/j.jhazmat.2008.07.039
Karps O. Aboltins A. Palabinskis J. Biomass Ash Utilization Opportunities in Agriculture Proceedings of the International Scientific Conference “RURAL DEVELOPMENT 2017” Kaunas, Lithuania 15 February 2018
James A. Thring R. Helle S. Ghuman H. Ash Management Review—Applications of Biomass Bottom Ash Energies 2012 5 3856 3873 10.3390/en5103856
Lu G.Q. Do D.D. Adsorption Properties of Fly Ash Particles for NOx Removal from Flue Gases Fuel Process. Technol. 1991 27 95 107 10.1016/0378-3820(91)90011-Z
Cho H. Oh D. Kim K. A Study on Removal Characteristics of Heavy Metals from Aqueous Solution by Fly Ash J. Hazard. Mater. 2005 127 187 195 10.1016/j.jhazmat.2005.07.019
Polat H. Vengosh A. Pankratov I. Polat M. A New Methodology for Removal of Boron from Water by Coal and Fly Ash Desalination 2004 164 173 188 10.1016/S0011-9164(04)00176-6
Izquierdo M.T. Rubio B. Carbon-Enriched Coal Fly Ash as a Precursor of Activated Carbons for SO2 Removal J. Hazard. Mater. 2008 155 199 205 10.1016/j.jhazmat.2007.11.047 18155355
Wang P. Guo Y. Zhao C. Yan J. Lu P. Biomass Derived Wood Ash with Amine Modification for Post-Combustion CO2 Capture Appl. Energy 2017 201 34 44 10.1016/j.apenergy.2017.05.096
Muñoz P. Letelier V. Muñoz L. Gencel O. Sutcu M. Vasic M. Assessing Technological Properties and Environmental Impact of Fired Bricks Made by Partially Adding Bottom Ash from an Industrial Approach Constr. Build. Mater. 2023 396 132338 10.1016/j.conbuildmat.2023.132338
Sarmah M. Baruah B.P. Khare P. A Comparison between CO2 Capturing Capacities of Fly Ash Based Composites of MEA/DMA and DEA/DMA Fuel Process. Technol. 2013 106 490 497 10.1016/j.fuproc.2012.09.017
Wang S. Song X. Wei M. Liu W. Wang X. Ke Y. Tao T. Strength Characteristics and Microstructure Evolution of Cemented Tailings Backfill with Rice Straw Ash as an Alternative Binder Constr. Build. Mater. 2021 297 123780 10.1016/j.conbuildmat.2021.123780
Qi T. Gao X. Feng G. Bai J. Wang Z. Chen Q. Wang H. Du X. Effect of Biomass Power Plant Ash on Fresh Properties of Cemented Coal Gangue Backfill Constr. Build. Mater. 2022 340 127853 10.1016/j.conbuildmat.2022.127853
Qin Z. Jin J. Liu L. Zhang Y. Du Y. Yang Y. Zuo S. Reuse of Soil-like Material Solidified by a Biomass Fly Ash-Based Binder as Engineering Backfill Material and Its Performance Evaluation J. Clean. Prod. 2023 402 136824 10.1016/j.jclepro.2023.136824
Carrasco B. Cruz N. Terrados J. Corpas F.A. Pérez L. An Evaluation of Bottom Ash from Plant Biomass as a Replacement for Cement in Building Blocks Fuel 2014 118 272 280 10.1016/j.fuel.2013.10.077
Olatoyan O.J. Kareem M.A. Adebanjo A.U. Olawale S.O.A. Alao K.T. Potential Use of Biomass Ash as a Sustainable Alternative for Fly Ash in Concrete Production: A Review Hybrid Adv. 2023 4 100076 10.1016/j.hybadv.2023.100076
Cabrera M. Galvin A.P. Agrela F. Carvajal M.D. Ayuso J. Characterisation and Technical Feasibility of Using Biomass Bottom Ash for Civil Infrastructures Constr. Build. Mater. 2014 58 234 244 10.1016/j.conbuildmat.2014.01.087
Niu Y. Tan H. Hui S. Ash-Related Issues during Biomass Combustion: Alkali-Induced Slagging, Silicate Melt-Induced Slagging (Ash Fusion), Agglomeration, Corrosion, Ash Utilization, and Related Countermeasures Prog. Energy Combust. Sci. 2016 52 1 61 10.1016/j.pecs.2015.09.003
Pitman R.M. Wood Ash Use in Forestry-a Review of the Environmental Impacts Forestry 2006 79 563 588 10.1093/forestry/cpl041
Vassilev S.V. Baxter D. Andersen L.K. Vassileva C.G. An Overview of the Chemical Composition of Biomass Fuel 2010 89 913 933 10.1016/j.fuel.2009.10.022
Vassilev S.V. Baxter D. Andersen L.K. Vassileva C.G. Morgan T.J. An Overview of the Organic and Inorganic Phase Composition of Biomass Fuel 2012 94 1 33 10.1016/j.fuel.2011.09.030
Vassilev S.V. Vassileva C.G. Vassilev V.S. Advantages and Disadvantages of Composition and Properties of Biomass in Comparison with Coal: An Overview Fuel 2015 158 330 350 10.1016/j.fuel.2015.05.050
Vassilev S.V. Baxter D. Vassileva C.G. An Overview of the Behaviour of Biomass during Combustion: Part II. Ash Fusion and Ash Formation Mechanisms of Biomass Types Fuel 2014 117 152 183 10.1016/j.fuel.2013.09.024
Girón R.P. Ruiz B. Fuente E. Gil R.R. Suárez-Ruiz I. Properties of Fly Ash from Forest Biomass Combustion Fuel 2013 114 71 77 10.1016/j.fuel.2012.04.042
Suarez-Garcia F. Martinez-Alonso A. Fernandez-Llorente M. Tascon J. Inorganic Matter Characterization in Vegetable Biomass Feedstocks1 Fuel 2002 81 1161 1169 10.1016/S0016-2361(02)00026-1
Vamvuka D. Kakaras E. Ash Properties and Environmental Impact of Various Biomass and Coal Fuels and Their Blends Fuel Process. Technol. 2011 92 570 581 10.1016/j.fuproc.2010.11.013
Vassileva C.G. Vassilev S.V. Behaviour of Inorganic Matter during Heating of Bulgarian Coals Fuel Process. Technol. 2006 87 1095 1116 10.1016/j.fuproc.2006.08.006
Hubert J. Grigoletto S. Michel F. Zhao Z. Courard L. Development and Properties of Recycled Biomass Fly Ashes Modified Mortars Recycling 2024 9 46 10.3390/recycling9030046
Ohenoja K. Wigren V. Österbacka J. Illikainen M. Mechanically Treated Fly Ash from Fluidized Bed Combustion of Peat, Wood, and Wastes in Concrete Waste Biomass Valorization 2020 11 3071 3079 10.1007/s12649-019-00615-y
Silvestro L. Scolaro T.P. Ruviaro A.S. Santos Lima G.T.D. Gleize P.J.P. Pelisser F. Use of Biomass Wood Ash to Produce Sustainable Geopolymeric Pastes Constr. Build. Mater. 2023 370 130641 10.1016/j.conbuildmat.2023.130641
Ates F. Park K.T. Kim K.W. Woo B.-H. Kim H.G. Effects of Treated Biomass Wood Fly Ash as a Partial Substitute for Fly Ash in a Geopolymer Mortar System Constr. Build. Mater. 2023 376 131063 10.1016/j.conbuildmat.2023.131063
Maschowski C. Kruspan P. Garra P. Talib Arif A. Trouvé G. Gieré R. Physicochemical and Mineralogical Characterization of Biomass Ash from Different Power Plants in the Upper Rhine Region Fuel 2019 258 116020 10.1016/j.fuel.2019.116020
Sigvardsen N.M. Geiker M.R. Ottosen L.M. Phase Development and Mechanical Response of Low-Level Cement Replacements with Wood Ash and Washed Wood Ash Constr. Build. Mater. 2021 269 121234 10.1016/j.conbuildmat.2020.121234
Rissanen J. Giosué C. Ohenoja K. Kinnunen P. Marcellini M. Letizia Ruello M. Tittarelli F. Illikainen M. The Effect of Peat and Wood Fly Ash on the Porosity of Mortar Constr. Build. Mater. 2019 223 421 430 10.1016/j.conbuildmat.2019.06.228
Wang G. Shen L. Sheng C. Characterization of Biomass Ashes from Power Plants Firing Agricultural Residues Energy Fuels 2012 26 102 111 10.1021/ef201134m
Boström D. Skoglund N. Grimm A. Boman C. Öhman M. Broström M. Backman R. Ash Transformation Chemistry during Combustion of Biomass Energy Fuels 2012 26 85 93 10.1021/ef201205b
Baxter L.L. Miles T.R. Miles T.R. Jenkins B.M. Milne T. Dayton D. Bryers R.W. Oden L.L. The Behavior of Inorganic Material in Biomass-Fired Power Boilers: Field and Laboratory Experiences Fuel Process. Technol. 1998 54 47 78 10.1016/S0378-3820(97)00060-X
Lanzerstorfer C. Cyclone Fly Ash from a Grate-Fired Biomass Combustion Plant: Dependence of the Concentration of Various Components on the Particle Size Fuel Process. Technol. 2015 131 382 388 10.1016/j.fuproc.2014.12.010
Trivedi N.S. Mandavgane S.A. Mehetre S. Kulkarni B.D. Characterization and Valorization of Biomass Ashes Environ. Sci. Pollut. Res. 2016 23 20243 20256 10.1007/s11356-016-7227-7
Vassilev S.V. Baxter D. Andersen L.K. Vassileva C.G. An Overview of the Composition and Application of Biomass Ash. Part 2. Potential Utilisation, Technological and Ecological Advantages and Challenges Fuel 2013 105 19 39 10.1016/j.fuel.2012.10.001
Voshell S. Mäkelä M. Dahl O. A Review of Biomass Ash Properties towards Treatment and Recycling Renew. Sustain. Energy Rev. 2018 96 479 486 10.1016/j.rser.2018.07.025
van Loo S. Koppejan J. The Handbook of Biomass Combustion and Co-Firing Earthscan London, UK 2008 978-1-84407-249-1
Barbosa R. Lapa N. Dias D. Mendes B. Concretes Containing Biomass Ashes: Mechanical, Chemical, and Ecotoxic Performances Constr. Build. Mater. 2013 48 457 463 10.1016/j.conbuildmat.2013.07.031
Horsakulthai V. Phiuvanna S. Kaenbud W. Investigation on the Corrosion Resistance of Bagasse-Rice Husk-Wood Ash Blended Cement Concrete by Impressed Voltage Constr. Build. Mater. 2011 25 54 60 10.1016/j.conbuildmat.2010.06.057
Omran A. Soliman N. Xie A. Davidenko T. Tagnit-Hamou A. Field Trials with Concrete Incorporating Biomass-Fly Ash Constr. Build. Mater. 2018 186 660 669 10.1016/j.conbuildmat.2018.07.084
Sata V. Jaturapitakkul C. Kiattikomol K. Influence of Pozzolan from Various By-Product Materials on Mechanical Properties of High-Strength Concrete Constr. Build. Mater. 2007 21 1589 1598 10.1016/j.conbuildmat.2005.09.011
Siddique R. Utilization of Wood Ash in Concrete Manufacturing Resour. Conserv. Recycl. 2012 67 27 33 10.1016/j.resconrec.2012.07.004
Cheah C.B. Ramli M. The Implementation of Wood Waste Ash as a Partial Cement Replacement Material in the Production of Structural Grade Concrete and Mortar: An Overview Resour. Conserv. Recycl. 2011 55 669 685 10.1016/j.resconrec.2011.02.002
ASTM C618-23 Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete ASTM International West Conshohocken, PA, USA 2023 10.1520/C0618-23
EN-450-1 Fly Ash for Concrete—Part 1: Definition, Specifications and Conformity Criteria CEN Brussels, Belgium 2012
Vamvuka D. Zografos D. Predicting the Behaviour of Ash from Agricultural Wastes during Combustion Fuel 2004 83 2051 2057 10.1016/j.fuel.2004.04.012
Vassilev S.V. Vassileva C.G. A New Approach for the Classification of Coal Fly Ashes Based on Their Origin, Composition, Properties, and Behaviour Fuel 2007 86 1490 1512 10.1016/j.fuel.2006.11.020
Vassilev S.V. Vassileva C.G. A New Approach for the Combined Chemical and Mineral Classification of the Inorganic Matter in Coal. 1. Chemical and Mineral Classification Systems Fuel 2009 88 235 245 10.1016/j.fuel.2008.09.006
Etiégni L. Campbell A.G. Physical and Chemical Characteristics of Wood Ash Bioresour. Technol. 1991 37 173 178 10.1016/0960-8524(91)90207-Z
Misra M.K. Ragland K.W. Baker A.J. Wood Ash Composition as a Function of Furnace Temperature Biomass Bioenergy 1993 4 103 116 10.1016/0961-9534(93)90032-Y
Demirbas A. Potential Applications of Renewable Energy Sources, Biomass Combustion Problems in Boiler Power Systems and Combustion Related Environmental Issues Prog. Energy Combust. Sci. 2005 31 171 192 10.1016/j.pecs.2005.02.002
Demirbas A. Combustion Characteristics of Different Biomass Fuels Prog. Energy Combust. Sci. 2004 30 219 230 10.1016/j.pecs.2003.10.004
Wigley F. Williamson J. Malmgren A. Riley G. Ash Deposition at Higher Levels of Coal Replacement by Biomass Fuel Process. Technol. 2007 88 1148 1154 10.1016/j.fuproc.2007.06.015
Tite M.S. Shortland A. Maniatis Y. Kavoussanaki D. Harris S.A. The Composition of the Soda-Rich and Mixed Alkali Plant Ashes Used in the Production of Glass J. Archaeol. Sci. 2006 33 1284 1292 10.1016/j.jas.2006.01.004
Nutalapati D. Gupta R. Moghtaderi B. Wall T.F. Assessing Slagging and Fouling during Biomass Combustion: A Thermodynamic Approach Allowing for Alkali/Ash Reactions Fuel Process. Technol. 2007 88 1044 1052 10.1016/j.fuproc.2007.06.022
Lapuerta M. Hernández J.J. Pazo A. López J. Gasification and Co-Gasification of Biomass Wastes: Effect of the Biomass Origin and the Gasifier Operating Conditions Fuel Process. Technol. 2008 89 828 837 10.1016/j.fuproc.2008.02.001
Umamaheswaran K. Batra V.S. Physico-Chemical Characterisation of Indian Biomass Ashes Fuel 2008 87 628 638 10.1016/j.fuel.2007.05.045
Madhiyanon T. Sathitruangsak P. Soponronnarit S. Co-Combustion of Rice Husk with Coal in a Cyclonic Fluidized-Bed Combustor (ψ-FBC) Fuel 2009 88 132 138 10.1016/j.fuel.2008.08.008
Miles T.R. Miles T.R. Baxter L.L. Bryers R.W. Jenkins B.M. Oden L.L. Boiler Deposits from Firing Biomass Fuels Biomass Bioenergy 1996 10 125 138 10.1016/0961-9534(95)00067-4
Bryers R.W. Fireside Slagging, Fouling, and High-Temperature Corrosion of Heat-Transfer Surface Due to Impurities in Steam-Raising Fuels Prog. Energy Combust. Sci. 1996 22 29 120 10.1016/0360-1285(95)00012-7
Tillman D.A. Biomass Cofiring: The Technology, the Experience, the Combustion Consequences Biomass Bioenergy 2000 19 365 384 10.1016/S0961-9534(00)00049-0
Werther J. Saenger M. Hartge E.-U. Ogada T. Siagi Z. Combustion of Agricultural Residues Prog. Energy Combust. Sci. 2000 26 1 27 10.1016/S0360-1285(99)00005-2
Scurlock J.M.O. Dayton D.C. Hames B. Bamboo: An Overlooked Biomass Resource? Biomass Bioenergy 2000 19 229 244 10.1016/S0961-9534(00)00038-6
Thy P. Lesher C.E. Jenkins B.M. Experimental Determination of High-Temperature Elemental Losses from Biomass Slag Fuel 2000 79 693 700 10.1016/S0016-2361(99)00195-7
Zevenhoven-Onderwater M. Blomquist J.-P. Skrifvars B.-J. Backman R. Hupa M. The Prediction of Behaviour of Ashes from Five Different Solid Fuels in Fluidised Bed Combustion Fuel 2000 79 1353 1361 10.1016/S0016-2361(99)00280-X
Risnes H. Fjellerup J. Henriksen U. Moilanen A. Norby P. Papadakis K. Posselt D. Sørensen L.H. Calcium Addition in Straw Gasification Fuel 2003 82 641 651 10.1016/S0016-2361(02)00337-X
Feng Q. Lin Q. Gong F. Sugita S. Shoya M. Adsorption of Lead and Mercury by Rice Husk Ash J. Colloid Interface Sci. 2004 278 1 8 10.1016/j.jcis.2004.05.030
Wei X. Schnell U. Hein K. Behaviour of Gaseous Chlorine and Alkali Metals during Biomass Thermal Utilisation Fuel 2005 84 841 848 10.1016/j.fuel.2004.11.022
Theis M. Skrifvars B.-J. Zevenhoven M. Hupa M. Tran H. Fouling Tendency of Ash Resulting from Burning Mixtures of Biofuels. Part 2: Deposit Chemistry Fuel 2006 85 1992 2001 10.1016/j.fuel.2006.03.015
Ross A. Jones J. Kubacki M. Bridgeman T. Classification of Macroalgae as Fuel and Its Thermochemical Behaviour Bioresour. Technol. 2008 99 6494 6504 10.1016/j.biortech.2007.11.036
Ro J.W. Cunningham P.R. Miller S.A. Kendall A. Harvey J. Technical, Economic, and Environmental Feasibility of Rice Hull Ash from Electricity Generation as a Mineral Additive to Concrete Sci. Rep. 2024 14 9158 10.1038/s41598-024-59615-1
Udoeyo F.F. Inyang H. Young D.T. Oparadu E.E. Potential of Wood Waste Ash as an Additive in Concrete J. Mater. Civ. Eng. 2006 18 605 611 10.1061/(ASCE)0899-1561(2006)18:4(605)
Skevi L. Baki V.A. Feng Y. Valderrabano M. Ke X. Biomass Bottom Ash as Supplementary Cementitious Material: The Effect of Mechanochemical Pre-Treatment and Mineral Carbonation Materials 2022 15 8357 10.3390/ma15238357
Doudart De La Grée G.C.H. Florea M.V.A. Keulen A. Brouwers H.J.H. Contaminated Biomass Fly Ashes–Characterization and Treatment Optimization for Reuse as Building Materials Waste Manag. 2016 49 96 109 10.1016/j.wasman.2015.12.023 26786402
Memon S.A. Khan M.K. Ash Blended Cement Composites: Eco-Friendly and Sustainable Option for Utilization of Corncob Ash J. Clean. Prod. 2018 175 442 455 10.1016/j.jclepro.2017.12.050
Maschio S. Tonello G. Piani L. Furlani E. Fly and Bottom Ashes from Biomass Combustion as Cement Replacing Components in Mortars Production: Rheological Behaviour of the Pastes and Materials Compression Strength Chemosphere 2011 85 666 671 10.1016/j.chemosphere.2011.06.070 21762950
Cordeiro G.C. Toledo Filho R.D. Tavares L.M. Fairbairn E.M.R. Pozzolanic Activity and Filler Effect of Sugar Cane Bagasse Ash in Portland Cement and Lime Mortars Cem. Concr. Compos. 2008 30 410 418 10.1016/j.cemconcomp.2008.01.001
Chusilp N. Jaturapitakkul C. Kiattikomol K. Effects of LOI of Ground Bagasse Ash on the Compressive Strength and Sulfate Resistance of Mortars Constr. Build. Mater. 2009 23 3523 3531 10.1016/j.conbuildmat.2009.06.046
Cordeiro G.C. Toledo Filho R.D. Tavares L.M. Fairbairn E.D.M.R. Ultrafine Grinding of Sugar Cane Bagasse Ash for Application as Pozzolanic Admixture in Concrete Cem. Concr. Res. 2009 39 110 115 10.1016/j.cemconres.2008.11.005
Zhang Q. Saito F. A Review on Mechanochemical Syntheses of Functional Materials Adv. Powder Technol. 2012 23 523 531 10.1016/j.apt.2012.05.002
Jones W. Eddleston M.D. Introductory Lecture: Mechanochemistry, a Versatile Synthesis Strategy for New Materials Faraday Discuss 2014 170 9 34 10.1039/C4FD00162A
Szczęśniak B. Borysiuk S. Choma J. Jaroniec M. Mechanochemical Synthesis of Highly Porous Materials Mater. Horiz. 2020 7 1457 1473 10.1039/D0MH00081G
Weerdt K.D. Sellevold E. Kjellsen K.O. Justnes H. Fly Ash–Limestone Ternary Cements: Effect of Component Fineness Adv. Cem. Res. 2011 23 203 214 10.1680/adcr.2011.23.4.203
Moghaddam F. Sirivivatnanon V. Vessalas K. The Effect of Fly Ash Fineness on Heat of Hydration, Microstructure, Flow and Compressive Strength of Blended Cement Pastes Case Stud. Constr. Mater. 2019 10 e00218 10.1016/j.cscm.2019.e00218
Li M.-G. Sun C.-J. Gau S.-H. Chuang C.-J. Effects of Wet Ball Milling on Lead Stabilization and Particle Size Variation in Municipal Solid Waste Incinerator Fly Ash J. Hazard. Mater. 2010 174 586 591 10.1016/j.jhazmat.2009.09.092
Cho Y.K. Jung S.H. Choi Y.C. Effects of Chemical Composition of Fly Ash on Compressive Strength of Fly Ash Cement Mortar Constr. Build. Mater. 2019 204 255 264 10.1016/j.conbuildmat.2019.01.208
Hsu S. Chi M. Huang R. Effect of Fineness and Replacement Ratio of Ground Fly Ash on Properties of Blended Cement Mortar Constr. Build. Mater. 2018 176 250 258 10.1016/j.conbuildmat.2018.05.060
Haha M.B. De Weerdt K. Lothenbach B. Quantification of the Degree of Reaction of Fly Ash Cem. Concr. Res. 2010 40 1620 1629 10.1016/j.cemconres.2010.07.004
Wu F. Li H. Yang K. Effects of Mechanical Activation on Physical and Chemical Characteristics of Coal-Gasification Slag Coatings 2021 11 902 10.3390/coatings11080902
Tole I. Habermehl-Cwirzen K. Cwirzen A. Mechanochemical Activation of Natural Clay Minerals: An Alternative to Produce Sustainable Cementitious Binders–Review Mineral. Petrol. 2019 113 449 462 10.1007/s00710-019-00666-y
Chen C.-G. Sun C.-J. Gau S.-H. Wu C.-W. Chen Y.-L. The Effects of the Mechanical–Chemical Stabilization Process for Municipal Solid Waste Incinerator Fly Ash on the Chemical Reactions in Cement Paste Waste Manag. 2013 33 858 865 10.1016/j.wasman.2012.12.014
Nomura Y. Fujiwara K. Takada M. Nakai S. Hosomi M. Lead Immobilization in Mechanochemical Fly Ash Recycling J. Mater. Cycles Waste Manag. 2008 10 14 18 10.1007/s10163-007-0192-y
Morales E.V. Villar-Cociña E. Frías M. Santos S.F. Savastano H. Effects of Calcining Conditions on the Microstructure of Sugar Cane Waste Ashes (SCWA): Influence in the Pozzolanic Activation Cem. Concr. Compos. 2009 31 22 28 10.1016/j.cemconcomp.2008.10.004
Frías M. Villar E. Savastano H. Brazilian Sugar Cane Bagasse Ashes from the Cogeneration Industry as Active Pozzolans for Cement Manufacture Cem. Concr. Compos. 2011 33 490 496 10.1016/j.cemconcomp.2011.02.003
Cordeiro G.C. Barroso T.R. Toledo Filho R.D. Enhancement the Properties of Sugar Cane Bagasse Ash with High Carbon Content by a Controlled Re-Calcination Process KSCE J. Civ. Eng. 2018 22 1250 1257 10.1007/s12205-017-0881-6
Bahurudeen A. Santhanam M. Influence of Different Processing Methods on the Pozzolanic Performance of Sugarcane Bagasse Ash Cem. Concr. Compos. 2015 56 32 45 10.1016/j.cemconcomp.2014.11.002
Joshaghani A. Moeini M.A. Evaluating the Effects of Sugar Cane Bagasse Ash (SCBA) and Nanosilica on the Mechanical and Durability Properties of Mortar Constr. Build. Mater. 2017 152 818 831 10.1016/j.conbuildmat.2017.07.041
Cordeiro G.C. Toledo Filho R.D. Fairbairn E.M.R. Effect of Calcination Temperature on the Pozzolanic Activity of Sugar Cane Bagasse Ash Constr. Build. Mater. 2009 23 3301 3303 10.1016/j.conbuildmat.2009.02.013
Salvo M. Rizzo S. Caldirola M. Novajra G. Canonico F. Bianchi M. Ferraris M. Biomass Ash as Supplementary Cementitious Material (SCM) Adv. Appl. Ceram. 2015 114 S3 S10 10.1179/1743676115Y.0000000043
Monteiro R.C.C. Alendouro S.J.G. Figueiredo F.M.L. Ferro M.C. Fernandes M.H.V. Development and Properties of a Glass Made from MSWI Bottom Ash J. Non-Cryst. Solids 2006 352 130 135 10.1016/j.jnoncrysol.2005.11.008
Ribeiro A.S.M. Monteiro R.C.C. Davim E.J.R. Fernandes M.H.V. Ash from a Pulp Mill Boiler—Characterisation and Vitrification J. Hazard. Mater. 2010 179 303 308 10.1016/j.jhazmat.2010.03.004
Jiménez I. Pérez G. Guerrero A. Ruiz B. Mineral Phases Synthesized by Hydrothermal Treatment from Biomass Ashes Int. J. Miner. Process. 2017 158 8 12 10.1016/j.minpro.2016.11.002
Byrappa K. Yoshimura M. Handbook of Hydrothermal Technology 2nd ed. William Andrew Oxford, UK Waltham, MA, USA 2013 978-0-12-375090-7
Kaminskas R. Eisinas A. Barauskas I. Gaivenis M. Hydrothermally Treated Biomass Fly Ash as an Additive for Portland Cement Sustainability 2024 16 2754 10.3390/su16072754
Ríos C.A. Williams C.D. Roberts C.L. Removal of Heavy Metals from Acid Mine Drainage (AMD) Using Coal Fly Ash, Natural Clinker and Synthetic Zeolites J. Hazard. Mater. 2008 156 23 35 10.1016/j.jhazmat.2007.11.123 18221835
Vadapalli V.R.K. Gitari W.M. Ellendt A. Petrik L.F. Balfour G. Synthesis of Zeolite-P from Coal Fly Ash Derivative and Its Utilisation in Mine-Water Remediation S. Afr. J. Sci. 2010 106 1 7 10.4102/sajs.v106i5/6.231
Querol X. Alastuey A. Moreno N. Alvarez-Ayuso E. García-Sánchez A. Cama J. Ayora C. Simón M. Immobilization of Heavy Metals in Polluted Soils by the Addition of Zeolitic Material Synthesized from Coal Fly Ash Chemosphere 2006 62 171 180 10.1016/j.chemosphere.2005.05.029 16039695
Pimraksa K. Chindaprasirt P. Huanjit T. Tang C. Sato T. Cement Mortars Hybridized with Zeolite and Zeolite-like Materials Made of Lignite Bottom Ash for Heavy Metal Encapsulation J. Clean. Prod. 2013 41 31 41 10.1016/j.jclepro.2012.10.003
Girskas G. Skripkiūnas G. Šahmenko G. Korjakins A. Durability of Concrete Containing Synthetic Zeolite from Aluminum Fluoride Production Waste as a Supplementary Cementitious Material Constr. Build. Mater. 2016 117 99 106 10.1016/j.conbuildmat.2016.04.155
Vaitkevičius V. Vaičiukynienė D. Kantautas A. Kartovickis A. Rudžionis Ž. Blended Cements Produced With Synthetic Zeolite Made from Industrial By-Product Mater. Sci. 2015 21 136 142 10.5755/j01.ms.21.1.5635
Hassan E.M. Abdul-Wahab S.A. Abdo J. Yetilmezsoy K. Production of Environmentally Friendly Cements Using Synthetic Zeolite Catalyst as the Pozzolanic Material Clean Technol. Environ. Policy 2019 21 1829 1839 10.1007/s10098-019-01752-7
Fukasawa T. Horigome A. Tsu T. Karisma A.D. Maeda N. Huang A.-N. Fukui K. Utilization of Incineration Fly Ash from Biomass Power Plants for Zeolite Synthesis from Coal Fly Ash by Hydrothermal Treatment Fuel Process. Technol. 2017 167 92 98 10.1016/j.fuproc.2017.06.023
Shi Y. Wei L. Sun H. Li Y. Cui J. Zhang W. Preparation and Characterization of Biomass-Ash Composites Derived from Incinerated Sewage Sludge Fly Ash after Hydrothermal Treatment Proc. Inst. Mech. Eng. Part J Mater. Des. Appl. 2024 238 1778 1790 10.1177/14644207241233460
Lam C.H.K. Ip A.W.M. Barford J.P. McKay G. Use of Incineration MSW Ash: A Review Sustainability 2010 2 1943 1968 10.3390/su2071943
Margallo M. Taddei M.B.M. Hernández-Pellón A. Aldaco R. Irabien Á. Environmental Sustainability Assessment of the Management of Municipal Solid Waste Incineration Residues: A Review of the Current Situation Clean Technol. Environ. Policy 2015 17 1333 1353 10.1007/s10098-015-0961-6
Wang L. Li R.D. Li Y.L. Wei L.H. Release of Soluble Salts and Heavy Metals during the Short-Time Washing Process of MSWI Fly Ash Adv. Mater. Res. 2012 518–523 3247 3251 10.4028/www.scientific.net/AMR.518-523.3247
Phua Z. Giannis A. Dong Z.-L. Lisak G. Ng W.J. Characteristics of Incineration Ash for Sustainable Treatment and Reutilization Environ. Sci. Pollut. Res. 2019 26 16974 16997 10.1007/s11356-019-05217-8 31041714
Yang R. Liao W.-P. Wu P.-H. Basic Characteristics of Leachate Produced by Various Washing Processes for MSWI Ashes in Taiwan J. Environ. Manag. 2012 104 67 76 10.1016/j.jenvman.2012.03.008 22484656
Zhu F. Takaoka M. Oshita K. Kitajima Y. Inada Y. Morisawa S. Tsuno H. Chlorides Behavior in Raw Fly Ash Washing Experiments J. Hazard. Mater. 2010 178 547 552 10.1016/j.jhazmat.2010.01.119
Weibel G. Eggenberger U. Kulik D.A. Hummel W. Schlumberger S. Klink W. Fisch M. Mäder U.K. Extraction of Heavy Metals from MSWI Fly Ash Using Hydrochloric Acid and Sodium Chloride Solution Waste Manag. 2018 76 457 471 10.1016/j.wasman.2018.03.022
Ma G.X. Zhang H.Y. Washing of the Ash from One Shanghai Plant Using Phosphoric Acid Adv. Mater. Res. 2013 664 228 231 10.4028/www.scientific.net/AMR.664.228
Pöykiö R. Nurmesniemi H. Dahl O. Mäkelä M. Chemical Fractionation Method for Characterization of Biomass-Based Bottom and Fly Ash Fractions from Large-Sized Power Plant of an Integrated Pulp and Paper Mill Complex Trans. Nonferrous Met. Soc. China 2014 24 588 596 10.1016/S1003-6326(14)63099-5
Chen W.-S. Chang F.-C. Shen Y.-H. Tsai M.-S. Ko C.-H. Removal of Chloride from MSWI Fly Ash J. Hazard. Mater. 2012 237–238 116 120 10.1016/j.jhazmat.2012.08.010
Kanhar A.H. Chen S. Wang F. Incineration Fly Ash and Its Treatment to Possible Utilization: A Review Energies 2020 13 6681 10.3390/en13246681
Ottosen L.M. Jensen P.E. Kirkelund G.M. Phosphorous Recovery from Sewage Sludge Ash Suspended in Water in a Two-Compartment Electrodialytic Cell Waste Manag. 2016 51 142 148 10.1016/j.wasman.2016.02.015 26951721
Ebbers B. Ottosen L.M. Jensen P.E. Comparison of Two Different Electrodialytic Cells for Separation of Phosphorus and Heavy Metals from Sewage Sludge Ash Chemosphere 2015 125 122 129 10.1016/j.chemosphere.2014.12.013 25548038
Ebbers B. Ottosen L.M. Jensen P.E. Electrodialytic Treatment of Municipal Wastewater and Sludge for the Removal of Heavy Metals and Recovery of Phosphorus Electrochim. Acta 2015 181 90 99 10.1016/j.electacta.2015.04.097
Guedes P. Couto N. Ottosen L.M. Ribeiro A.B. Phosphorus Recovery from Sewage Sludge Ash through an Electrodialytic Process Waste Manag. 2014 34 886 892 10.1016/j.wasman.2014.02.021
Pedersen A.J. Characterization and Electrodialytic Treatment of Wood Combustion Fly Ash for the Removal of Cadmium Biomass Bioenergy 2003 25 447 458 10.1016/S0961-9534(03)00051-5
Ferreira C.D. Jensen P. Ottosen L. Ribeiro A. Preliminary Treatment of MSW Fly Ash as a Way of Improving Electrodialytic Remediation J. Environ. Sci. Health Part A 2008 43 837 843 10.1080/10934520801974319
Chen W. Jensen P.E. Ottosen L.M. Kirkelund G.M. Electrodialytic Remediation of Fly Ash from Co-Combustion of Wood and Straw Electrochim. Acta 2015 181 208 216 10.1016/j.electacta.2015.04.083
Chen W. Ottosen L.M. Jensen P. Kirkelund G.M. Schmidt J.W. A Comparative Study on Electrodialytically Treated Bio-Ash and MSWI APC-Residue for Use in Bricks Proceedings of the 5th International Conference on Engineering for Waste and Biomass Valorization (WasteEng2014) Rio de Janeiro, Brazil 25 August 2014 648 662
Lima A.T. Ottosen L.M. Ribeiro A.B. Assessing Fly Ash Treatment: Remediation and Stabilization of Heavy Metals J. Environ. Manag. 2010 95 S110 S115 10.1016/j.jenvman.2010.11.009
Kirkelund G.M. Geiker M.R. Jensen P.E. Electrodialytically Treated MSWI APC Residue as Substitute for Cement in Mortar Nord. Concr. Res. 2014 49 1 16
Renforth P. The Negative Emission Potential of Alkaline Materials Nat. Commun. 2019 10 1401 10.1038/s41467-019-09475-5 30923316
Vassilev S.V. Vassileva C.G. Extra CO2 Capture and Storage by Carbonation of Biomass Ashes Energy Convers. Manag. 2020 204 112331 10.1016/j.enconman.2019.112331
Pan S.-Y. Chen Y.-H. Fan L.-S. Kim H. Gao X. Ling T.-C. Chiang P.-C. Pei S.-L. Gu G. CO2 Mineralization and Utilization by Alkaline Solid Wastes for Potential Carbon Reduction Nat. Sustain. 2020 3 399 405 10.1038/s41893-020-0486-9
Liu W. Teng L. Rohani S. Qin Z. Zhao B. Xu C.C. Ren S. Liu Q. Liang B. CO2 Mineral Carbonation Using Industrial Solid Wastes: A Review of Recent Developments Chem. Eng. J. 2021 416 129093 10.1016/j.cej.2021.129093
Kim J. Azimi G. The CO2 Sequestration by Supercritical Carbonation of Electric Arc Furnace Slag J. CO2 Util. 2021 52 101667 10.1016/j.jcou.2021.101667
Carević I. Štirmer N. Serdar M. Ukrainczyk N. Effect of Wood Biomass Ash Storage on the Properties of Cement Composites Materials 2021 14 1632 10.3390/ma14071632
Chen T.-L. Jiang W. Shen A.-L. Chen Y.-H. Pan S.-Y. Chiang P.-C. CO2 Mineralization and Utilization Using Various Calcium-Containing Wastewater and Refining Slag via a High-Gravity Carbonation Process Ind. Eng. Chem. Res. 2020 59 7140 7150 10.1021/acs.iecr.9b05410
Polettini A. Pomi R. The Leaching Behavior of Incinerator Bottom Ash as Affected by Accelerated Ageing J. Hazard. Mater. 2004 113 209 215 10.1016/j.jhazmat.2004.06.009
Ohenoja K. Körkkö M. Wigren V. Österbacka J. Illikainen M. Increasing the Utilization Potential of Fly Ashes from Fluidized Bed Combustion by Mechanical Treatments Int. J. Environ. Sci. Technol. 2019 16 1839 1846 10.1007/s13762-018-1812-x
Zhang T. Yu Q. Wei J. Zhang P. Effect of Size Fraction on Composition and Pozzolanic Activity of High Calcium Fly Ash Adv. Cem. Res. 2011 23 299 307 10.1680/adcr.2011.23.6.299
Berra M. Mangialardi T. Paolini A.E. Reuse of Woody Biomass Fly Ash in Cement-Based Materials Constr. Build. Mater. 2015 76 286 296 10.1016/j.conbuildmat.2014.11.052