Magnetic shielding; planar geometry; ferromagnetic washer; on-chip; magnetic metamaterials; ferromagnetic ring
Abstract :
[en] Magnetic shielding is a crucial aspect for many
electronic devices and sensors. In this paper, we investigate the
magnetic shielding properties of ferromagnetic washers in a
planar geometry in view of an integration with on-chip devices,
focussing on the transverse configuration, i.e. with the applied
f
ield parallel to the plane of the washer. We show that, in this
configuration, the shielding factor of a washer can exceed the
predictions of previous studies. We argue that the magnetic
shielding results from the capture of the external magnetic flux
by the upper and lower faces of the washer, and its subsequent
channeling through the washer material and around the central
hole. We present experimental results and numerical simulations,
and discuss the influence of the geometry of the washer, the
permeability and the saturation of the ferromagnetic material.
We propose an explanation for the observed behaviour and
provide empirical formulae to estimate different quantities char
acterizing the shielding properties of washers in the transverse
configuration.
Research Center/Unit :
Montefiore Institute - Montefiore Institute of Electrical Engineering and Computer Science - ULiège Q-MAT - Quantum Materials - ULiège
Pirottin, Thomas ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Electronique et microsystèmes ; Department of Electrical Engineering and Computer Science, Institut Montefiore, B28, University of Liè,ge, Liè,ge, Belgium
Fourneau, Emile ; Université de Liège - ULiège > Département GxABT ; Department of Physics, Experimental Physics of Nanostructured Materials, University of Liè,ge, Liè,ge, Belgium
Silhanek, Alejandro ; Université de Liège - ULiège > Département de physique > Physique expérimentale des matériaux nanostructurés ; Department of Physics, Experimental Physics of Nanostructured Materials, University of Liè,ge, Liè,ge, Belgium
Vanderbemden, Philippe ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Capteurs et systèmes de mesures électriques ; Department of Electrical Engineering and Computer Science, Institut Montefiore, B28, University of Liè,ge, Liè,ge, Belgium
Vanderheyden, Benoît ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Electronique et microsystèmes ; Department of Electrical Engineering and Computer Science, Institut Montefiore, B28, University of Liè,ge, Liè,ge, Belgium
Language :
English
Title :
Magnetic shielding in a planar geometry: using ferromagnetic washers to screen in-plane fields
Publication date :
14 February 2025
Journal title :
IEEE Transactions on Magnetics
ISSN :
0018-9464
eISSN :
1941-0069
Publisher :
Institute of Electrical and Electronics Engineers (IEEE)
F.R.S.-FNRS - Fonds de la Recherche Scientifique CHIST-ERA FWO - Fonds Wetenschappelijk Onderzoek Vlaanderen
Funding number :
PDR T.0204.21; R.8003.21; O.0028.22
Funding text :
The authors gratefully acknowledge the financial support
from the Fonds de la recherche Scientifique- FNRS, Belgium
under the grants of project PDR T.0204.21 and EraNet-CHIST
ERAR.8003.21. The work of E. Fourneau has been financially
supported by the FWO and F.R.S.-FNRS under the Excellence
of Science (EOS) project O.0028.22.
K. Kamiya, B. A. Warner, and T. Numazawa, “Geometry dependence of superconducting shielding for sensitive detectors,” IEEE Trans. Appiled Supercond., vol. 14, no. 2, pp. 1042–1045, Jun. 2004.
W. Wang and Z. Jiang, “Magnetic shielding design for magneto-electronic devices protection,” IEEE Trans. Magn., vol. 44, no. 11, pp. 4175–4178, Nov. 2008.
Y. Ishisaki et al., “Effect of on-chip magnetic shielding for TES microcalorimeters,” J. Low Temp. Phys., vol. 151, nos. 1–2, pp. 131–137, Apr. 2008.
J. M. Kreikebaum, A. Dove, W. Livingston, E. Kim, and I. Siddiqi, “Optimization of infrared and magnetic shielding of superconducting TiN and Al coplanar microwave resonators,” Superconductor Sci. Technol., vol. 29, no. 10, Oct. 2016, Art. no. 104002.
C. R. Paul, R. C. Scully, and M. A. Steffka, Introduction to Electromagnetic Compatibility, 3rd ed., Hoboken, NJ, USA: Wiley, 2023.
M. Tinkham, Introduction to Superconductivity, (Dover Books on Physics), 2nd ed., Mineola, NY, USA: Dover, 2015.
S. Denis et al., “Characterisation of the magnetic shielding properties of YBaCuO thick films prepared by electrophoretic deposition on silver substrates,” J. Phys., Conf. Ser., vol. 43, pp. 509–512, Jun. 2006.
T. Watanabe and S. Yamamichi, “A novel U-shaped magnetic shield for perpendicular MRAM,” in Proc. IEEE 62nd Electron. Compon. Technol. Conf., San Diego, CA, USA, May 2012, pp. 920–925.
B. Bhushan et al., “Enhancing magnetic immunity of STT-MRAM with magnetic shielding,” in Proc. IEEE Int. Memory Workshop (IMW), Kyoto, Japan, May 2018, pp. 1–4.
J. Ma et al., “Noise suppression and crosstalk analysis of on-chip magnetic film-type noise suppressor,” AIP Adv., vol. 8, no. 5, May 2018, Art. no. 056613.
R. S. Bakolo, R. van Staden, P. Febvre, and C. J. Fourie, “Modelling magnetic fields and shielding efficiency in superconductive integrated circuits,” J. Supercond. Novel Magnetism, vol. 30, no. 6, pp. 1649–1653, Jun. 2017.
A. Mager, “Magnetic shields,” IEEE Trans. Magn., vol. M-6, no. 1, pp. 67–75, Mar. 1970.
N. Bort-Soldevila et al., “Enhanced magnetic field concentration using windmill-like ferromagnets,” APL Mater., vol. 12, no. 2, Feb. 2024, Art. no. 021123.
N. Lejeune et al., “Dimensional crossover of microscopic magnetic metasurfaces for magnetic field amplification,” APL Mater., vol. 12, no. 7, Jul. 2024, Art. no. 071126.
A. E. Kennelly, “Magnetic reluctance,” Trans. Amer. Inst. Electr. Eng., vol. 8, no. 1, pp. 483–533, Jan. 1891.
R. M. Bozorth, “The magnetization curve and the domain theory,” in Ferromagnetism. Piscataway, NJ, USA: IEEE Press, 1978, ch. 11.
J. Prat-Camps, A. Sanchez, and C. Navau, “Superconductor–ferromagnetic metamaterials for magnetic cloaking and concentration,” Superconductor Sci. Technol., vol. 26, no. 7, Jul. 2013, Art. no. 074001.
A. Sanchez, C. Navau, J. Prat-Camps, and D.-X. Chen, “Antimagnets: Controlling magnetic fields with superconductor–metamaterial hybrids,” New J. Phys., vol. 13, no. 9, Sep. 2011, Art. no. 093034.
J. A. Stratton, Electromagnetic Theory, 1st ed., New York, NY, USA: McGraw-Hill, 1941.