EMT; TILs; early breast cancer; lymphocytes; neoadjuvant chemotherapy; Molecular Medicine; Oncology; Genetics; Cancer Research
Abstract :
[en] Epithelial-mesenchymal transition (EMT) and tumor-infiltrating lymphocytes (TILs) play a central role in early-stage breast cancer (BC) and are associated with chemoresistance, stemness, and invasion. The objective of this study was two fold: (a) by investigating the predictive value of EMT and TILs, we aimed to estimate the chance of achieving a response after neoadjuvant chemotherapy (NAC) and (b) to evaluate the potential changes of EMT and TILs in BC upon NAC. Using bulk RNA sequencing and immunofluorescence (IF) for EMT (E-cadherin and vimentin) and lymphocyte markers (CD3, CD8, FOXP3), we analyzed pre- and post-NAC tumor samples from 100 early-BC patients treated with NAC. For each BC molecular subtype, we compared the expression of EMT and TILs, at the RNA and protein level, between responding and non-responding tumors. Paired analysis of pre- and post-NAC samples was performed for patients with residual disease after NAC. RNA sequencing of pre- and post-NAC samples identified significant differences in EMT-related and inflammation-related gene expression between non-responding (RCB-II/III) and responding (RCB-0/I) tumors. Increased EMT-related marker expression was observed after NAC in cases with residual disease, in particular in the luminal subtype. Characterization of TILs in pre-NAC samples showed substantially more CD3 + CD8-FOXP3-lymphocytes in responding HER2+ tumors compared with non-responding. Paired analyses of pre- and post-NAC samples demonstrated higher levels of CD3 + CD8 + FOXP3-lymphocytes in residual luminal and triple-negative BC and higher levels of CD3 + CD8-FOXP3-lymphocytes in residual triple-negative BC compared with other subtypes of lymphocytes. We found that there is an unmet clinical need for reliable biomarkers to predict response to NAC in BC. Our results suggest that an upregulation of the EMT gene signature in diagnostic biopsies is associated with poor response to NAC in early BC, across all subtypes. Additionally, changes in EMT and in the TIL population occur in residual tumors after NAC. These findings could help to personalize future NAC and adjuvant treatment regimens.
Disciplines :
Oncology
Author, co-author :
Derouane, Françoise ; Department of Medical Oncology, University Hospital Leuven, Belgium ; Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium
Ambroise, Jérôme; Center for Applied Molecular Technologies (CTMA), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium
van Marcke, Cédric; Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium ; Department of Medical Oncology, Institut Roi Albert II, Cliniques Universitaires Saint-Luc, Brussels, Belgium
Van Bockstal, Mieke ; Department of Pathology, Cliniques Universitaires Saint-Luc, Brussels, Belgium ; Pole of Morphology (MORF), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium
Berlière, Martine; Pole of Gynecology (GYNE), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium ; Department of Gynecology, Institut Roi Albert II, Cliniques Universitaires Saint-Luc, Brussels, Belgium
Galant, Christine; Department of Pathology, Cliniques Universitaires Saint-Luc, Brussels, Belgium ; Pole of Morphology (MORF), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium
Dano, Hélène; Department of Pathology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
Lougué, Médina; Department of Pathology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
Benidovskaya, Elena; Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium
Jerusalem, Guy ; Université de Liège - ULiège > Département des sciences cliniques > Oncologie
Bours, Vincent ; Université de Liège - ULiège > GIGA > GIGA Cancer - Human Genetics
Josse, Claire ; Université de Liège - ULiège > GIGA > GIGA Cancer - Human Genetics
Thiry, Jérôme ; Université de Liège - ULiège > GIGA > GIGA Cancer - Human Genetics
Daumerie, Aurélie; 2IP Imaging Platform, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium
Bouzin, Caroline; 2IP Imaging Platform, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium
Corbet, Cyril ; Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium
Duhoux, François P ; Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium ; Department of Medical Oncology, Institut Roi Albert II, Cliniques Universitaires Saint-Luc, Brussels, Belgium
Cardoso F, Kyriakides S, Ohno S, Penault-Llorca F, Poortmans P, Rubio IT, et al. Early breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2019;30:1194–1220. https://doi.org/10.1093/annonc/mdz173
Von Minckwitz G, Untch M, Blohmer JU, Costa SD, Eidtmann H, Fasching PA, et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol. 2012;30:1796–1804. https://doi.org/10.1200/JCO.2011.38.8595
Cortazar P, Geyer CE. Pathological complete response in Neoadjuvant treatment of breast cancer. Ann Surg Oncol. 2015;22:1441–1446. https://doi.org/10.1245/s10434-015-4404-8
Sejben A, Kószó R, Kahán Z, Cserni G, Zombori T. Examination of tumor regression grading Systems in Breast Cancer Patients who Received Neoadjuvant Therapy. Pathol Oncol Res. 2020;26:2747–2754. https://doi.org/10.1007/s12253-020-00867-3
Symmans WF, Peintinger F, Hatzis C, Rajan R, Kuerer H, Valero V, et al. Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J Clin Oncol. 2007;25:4414–4422. https://doi.org/10.1200/JCO.2007.10.6823
Derouane F, van Marcke C, Berlière M, Gerday A, Fellah L, Leconte I, et al. Predictive biomarkers of response to Neoadjuvant chemotherapy in breast cancer: current and future perspectives for precision medicine. Cancers. 2022;14:3876.
Schmid P, Cortes J, Pusztai L, McArthur H, Kümmel S, Bergh J, et al. Pembrolizumab for early triple-negative breast cancer. N Engl J Med. 2020;382:810–821. https://doi.org/10.1056/nejmoa1910549
Liu F, Gu LN, Shan BE, Geng CZ, Sang MX. Biomarkers for EMT and MET in breast cancer: an update (review). Oncol Lett. 2016;12:4869–4876.
Celià-Terrassa T, Jolly MK. Cancer stem cells and epithelial-to-mesenchymal transition in cancer metastasis. Cold Spring Harb Perspect Med. 2020;10:a036905. https://doi.org/10.1101/cshperspect.a036905
Wang K, Xu J, Zhang T, Xue D. Tumor-infiltrating lymphocytes in breast cancer predict the response to chemotherapy and survival outcome: a meta-analysis. Oncotarget. 2016;7:44298. https://doi.org/10.18632/oncotarget.9988
Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, et al. The evaluation of tumor-infiltrating lymphocytes (TILS) in breast cancer: recommendations by an international TILS working group 2014. Ann Oncol. 2015;26:259–271.
Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O'Neal L, et al. The REDCap consortium: building an international community of software platform partners. J Biomed Inform. 2019;95:103208.
Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)-a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42:377–381. https://doi.org/10.1016/j.jbi.2008.08.010
Derouane F, Desgres M, Moroni C, Ambroise J, Berlière M, van Bockstal MR, et al. Metabolic adaptation towards glycolysis supports resistance to neoadjuvant chemotherapy in early triple negative breast cancers. Breast Cancer Res. 2024;26:29. https://doi.org/10.1186/s13058-024-01788-8
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2009;26:139–140. https://doi.org/10.1093/bioinformatics/btp616
Gallego Romero I, Pai AA, Tung J, Gilad Y. RNA-seq: impact of RNA degradation on transcript quantification. BMC Biol. 2014;12:42. https://doi.org/10.1186/1741-7007-12-42
Korotkevich G, Sukhov V, Sergushichev A. Fast gene set enrichment analysis. bioRxiv. 2019.
Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The molecular signatures database Hallmark gene set collection. Cell Syst. 2015;1:417–425. https://doi.org/10.1016/j.cels.2015.12.004
Huyghe N, Benidovskaya E, Beyaert S, Daumerie A, Maestre Osorio F, Aboubakar Nana F, et al. Multiplex immunofluorescence combined with spatial image analysis for the clinical and biological assessment of the tumor microenvironment. J Vis Exp. 2023;2023. https://doi.org/10.3791/65220
Nana FA, Hoton D, Ambroise J, Lecocq M, Vanderputten M, Sibille Y, et al. Increased expression and activation of FAK in small-cell lung cancer compared to non-small-cell lung cancer. Cancers. 2019;11(10):1526. https://doi.org/10.3390/cancers11101526
Lemeshow S, Moeschberger ML. Review of regression methods in biostatistics: linear, logistic, survival, and repeated measures models by Vittinghoff, Glidden, Shiboski, and McCulloch. Stata Journal. 2005;5:274–278.
Van Bockstal MR, Noel F, Guiot Y, Duhoux FP, Mazzeo F, Van Marcke C, et al. Predictive markers for pathological complete response after neo-adjuvant chemotherapy in triple-negative breast cancer. Ann Diagn Pathol. 2020;49:151634. https://doi.org/10.1016/j.anndiagpath.2020.151634
Elzamly S, Badri N, Padilla O, Dwivedi AK, Alvarado LA, Hamilton M, et al. Epithelial-mesenchymal transition markers in breast cancer and pathological Responseafter Neoadjuvant chemotherapy. Breast Cancer. 2018;12:8074. https://doi.org/10.1177/1178223418788074
Masuda H, Harano K, Miura S, Wang Y, Hirota Y, Harada O, et al. Changes in triple-negative breast cancer molecular subtypes in patients without pathologic complete response after Neoadjuvant systemic chemotherapy. JCO Precis Oncol. 2022;6:e2000368. https://doi.org/10.1200/po.20.00368
Leng X, Huang G, Zhang L, Ding J, Ma F. Changes in tumor stem cell markers and epithelial-mesenchymal transition markers in nonluminal breast cancer after Neoadjuvant chemotherapy and their correlation with contrast-enhanced ultrasound. Biomed Res Int. 2020;2020:3869538. https://doi.org/10.1155/2020/3869538
Lima JF, Nofech-Mozes S, Bayani J, Bartlett JMS. EMT in breast carcinoma—a review. J Clin Med. 2016;5:65.
Grasset EM, Dunworth M, Sharma G, Loth M, Tandurella J, Cimino-Mathews A, et al. Triple-negative breast cancer metastasis involves complex epithelial-mesenchymal transition dynamics and requires vimentin. Sci Transl Med. 2022;14:eabn7571. https://doi.org/10.1126/scitranslmed.abn7571
Andre F, Dieci MV, Dubsky P, Sotiriou C, Curigliano G, Denkert C, et al. Molecular pathways: involvement of immune pathways in the therapeutic response and outcome in breast cancer. Clin Cancer Res. 2013;19:28–33. https://doi.org/10.1158/1078-0432.CCR-11-2701
Ruffell B, Au A, Rugo HS, Esserman LJ, Hwang ES, Coussens LM. Leukocyte composition of human breast cancer. Proc Natl Acad Sci USA. 2012;109:2796–2801. https://doi.org/10.1073/pnas.1104303108
García-Martínez E, Gil GL, Benito AC, González-Billalabeitia E, Conesa MAV, García TG, et al. Tumor-infiltrating immune cell profiles and their change after neoadjuvant chemotherapy predict response and prognosis of breast cancer. Breast Cancer Res. 2014;16:488. https://doi.org/10.1186/s13058-014-0488-5
Dieci MV, Mathieu MC, Guarneri V, Conte P, Delaloge S, Andre F, et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in two phase III randomized adjuvant breast cancer trials. Ann Oncol. 2015;26:1698–1704. https://doi.org/10.1093/annonc/mdv239
Loi S, Dushyanthen S, Beavis PA, Salgado R, Denkert C, Savas P, et al. RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-negative breast cancer: therapeutic cooperation between MEK and PD-1/PD-L1 immune checkpoint inhibitors. Clin Cancer Res. 2016;22:1499–1509. https://doi.org/10.1158/1078-0432.CCR-15-1125
Miyashita M, Sasano H, Tamaki K, Hirakawa H, Takahashi Y, Nakagawa S, et al. Prognostic significance of tumor-infiltrating CD8+ and FOXP3+ lymphocytes in residual tumors and alterations in these parameters after neoadjuvant chemotherapy in triple-negative breast cancer: a retrospective multicenter study. Breast Cancer Res. 2015;17:124. https://doi.org/10.1186/s13058-015-0632-x
Blaye C, Darbo DM, Brouste V, Vélasco V, Pinard C, Larmonier N, et al. An immunological signature to predict outcome in patients with triple-negative breast cancer with residual disease after neoadjuvant chemotherapy. ESMO Open. 2022;7:100502. https://doi.org/10.1016/j.esmoop.2022.100502
Hamy AS, Pierga JY, Sabaila A, Laas E, Bonsang-Kitzis H, Laurent C, et al. Stromal lymphocyte infiltration after neoadjuvant chemotherapy is associated with aggressive residual disease and lower disease-free survival in HER2-positive breast cancer. Ann Oncol. 2017;28:2233–2240. https://doi.org/10.1093/annonc/mdx309
Dongre A, Rashidian M, Reinhardt F, Bagnato A, Keckesova Z, Ploegh HL, et al. Epithelial-to-mesenchymal transition contributes to immunosuppression in breast carcinomas. Cancer Res. 2017;77:3982–3989. https://doi.org/10.1158/0008-5472.CAN-16-3292
Cook DP, Vanderhyden BC. Context specificity of the EMT transcriptional response. Nat Commun. 2020;11:2142. https://doi.org/10.1038/s41467-020-16066-2
Pastushenko I, Blanpain C. EMT transition states during tumor progression and metastasis. Trends Cell Biol. 2019;29:212–226. https://doi.org/10.1016/j.tcb.2018.12.001