plasmonic, Kubelka−Munk, electrochromism, optical properties, optical characterization, doped metal oxides
Abstract :
[en] Materials with broadband tunable optical propertiesare looked for in smart windows applications. Doped metal oxidespresenting dual-band visible (VIS)−near-infrared (NIR) electro-chromic properties can be used for solving such a challenge, andtheir accurate optical characterization is therefore of primeimportance. The Kubelka−Munk model is a state-of-the-art wayto optically quantify the absorption properties of materials and isoccasionally applied to plasmonic materials, even if great careshould be taken to meet the formalism hypotheses. In the presentwork, Kubelka−Munk theory is discussed in the context ofparticles of indium−tin oxide and molybdenum−tungsten oxideformulations that are used as single-NIR and both-VIS/NIR activeadvanced electrochromic materials, respectively. An analytical model is derived for particles of much smaller dimensions than theincident wavelength and is experimentally verified. A dilution method is applied to verify the plasmonic characteristics of theparticles. This study is key for the efficient characterization of the optical properties of metal oxides and plasmonic materials ingeneral, from diffuse reflectance measurements.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
Lobet, Michaël ; Université de Liège - ULiège > Centres généraux > CSL (Centre Spatial de Liège) ; Department of Physics and Namur Institute of Structured Materials, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
Gillissen, Florian ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM)
De Moor, Nicolas; Department of Physics and Namur Institute of Structured Materials, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
Dewalque, Jennifer ; Université de Liège - ULiège > Département de chimie (sciences) > GREEnMat
Colson, Pierre ; Université de Liège - ULiège > Département de chimie (sciences) > GREEnMat
Cloots, Rudi ; Université de Liège - ULiège > Département de chimie (sciences) > GREEnMat
Maho, Anthony ; Université de Liège - ULiège > Département de chimie (sciences) > GREEnMat ; CNRS, Bordeaux INP, ICMCB, UMR 5026, Univ. Bordeaux, 87 Avenue du Docteur Schweitzer, 33600 Pessac, France
Henrard, Luc; Department of Physics and Namur Institute of Structured Materials, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
Language :
English
Title :
Plasmonic Properties of Doped Metal Oxides Investigated through the Kubelka–Munk Formalism
Maier, S. A. Plasmonics: Fundamentals and Applications; Springer US: New York, NY, 2007.
Granqvist, C. G.; Lansåker, P. C.; Mlyuka, N. R.; Niklasson, G. A.; Avendaño, E. Progress in Chromogenics: New Results for Electrochromic and Thermochromic Materials and Devices. Sol. Energy Mater. Sol. Cells 2009, 93 ( 12), 2032- 2039, 10.1016/j.solmat.2009.02.026
Bai, T.; Li, W.; Fu, G.; Zhang, Q.; Zhou, K.; Wang, H. Dual-Band Electrochromic Smart Windows towards Building Energy Conservation. Sol. Energy Mater. Sol. Cells 2023, 256, 112320 10.1016/j.solmat.2023.112320
Garcia, G.; Buonsanti, R.; Runnerstrom, E. L.; Mendelsberg, R. J.; Llordes, A.; Anders, A.; Richardson, T. J.; Milliron, D. J. Dynamically Modulating the Surface Plasmon Resonance of Doped Semiconductor Nanocrystals. Nano Lett. 2011, 11 ( 10), 4415- 4420, 10.1021/nl202597n
Yan, J.; Wang, T.; Wu, G.; Dai, W.; Guan, N.; Li, L.; Gong, J. Tungsten Oxide Single Crystal Nanosheets for Enhanced Multichannel Solar Light Harvesting. Adv. Mater. 2015, 27 ( 9), 1580- 1586, 10.1002/adma.201404792
Zhang, S.; Cao, S.; Zhang, T.; Yao, Q.; Fisher, A.; Lee, J. Y. Monoclinic Oxygen-Deficient Tungsten Oxide Nanowires for Dynamic and Independent Control of near-Infrared and Visible Light Transmittance. Mater. Horiz. 2018, 5 ( 2), 291- 297, 10.1039/C7MH01128H
Mayerhöfer, T. G.; Popp, J. Beyond Beer’s Law: Revisiting the Lorentz-Lorenz Equation. ChemPhysChem 2020, 21 ( 12), 1218- 1223, 10.1002/cphc.202000301
Bohren, C. F.; Huffman, D. R. Absorption and Scattering of Light by Small Particles, 1st ed.; Wiley, 1998.
Yang, L.; Kruse, B. Revised Kubelka-Munk Theory I Theory and Application. J. Opt. Soc. Am. A 2004, 21 ( 10), 1933, 10.1364/JOSAA.21.001933
Myrick, M.; Simcock, M.; Baranowski, M.; Brooke, H.; Morgan, S.; McCutcheon, J. The Kubelka-Munk Diffuse Reflectance Formula Revisited. Appl. Spectrosc. Rev. 2011, 46 ( 2), 140- 165, 10.1080/05704928.2010.537004
Kortüm, G. Reflectance Spectroscopy; Springer: Berlin, Heidelberg, 1969.
Kubelka, P. Ein Beitrag Zur Optik Der Farbanstriche. Z. Tech. Phys. 1931, 12, 593- 601
Džimbeg-Malčić, V.; Barbarić-Mikočević, Ž.; Itrić, K. Kubelka-Munk Theory in Describing Optical Properties of Paper (I). Teh. Vjesn. 2011, 18 ( 1), 117- 124
Dzimbeg-Malcic, V.; Barbarić-Mikočević, Ž.; Itrić, K. Kubelka-Munk theory in describing optical properties of paper (II). Teh. Vjesn.-Technol. Gaz. 2012, 19, 191- 196
Saunderson, J. L. Calculation of the Color of Pigmented Plastics*. J. Opt. Soc. Am. 1942, 32 ( 12), 727, 10.1364/JOSA.32.000727
Van Gemert, M. J. C.; Welch, A. J.; Star, W. M.; Motamedi, M.; Cheong, W. F. Tissue Optics for a Slab Geometry in the Diffusion Approximation. Lasers Med. Sci. 1987, 2 ( 4), 295- 302, 10.1007/BF02594174
Ragain, J. C.; Johnston, W. M. Accuracy of Kubelka-Munk Reflectance Theory Applied to Human Dentin and Enamel. J. Dent. Res. 2001, 80 ( 2), 449- 452, 10.1177/00220345010800020901
Mikhail, S. S.; Azer, S. S.; Johnston, W. M. Accuracy of Kubelka-Munk Reflectance Theory for Dental Resin Composite Material. Dent. Mater. 2012, 28 ( 7), 729- 735, 10.1016/j.dental.2012.03.006
Barron, V.; Torrent, J. Use of the Kubelka─Munk Theory to Study the Influence of Iron Oxides on Soil Colour. J. Soil Sci. 1986, 37 ( 4), 499- 510, 10.1111/j.1365-2389.1986.tb00382.x
Pathak, T. K.; Swart, H. C.; Kroon, R. E. Structural and Plasmonic Properties of Noble Metal Doped ZnO Nanomaterials. Phys. B Condens. Matter 2018, 535, 114- 118, 10.1016/j.physb.2017.06.074
Tanaka, A.; Hashimoto, K.; Kominami, H. Preparation of Au/CeO2 Exhibiting Strong Surface Plasmon Resonance Effective for Selective or Chemoselective Oxidation of Alcohols to Aldehydes or Ketones in Aqueous Suspensions under Irradiation by Green Light. J. Am. Chem. Soc. 2012, 134 ( 35), 14526- 14533, 10.1021/ja305225s
Kamimura, S.; Yamashita, S.; Abe, S.; Tsubota, T.; Ohno, T. Effect of Core@shell (Au@Ag) Nanostructure on Surface Plasmon-Induced Photocatalytic Activity under Visible Light Irradiation. Appl. Catal. B Environ. 2017, 211, 11- 17, 10.1016/j.apcatb.2017.04.028
Wang, Z.; Liu, J.; Chen, W. Plasmonic Ag/AgBr Nanohybrid: Synergistic Effect of SPR with Photographic Sensitivity for Enhanced Photocatalytic Activity and Stability. Dalton Trans. 2012, 41 ( 16), 4866- 4870, 10.1039/c2dt12089e
Yin, H.; Kuwahara, Y.; Mori, K.; Cheng, H.; Wen, M.; Huo, Y.; Yamashita, H. Localized Surface Plasmon Resonances in Plasmonic Molybdenum Tungsten Oxide Hybrid for Visible-Light-Enhanced Catalytic Reaction. J. Phys. Chem. C 2017, 121 ( 42), 23531- 23540, 10.1021/acs.jpcc.7b08403
Bourdin, M.; Mjejri, I.; Rougier, A.; Labrugère, C.; Cardinal, T.; Messaddeq, Y.; Gaudon, M. Nano-Particles (NPs) of WO3-Type Compounds by Polyol Route with Enhanced Electrochromic Properties. J. Alloys Compd. 2020, 823, 153690 10.1016/j.jallcom.2020.153690
Lambert, J.-H. Photometria sive de mensura et gradibus luminis, colorum et umbrae; Sumptibus Viduae Eberhardi Klett, typis Christophori Petri Detleffsen, 1760.
Pedrotti, F. L.; Pedrotti, L. S. Introduction to Optics; Prentice Hall: Englewood Cliffs, N.J., 1993.
Danckwerts, P. V. Angewandte Chemie. Chem. Eng. Sci. 1962, 17 ( 11), 955, 10.1016/0009-2509(62)87032-8
Theissing, H. H. Macrodistribution of Light Scattered by Dispersions of Spherical Dielectric Particles*. J. Opt. Soc. Am. 1950, 40 ( 4), 232, 10.1364/JOSA.40.000232
Stenzel, O. The Physics of Thin Film Optical Spectra: An Introduction; Springer Series in Surface Sciences; Springer International Publishing: Cham, 2016; Vol. 44.
Jackson, J. D. Classical Electrodynamics, 3rd Edition; John Wiley & Sons, 1999.
Kortüm, G.; Oelkrug, D. Über Den Streukoeffizienten Der Kubelka-Munk-Theorie. Z. Für Naturforschung A 1964, 19 ( 1), 28- 37, 10.1515/zna-1964-0107
Mie, G. Beiträge Zur Optik Trüber Medien, Speziell Kolloidaler Metallösungen. Ann. Phys. 1908, 330 ( 3), 377- 445, 10.1002/andp.19083300302
Kreibig, U.; Vollmer, M. Optical Properties of Metal Clusters; Toennies, J. P.; Gonser, U.; Osgood, R. M.; Panish, M. B.; Sakaki, H.; Lotsch, H. K. V., Series Eds.; Springer Series in Materials Science; Springer Berlin Heidelberg: Berlin, Heidelberg, 1995; Vol. 25.
Sihvola, A. H. Electromagnetic Mixing Formulas and Applications, Repr. with new cover.; IEE electromagnetic waves series; Institution of Electrical Engineers: London, 2008.
Mendelsberg, R. J.; Garcia, G.; Milliron, D. J. Extracting Reliable Electronic Properties from Transmission Spectra of Indium Tin Oxide Thin Films and Nanocrystal Films by Careful Application of the Drude Theory. J. Appl. Phys. 2012, 111 ( 6), 063515 10.1063/1.3695996
Lounis, S. D.; Runnerstrom, E. L.; Bergerud, A.; Nordlund, D.; Milliron, D. J. Influence of Dopant Distribution on the Plasmonic Properties of Indium Tin Oxide Nanocrystals. J. Am. Chem. Soc. 2014, 136 ( 19), 7110- 7116, 10.1021/ja502541z
Mashkov, O.; Körfer, J.; Eigen, A.; Yousefi-Amin, A.-A.; Killilea, N.; Barabash, A.; Sytnyk, M.; Khansur, N.; Halik, M.; Webber, K. G.; Heiss, W. Effect of Ligand Treatment on the Tuning of Infrared Plasmonic Indium Tin Oxide Nanocrystal Electrochromic Devices. Adv. Eng. Mater. 2020, 22 ( 9), 2000112, 10.1002/adem.202000112
Maho, A.; Comeron Lamela, L.; Henrist, C.; Henrard, L.; Tizei, L. H. G.; Kociak, M.; Stéphan, O.; Heo, S.; Milliron, D. J.; Vertruyen, B.; Cloots, R. Solvothermally-Synthesized Tin-Doped Indium Oxide Plasmonic Nanocrystals Spray-Deposited onto Glass as near-Infrared Electrochromic Films. Sol. Energy Mater. Sol. Cells 2019, 200, 110014 10.1016/j.solmat.2019.110014
Maho, A.; Saez Cabezas, C. A.; Meyertons, K. A.; Reimnitz, L. C.; Sahu, S.; Helms, B. A.; Milliron, D. J. Aqueous Processing and Spray Deposition of Polymer-Wrapped Tin-Doped Indium Oxide Nanocrystals as Electrochromic Thin Films. Chem. Mater. 2020, 32 ( 19), 8401- 8411, 10.1021/acs.chemmater.0c02399
Li, H. H. Refractive Index of Alkali Halides and Its Wavelength and Temperature Derivatives. J. Phys. Chem. Ref. Data 1976, 5 ( 2), 329- 528, 10.1063/1.555536
Gillissen, F.; Lobet, M.; Dewalque, J.; Colson, P.; Spronk, G.; Gouttebaron, R.; Duttine, M.; Faceira, B.; Henrard, L.; Cloots, R. Mixed Molybdenum-Tungsten Oxide as Dual-Band, VIS-NIR Selective Electrochromic Material. ChemRxiv 2024, 10.26434/chemrxiv-2024-vhf83
Tandon, B.; Lu, H.-C.; Milliron, D. J. Dual-Band Electrochromism: Plasmonic and Polaronic Mechanisms. J. Phys. Chem. C 2022, 126 ( 22), 9228- 9238, 10.1021/acs.jpcc.2c02155