Animals; Gene Flow; Africa South of the Sahara; Genetics, Population; Phylogeny; Genetic Variation; Buffaloes/genetics; Genomics/methods; Genome; Buffaloes; Genomics; Medicine (miscellaneous); Biochemistry, Genetics and Molecular Biology (all); Agricultural and Biological Sciences (all)
Abstract :
[en] The African buffalo (Syncerus caffer) is a wild bovid with a historical distribution across much of sub-Saharan Africa. Genomic analysis can provide insights into the evolutionary history of the species, and the key selective pressures shaping populations, including assessment of population level differentiation, population fragmentation, and population genetic structure. In this study we generated the highest quality de novo genome assembly (2.65 Gb, scaffold N50 69.17 Mb) of African buffalo to date, and sequenced a further 195 genomes from across the species distribution. Principal component and admixture analyses provided little support for the currently described four subspecies. Estimating Effective Migration Surfaces analysis suggested that geographical barriers have played a significant role in shaping gene flow and the population structure. Estimated effective population sizes indicated a substantial drop occurring in all populations 5-10,000 years ago, coinciding with the increase in human populations. Finally, signatures of selection were enriched for key genes associated with the immune response, suggesting infectious disease exert a substantial selective pressure upon the African buffalo. These findings have important implications for understanding bovid evolution, buffalo conservation and population management.
Disciplines :
Zoology
Author, co-author :
Talenti, Andrea ; The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom ; Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, EH25 9RG, United Kingdom
Wilkinson, Toby ; The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom ; Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, EH25 9RG, United Kingdom
Cook, Elizabeth A; International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya ; Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, P.O. Box 30709, Nairobi, 00100, Kenya
Hemmink, Johanneke D ; The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom ; Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, EH25 9RG, United Kingdom ; International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya ; Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, P.O. Box 30709, Nairobi, 00100, Kenya
Paxton, Edith; The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
Mutinda, Matthew; Kenya Wildlife Service, P.O. Box 40241, Nairobi, 00100, Kenya
Ngulu, Stephen D; Ol Pejeta Conservancy, Private Bag, Nanyuki, 10400, Kenya
Jayaraman, Siddharth ; The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
Bishop, Richard P; International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya
Obara, Isaiah; Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany
Hourlier, Thibaut ; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, United Kingdom
Garcia Giron, Carlos; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, United Kingdom
Martin, Fergal J ; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, United Kingdom
Labuschagne, Michel; Clinomics, Uitzich Road, Bainsvlei, Bloemfontein, 9338, South Africa
Nanteza, Anne; College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
Keyyu, Julius D; Tanzania Wildlife Research Institute, Box 661, Arusha, Tanzania
Mramba, Furaha; Vector and Vector-Borne Diseases Institute, Tanga, Tanzania
Caron, Alexandre ; ASTRE, University of Montpellier (UMR), CIRAD, 34090, Montpellier, France ; CIRAD, UMR ASTRE, RP-PCP, Maputo, 01009, Mozambique ; Faculdade Veterinaria, Universidade Eduardo Mondlan, Maputo, Mozambique
Cornelis, Daniel; CIRAD, Forêts et Sociétés, 34398, Montpellier, France ; Forêts et Sociétés, University of Montpellier, CIRAD, 34090, Montpellier, France
Chardonnet, Philippe; IUCN SSC Antelope Specialist Group co-chair, 92100, Boulogne, France
Fyumagwa, Robert; Tanzania Wildlife Research Institute, Box 661, Arusha, Tanzania
Lembo, Tiziana ; School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
Auty, Harriet K; School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
Michaux, Johan ; Université de Liège - ULiège > Integrative Biological Sciences (InBioS)
Smitz, Nathalie ; Royal Museum for Central Africa (BopCo), Leuvensesteenweg 13, 3080, Tervuren, Belgium
Toye, Philip; International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya ; Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, P.O. Box 30709, Nairobi, 00100, Kenya
Robert, Christelle; The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom ; Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, EH25 9RG, United Kingdom ; Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, United Kingdom
Prendergast, James G D; The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom ; Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, EH25 9RG, United Kingdom
Morrison, Liam J ; The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom. liam.morrison@roslin.ed.ac.uk ; Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, EH25 9RG, United Kingdom. liam.morrison@roslin.ed.ac.uk
FCDO - Foreign, Commonwealth and Development Office BBSRC - Biotechnology and Biological Sciences Research Council BMGF - Bill and Melinda Gates Foundation Wellcome Trust
Funding text :
This research was funded in part by the Bill & Melinda Gates Foundation (USA) and with UK aid from the UK Foreign, Commonwealth and Development Office (Grant Agreement OPP1127286) under the auspices of the Centre for Tropical Livestock Genetics and Health (CTLGH), established jointly by the University of Edinburgh (UK), Scotland\u2019s Rural College (SRUC, UK), and the International Livestock Research Institute (UK). The findings and conclusions contained within are those of the authors and do not necessarily reflect positions or policies of the Bill & Melinda Gates Foundation nor the UK Government. The work was also supported by grants BBS/OS/GC/000012C, BBS/E/D/10002070, BBS/E/D/20002172 and BBS/E/D/20002174 from the Biotechnology and Biological Sciences Research Council (BBSRC, UK), and\u00A0grant OB 490/2\u20131 from\u00A0Deutsche Forschungsgemeinschaft (DFG, Germany). This research was conducted as part of the Consultative Group on International Agricultural Research (CGIAR) Program on Livestock (Kenya). International Livestock Research Institute (ILRI), Kenya, is supported by contributors to the CGIAR Trust Fund. CGIAR is a global research partnership for a food-secure future. Its science is carried out by 15 Research Centres in close collaboration with hundreds of partners across the globe (www.cgiar.org). Work carried out at EMBL, EBI was supported by the Wellcome Trust (WT222155/Z/20/Z) and BBSRC (BB/S020152/1).This research was funded in part by the Bill & Melinda Gates Foundation (USA) and with UK aid from the UK Foreign, Commonwealth and Development Office (Grant Agreement OPP1127286) under the auspices of the Centre for Tropical Livestock Genetics and Health (CTLGH), established jointly by the University of Edinburgh (UK), Scotland\u2019s Rural College (SRUC, UK), and the International Livestock Research Institute (UK). The findings and conclusions contained within are those of the authors and do not necessarily reflect positions or policies of the Bill & Melinda Gates Foundation nor the UK Government. The work was also supported by grants BBS/OS/GC/000012C, BBS/E/D/10002070, BBS/E/D/20002172 and BBS/E/D/20002174 from the Biotechnology and Biological Sciences Research Council (BBSRC, UK), and grant OB 490/2\u20131 from Deutsche Forschungsgemeinschaft (DFG, Germany). This research was conducted as part of the Consultative Group on International Agricultural Research (CGIAR) Program on Livestock (Kenya). International Livestock Research Institute (ILRI), Kenya, is supported by contributors to the CGIAR Trust Fund. CGIAR is a global research partnership for a food-secure future. Its science is carried out by 15 Research Centres in close collaboration with hundreds of partners across the globe ( www.cgiar.org ). Work carried out at EMBL, EBI was supported by the Wellcome Trust (WT222155/Z/20/Z) and BBSRC (BB/S020152/1).
R. East African Antelope Database 1999 1999 Switzerland and Cambridge, UK Gland
Cornelis, D. et al. in Ecology, evolution and behaviour of wild cattle: implications for conservation. (eds M. Melletti & J. Burton) (Cambridge University Press, 2014).
Cornelis, D. et al. in Ecology and Management of the African buffalo (eds A. Caron, D. Cornelis, P. Chardonnet, & H. H. T. Prins) (Cambridge Univeristy Press, 2023).
Michaux, J., Smitz, N. & Van Hooft, P. in Ecology and Management of the African buffalo (eds A. Caron, D. Cornelis, P. Chardonnet, & H. H. T. Prins) (Cambridge University Press, 2023).
N. Smitz et al. Pan-African genetic structure in the African buffalo (Syncerus caffer): investigating intraspecific divergence PLoS One 2013 8 e56235 1:CAS:528:DC%2BC3sXjs12gtb8%3D 23437100 3578844 10.1371/journal.pone.0056235
N. Smitz et al. Genetic structure of fragmented southern populations of African Cape buffalo (Syncerus caffer caffer) BMC Evol. Biol. 2014 14 203 25367154 4232705 10.1186/s12862-014-0203-2
R. Heller A. Bruniche-Olsen H.R. Siegismund Cape buffalo mitogenomics reveals a Holocene shift in the African human-megafauna dynamics Mol. Ecol. 2012 21 3947 3959 22725969 10.1111/j.1365-294X.2012.05671.x
N. Smitz et al. Genome-wide single nucleotide polymorphism (SNP) identification and characterization in a non-model organism, the African buffalo (Syncerus caffer), using next generation sequencing Mamm. Biol. 2016 81 595 603 10.1016/j.mambio.2016.07.047
D. de Jager et al. High diversity, inbreeding and a dynamic Pleistocene demographic history revealed by African buffalo genomes Sci. Rep. 2021 11 33633171 7907399 10.1038/s41598-021-83823-8
L. Quinn et al. Colonialism in South Africa leaves a lasting legacy of reduced genetic diversity in Cape buffalo Mol. Ecol. 2023 32 1860 1874 36651275 10.1111/mec.16851
C.S. Pizzutto H. Colbachini P.N. Jorge-Neto One Conservation: the integrated view of biodiversity conservation Anim. Reprod. 2021 18 34122656 8190570 10.1590/1984-3143-ar2021-0024
P.A. Hohenlohe W.C. Funk O.P. Rajora Population genomics for wildlife conservation and management Mol. Ecol. 2021 30 62 82 33145846 10.1111/mec.15720
H. Auty S.J. Torr T. Michoel S. Jayaraman L.J. Morrison Cattle trypanosomosis: the diversity of trypanosomes and implications for disease epidemiology and control Rev. Sci. Tech. Int. Off. Epizootics 2015 34 587 598 1:STN:280:DC%2BC28vlt1GrsA%3D%3D 10.20506/rst.34.2.2382
M. Casey-Bryars et al. Waves of endemic foot-and-mouth disease in eastern Africa suggest feasibility of proactive vaccination approaches Nat. Ecol. Evol. 2018 2 1449 1457 30082738 10.1038/s41559-018-0636-x
Bengis, R. et al. in Ecology and Management of the African buffalo (eds A. Caron, D. Cornelis, P. Chardonnet, & H. H. T. Prins) (Cambridge University Press, 2023).
R.H. Dwinger J.G. Grootenhuis M. Murray S.K. Moloo G. Gettinby Susceptibility of buffaloes, cattle and goats to infection with different stocks of Trypanosoma vivax transmitted by Glossina morsitans centralis Res Vet. Sci. 1986 41 307 315 1:STN:280:DyaL2s7hvFCjtA%3D%3D 3827994 10.1016/S0034-5288(18)30621-0
J.G. Grootenhuis R.H. Dwinger R.B. Dolan S.K. Moloo M. Murray Susceptibility of African buffalo and Boran cattle to Trypanosoma congolense transmitted by Glossina morsitans centralis Vet. Parasitol. 1990 35 219 231 1:STN:280:DyaK3c3mtFSrsA%3D%3D 2343539 10.1016/0304-4017(90)90057-I
W.I. Morrison J.D. Hemmink P.G. Toye Theileria parva: a parasite of African buffalo, which has adapted to infect and undergo transmission in cattle Int. J. Parasitol. 2020 50 403 412 1:CAS:528:DC%2BB3cXjvVWqsbg%3D 32032592 7294229 10.1016/j.ijpara.2019.12.006
D. Gifford-Gonzalez Animal disease challenges to the emergence of pastoralism in Sub-Saharan Africa Afr. Archaeological Rev. 2000 17 95 139 10.1023/A:1006601020217
F. Lankester A. Davis Pastoralism and wildlife: historical and current perspectives in the East African rangelands of Kenya and Tanzania Rev. Sci. Tech. Int. Off. Epizootics 2016 35 473 484 1:STN:280:DC%2BC2sjjsFSgtw%3D%3D 10.20506/rst.35.2.2536
A.L. Michel Implications of tuberculosis in African wildlife and livestock Ann. N. Y. Acad. Sci. 2002 969 251 255 12381600 10.1111/j.1749-6632.2002.tb04387.x
Kock, R., Kock, M., de Garine-Wichatitsky, M., Chardonnet, P. & Caron, A. in Ecology, Evolution and Behaviour of Wild Cattle (eds M. Melletti & J. Burton) Chapter 26, 431–425 (Cambridge University Press, 2014).
A. Caron et al. Relationship between burden of infection in ungulate populations and wildlife/livestock interfaces Epidemiol. Infect. 2013 141 1522 1535 1:STN:280:DC%2BC3svhsFCitg%3D%3D 23442901 10.1017/S0950268813000204
Kock, R. et al. in Ecology and Management of the African buffalo (eds A. Caron, D. Cornelis, P. Chardonnet, & H. H. T. Prins) (Cambridge University Press, 2023).
B. Glanzmann et al. The complete genome sequence of the African buffalo (Syncerus caffer) BMC Genomics 2016 17 27927182 5142436 10.1186/s12864-016-3364-0
Chen, L. et al. Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits. Science364, https://doi.org/10.1126/science.aav6202 (2019)
A.C. English et al. Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology PLoS One 2012 7 e47768 1:CAS:528:DC%2BC38XhvVagsr3E 23185243 3504050 10.1371/journal.pone.0047768
B.J. Walker et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement PLoS One 2014 9 e112963 25409509 4237348 10.1371/journal.pone.0112963
W.Y. Low et al. Chromosome-level assembly of the water buffalo genome surpasses human and goat genomes in sequence contiguity Nat. Commun. 2019 10 30651564 6335429 10.1038/s41467-018-08260-0
S. Zhang et al. Structural Variants Selected during Yak Domestication Inferred from Long-Read Whole-Genome Sequencing Mol. Biol. Evol. 2021 38 3676 3680 1:CAS:528:DC%2BB38XhslKjsrfO 33944937 8382902 10.1093/molbev/msab134
Koren, S. et al. De novo assembly of haplotype-resolved genomes with trio binning. Nat. Biotechnol. https://doi.org/10.1038/nbt.4277 (2018)
A. Talenti et al. A cattle graph genome incorporating global breed diversity Nat. Commun. 2022 13 1:CAS:528:DC%2BB38XktVOhtr0%3D 35177600 8854726 10.1038/s41467-022-28605-0
Rosen, B. D. et al. De novo assembly of the cattle reference genome with single-molecule sequencing. Gigascience9, https://doi.org/10.1093/gigascience/giaa021 (2020)
D.M. Bickhart et al. Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome Nat. Genet 2017 49 643 650 1:CAS:528:DC%2BC2sXltVWgtbs%3D 28263316 5909822 10.1038/ng.3802
H.Z. Girgis Red: an intelligent, rapid, accurate tool for detecting repeats de-novo on the genomic scale BMC Bioinforma. 2015 16 10.1186/s12859-015-0654-5
B.R. Franza Jr. F.J. Rauscher 3rd S.F. Josephs T. Curran The Fos complex and Fos-related antigens recognize sequence elements that contain AP-1 binding sites Science 1988 239 1150 1153 1:CAS:528:DyaL1cXitFOhsbc%3D 2964084 10.1126/science.2964084
D.V. Klopfenstein et al. GOATOOLS: A Python library for Gene Ontology analyses Sci. Rep. 2018 8 1:STN:280:DC%2BB3c%2FpsFOmuw%3D%3D 30022098 6052049 10.1038/s41598-018-28948-z
P.G. Meirmans Subsampling reveals that unbalanced sampling affects STRUCTURE results in a multi-species dataset Heredity 2019 122 276 287 1:CAS:528:DC%2BC1cXhtlGhsbzJ 30026534 10.1038/s41437-018-0124-8
C. O’Ryan et al. Microsatellite analysis of genetic diversity in fragmented South African buffalo populations Anim. Conserv. 1998 1 85 94 10.1111/j.1469-1795.1998.tb00015.x
P.C. Sabeti et al. Genome-wide detection and characterization of positive selection in human populations Nature 2007 449 913 918 1:CAS:528:DC%2BD2sXhtFOjt7jK 17943131 2687721 10.1038/nature06250
L. Speidel M. Forest S. Shi S.R. Myers A method for genome-wide genealogy estimation for thousands of samples Nat. Genet 2019 51 1321 1329 1:CAS:528:DC%2BC1MXhs12nsrnJ 31477933 7610517 10.1038/s41588-019-0484-x
Moon, J. M., Aronoff, D. M., Capra, J. A., Abbot, P. & Rokas, A. Examination of Signatures of Recent Positive Selection on Genes Involved in Human Sialic Acid Biology. G3 Bethesda 8, 1315–1325 (2018).
P. Dutta et al. Whole genome analysis of water buffalo and global cattle breeds highlights convergent signatures of domestication Nat. Commun. 2020 11 32958756 7505982 10.1038/s41467-020-18550-1
B.M. Prajapati J.P. Gupta D.P. Pandey G.A. Parmar J.D. Chaudhari Molecular markers for resistance against infectious diseases of economic importance Vet. World 2017 10 112 120 1:CAS:528:DC%2BC1cXhtlCisrfP 28246455 5301170 10.14202/vetworld.2017.112-120
R. Young et al. A Gene Expression Atlas of the Domestic Water Buffalo (Bubalus bubalis) Front. Genet. 2019 10 668 1:CAS:528:DC%2BB3cXksFylsbc%3D 31428126 6689995 10.3389/fgene.2019.00668
G. Garcia-Erill A. Albrechtsen Evaluation of model fit of inferred admixture proportions Mol. Ecol. Resour. 2020 20 936 949 1:CAS:528:DC%2BB3cXhsVKntbfE 32323416 10.1111/1755-0998.13171
J. Fennessy et al. Multi-locus Analyses Reveal Four Giraffe Species Instead of One Curr. Biol. 2016 26 2543 2549 1:CAS:528:DC%2BC28XhsVykt7nL 27618261 10.1016/j.cub.2016.07.036
C.T. Pedersen et al. A southern African origin and cryptic structure in the highly mobile plains zebra Nat. Ecol. Evol. 2018 2 491 498 29358610 10.1038/s41559-017-0453-7
G.G. Lohay T.C. Weathers A.B. Estes B.C. McGrath D.R. Cavener Genetic connectivity and population structure of African savanna elephants (Loxodonta africana) in Tanzania Ecol. Evol. 2020 10 11069 11089 33144949 7593188 10.1002/ece3.6728
L.D. Bertola et al. Phylogeographic Patterns in Africa and High Resolution Delineation of Genetic Clades in the Lion (Panthera leo) Sci. Rep. 2016 6 1:CAS:528:DC%2BC28Xhtlamu7fE 27488946 4973251 10.1038/srep30807
N. Smitz et al. A genome-wide data assessment of the African lion (Panthera leo) population genetic structure and diversity in Tanzania PLoS One 2018 13 e0205395 30403704 6221261 10.1371/journal.pone.0205395
C. Genomes Project et al. A global reference for human genetic variation Nature 2015 526 68 74 10.1038/nature15393
Coimbra, R. T. F., Winter, S., Mitchell, B., Fennessy, J. & Janke, A. Conservation Genomics of Two Threatened Subspecies of Northern Giraffe: The West African and the Kordofan Giraffe. Genes 13, https://doi.org/10.3390/genes13020221 (2022)
W.F. Van Hooft A.F. Groen H.H. Prins Phylogeography of the African buffalo based on mitochondrial and Y-chromosomal loci: Pleistocene origin and population expansion of the Cape buffalo subspecies Mol. Ecol. 2002 11 267 279 11856427 10.1046/j.1365-294X.2002.01429.x
R. Heller E.D. Lorenzen J.B. Okello C. Masembe H.R. Siegismund Mid-Holocene decline in African buffalos inferred from Bayesian coalescent-based analyses of microsatellites and mitochondrial DNA Mol. Ecol. 2008 17 4845 4858 1:STN:280:DC%2BD1M%2FmvFWhtw%3D%3D 19140976 10.1111/j.1365-294X.2008.03961.x
R. Mack The great African cattle plague epidemic of the 1890’s Trop. Anim. Hlth. Prod. 1970 2 210 219 10.1007/BF02356441
W. Plowright The effects of rinderpest and rinderpest control on wildlife in Africa Symposia Zool. Soc. Lond. 1982 50 1 28
Estes, R. D. The Behaviour Guide to African Mammals (University of California Press, 1991).
W.F. Van Hooft A.F. Groen H.H. Prins Microsatellite analysis of genetic diversity in African buffalo (Syncerus caffer) populations throughout Africa Mol. Ecol. 2000 9 2017 2025 11123614 10.1046/j.1365-294X.2000.01101.x
B.T. Simonsen H.R. Siegismund P. Arctander Population structure of African buffalo inferred from mtDNA sequences and microsatellite loci: high variation but low differentiation Mol. Ecol. 1998 7 225 237 1:CAS:528:DyaK1cXitlegtL8%3D 9532761 10.1046/j.1365-294x.1998.00343.x
S.A. Stephens C.J. Howard Infection and transformation of dendritic cells from bovine afferent lymph by Theileria annulata Parasitology 2002 124 485 493 1:STN:280:DC%2BD38zgsleltQ%3D%3D 12049411 10.1017/S003118200200152X
E.J. Glass S. Crutchley K. Jensen Living with the enemy or uninvited guests: functional genomics approaches to investigating host resistance or tolerance traits to a protozoan parasite, Theileria annulata, in cattle Vet. Immunol. Immunopathol. 2012 148 178 189 1:CAS:528:DC%2BC38XltVOqu70%3D 22482839 7112524 10.1016/j.vetimm.2012.03.006
R.P. Bishop et al. The African buffalo parasite Theileria sp. (buffalo) can infect and immortalize cattle leukocytes and encodes divergent orthologues of Theileria parva antigen genes Int. J. Parasitol. Parasites Wildl. 2015 4 333 342 1:STN:280:DC%2BC28zpsl2lug%3D%3D 26543804 4589832 10.1016/j.ijppaw.2015.08.006
D. Wragg et al. A locus conferring tolerance to Theileria infection in African cattle PLoS Genet. 2022 18 e1010099 1:CAS:528:DC%2BB38XhtFajs7vI 35446841 9022807 10.1371/journal.pgen.1010099
J.E. Decker et al. Worldwide patterns of ancestry, divergence, and admixture in domesticated cattle PLoS Genet 2014 10 e1004254 24675901 3967955 10.1371/journal.pgen.1004254
I. Obara et al. The Rhipicephalus appendiculatus tick vector of Theileria parva is absent from cape buffalo (Syncerus caffer) populations and associated ecosystems in northern Uganda Parasitol. Res. 2020 119 2363 2367 1:STN:280:DC%2BB38rmtFSjuw%3D%3D 32500369 7308261 10.1007/s00436-020-06728-x
A. Gurevich V. Saveliev N. Vyahhi G. Tesler QUAST: quality assessment tool for genome assemblies Bioinformatics 2013 29 1072 1075 1:CAS:528:DC%2BC3sXlvVKitrw%3D 23422339 3624806 10.1093/bioinformatics/btt086
A. Rhie B.P. Walenz S. Koren A.M. Phillippy Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies Genome Biol. 2020 21 1:CAS:528:DC%2BB3cXhvVKmu7rF 32928274 7488777 10.1186/s13059-020-02134-9
B.D. Ondov et al. Mash: fast genome and metagenome distance estimation using MinHash Genome Biol. 2016 17 27323842 4915045 10.1186/s13059-016-0997-x
PHYLIP (Phylogeny Inference Package) v. 3.7a (Department of Genome Sciences, University of Washington, Seattle., 2009).
J. Armstrong et al. Progressive Cactus is a multiple-genome aligner for the thousand-genome era Nature 2020 587 246 251 1:CAS:528:DC%2BB3cXitlWktLnF 33177663 7673649 10.1038/s41586-020-2871-y
G. Hickey B. Paten D. Earl D. Zerbino D. Haussler HAL: a hierarchical format for storing and analyzing multiple genome alignments Bioinformatics 2013 29 1341 1342 1:CAS:528:DC%2BC3sXnvV2mtr8%3D 23505295 3654707 10.1093/bioinformatics/btt128
A.R. Quinlan I.M. Hall BEDTools: a flexible suite of utilities for comparing genomic features Bioinformatics 2010 26 841 842 1:CAS:528:DC%2BC3cXivFGkurc%3D 20110278 2832824 10.1093/bioinformatics/btq033
B.S. Pedersen A.R. Quinlan Mosdepth: quick coverage calculation for genomes and exomes Bioinformatics 2018 34 867 868 1:CAS:528:DC%2BC1cXitlemtLnF 29096012 10.1093/bioinformatics/btx699
S. Heinz et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities Mol. Cell 2010 38 576 589 1:CAS:528:DC%2BC3cXns1SlsLc%3D 20513432 2898526 10.1016/j.molcel.2010.05.004
A. Dobin et al. STAR: ultrafast universal RNA-seq aligner Bioinformatics 2013 29 15 21 1:CAS:528:DC%2BC38XhvV2gsbnF 23104886 10.1093/bioinformatics/bts635
P. Edge V. Bansal Longshot enables accurate variant calling in diploid genomes from single-molecule long read sequencing Nat. Commun. 2019 10 31604920 6788989 10.1038/s41467-019-12493-y
P. Danecek et al. The variant call format and VCFtools Bioinformatics 2011 27 2156 2158 1:CAS:528:DC%2BC3MXptFCqt7w%3D 21653522 3137218 10.1093/bioinformatics/btr330
A. Manichaikul et al. Robust relationship inference in genome-wide association studies Bioinformatics 2010 26 2867 2873 1:CAS:528:DC%2BC3cXhsVSlt7bK 20926424 3025716 10.1093/bioinformatics/btq559
C.C. Chang et al. Second-generation PLINK: rising to the challenge of larger and richer datasets Gigascience 2015 4 25722852 4342193 10.1186/s13742-015-0047-8
Milanesi, M. et al. BITE: an R package for biodiversity analyses. BioRxiv. https://doi.org/10.1101/181610 (2017)
D.H. Alexander J. Novembre K. Lange Fast model-based estimation of ancestry in unrelated individuals Genome Res. 2009 19 1655 1664 1:CAS:528:DC%2BD1MXhtFCjsLvL 19648217 2752134 10.1101/gr.094052.109
M. Jakobsson N.A. Rosenberg CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure Bioinformatics 2007 23 1801 1806 1:CAS:528:DC%2BD2sXpt1ahtbs%3D 17485429 10.1093/bioinformatics/btm233
D. Petkova J. Novembre M. Stephens Visualizing spatial population structure with estimated effective migration surfaces Nat. Genet. 2016 48 94 100 1:CAS:528:DC%2BC2MXhvFOmtb%2FF 26642242 10.1038/ng.3464
S.R. Browning B.L. Browning Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering Am. J. Hum. Genet. 2007 81 1084 1097 1:CAS:528:DC%2BD2sXht1KmsL3M 17924348 2265661 10.1086/521987
C.A. Maclean N.P. Chue Hong J.G. Prendergast hapbin: An Efficient Program for Performing Haplotype-Based Scans for Positive Selection in Large Genomic Datasets Mol. Biol. Evol. 2015 32 3027 3029 1:CAS:528:DC%2BC28Xht1KqtrvJ 26248562 4651233 10.1093/molbev/msv172
M. Pacifici et al. Database on generation length of mammals Nat. Conserv. 2013 5 89 94 10.3897/natureconservation.5.5734
Yin, L. et al. rMVP: A Memory-efficient, Visualization-enhanced, and Parallel-accelerated tool for Genome-Wide Association Study. Genomics, Proteomics & Bioinformatics 4, 619–628 (2021).