Basu, P., Circulating Fluidized Bed Boilers: Design, Operation and Maintenance. 2015, Springer International Publishing, Cham, 10.1007/978-3-319-06173-3.
Lin, F., Dorbolo, S., Wang, W., Zou, J., Deep spontaneous penetration of a water droplet into hot granular materials. Phys. Rev. Fluids, 7(3), 2022, 034301.
Loha, C., Gu, S., De Wilde, J., Mahanta, P., Chatterjee, P.K., ChemInform abstract: Advances in mathematical modeling of fluidized bed gasification. Renew. Sustain. Energy Rev. 40 (2014), 688–715, 10.1016/j.rser.2014.07.199.
Rueda Villegas, L., Alis, R., Lepilliez, M., Tanguy, S., A ghost fluid/level set method for boiling flows and liquid evaporation: Application to the Leidenfrost effect. J. Comput. Phys. 316 (2016), 789–813, 10.1016/j.jcp.2016.04.031.
Patankar, N.A., Singh, P., Joseph, D.D., Glowinski, R., Pan, T.W., A new formulation of the distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiph. Flow 26:9 (2000), 1509–1524, 10.1016/S0301-9322(99)00100-7.
Capecelatro, J., Desjardins, O., An Euler–Lagrange strategy for simulating particle-laden flows. J. Comput. Phys. 238 (2013), 1–31, 10.1016/j.jcp.2012.12.015.
Anderson, T.B., Jackson, R., Fluid mechanical description of fluidized beds. Equations of motion. Ind. Eng. Chem. Fundam. 6:4 (1967), 527–539, 10.1021/i160024a007.
Baumgarten, A.S., Kamrin, K., A general fluid–sediment mixture model and constitutive theory validated in many flow regimes. J. Fluid Mech. 861 (2019), 721–764, 10.1017/jfm.2018.914.
Feng, Y.Q., Yu, A.B., Assessment of model formulations in the discrete particle simulation of gas-solid flow. Ind. Eng. Chem. Res. 43:26 (2004), 8378–8390, 10.1021/ie049387v.
Lacaze, L., Bouteloup, J., Fry, B., Izard, E., Immersed granular collapse: From viscous to free-fall unsteady granular flows. J. Fluid Mech., 912, 2021, A15, 10.1017/jfm.2020.1088.
Constant, M., Dubois, F., Lambrechts, J., Legat, V., Implementation of an unresolved stabilised FEM–DEM model to solve immersed granular flows. Comput. Part. Mech., 2018, 10.1007/s40571-018-0209-4.
Geitani, M., A high-order stabilized solver for the volume averaged Navier-Stokes equations. Internat. J. Numer. Methods Fluids, 2023 Wiley Online Library, https://onlinelibrary.wiley.com/doi/full/10.1002/fld.5182.
Walayat, K., Wang, Z., Usman, K., Liu, M., An efficient multi-grid finite element fictitious boundary method for particulate flows with thermal convection. Int. J. Heat Mass Transfer 126 (2018), 452–465, 10.1016/j.ijheatmasstransfer.2018.05.007.
CFD-DEM Simulation of Heat Transfer in Fluidized Beds: Model Verification, Validation, and Application | Elsevier Enhanced Reader. http://dx.doi.org/10.1016/j.ces.2018.12.031.
Ranz, W.E., Evaporation from drops-I and-II. 1952, 141–146 48.
Kemp, I.C., Bahu, R.E., Pasley, H.S., Model development and experimental studies of vertical pneumatic conveying dryers. Dry. Technol., 2007, 10.1080/07373939408961008.
Wang, Z., Liu, M., Semi-resolved CFD–DEM for thermal particulate flows with applications to fluidized beds. Int. J. Heat Mass Transfer, 159, 2020, 120150.
Li, J., Mason, D., A computational investigation of transient heat transfer in pneumatic transport of granular particles. Powder Technol. 112:3 (2000), 273–282, 10.1016/S0032-5910(00)00302-8.
Wakao, N., Funazkri, T., Effect of fluid dispersion coefficients on particle-to-fluid mass transfer coefficients in packed beds: Correlation of sherwood numbers. Chem. Eng. Sci. 33:10 (1978), 1375–1384, 10.1016/0009-2509(78)85120-3.
Patil, A.V., Peters, E.A.J.F., Kuipers, J.A.M., Comparison of CFD–DEM heat transfer simulations with infrared/visual measurements. Chem. Eng. J. 277 (2015), 388–401, 10.1016/j.cej.2015.04.131.
Constant, M., Coppin, N., Dubois, F., Vidal, V., Legat, V., Lambrechts, J., Simulation of air invasion in immersed granular beds with an unresolved FEM–DEM model. Comput. Part. Mech., 2020, 10.1007/s40571-020-00351-4.
Constant, M., Coppin, N., Dubois, F., Artoni, R., Lambrechts, J., Legat, V., Numerical investigation of the density sorting of grains using water jigging. Powder Technol. 393 (2021), 705–721.
Coppin, N., Henry, M., Cabrera, M., Azéma, E., Dubois, F., Legat, V., Lambrechts, J., Collapse dynamics of two-dimensional dry and immersed granular columns of elongated grains. Phys. Rev. Fluids, 8(9), 2023, 094303.
N. Coppin, M. Constant, J. Lambrechts, F. Dubois, V. Legat, Numerical Analysis of the Drag on a Rigid Body in an Immersed Granular Flow, in: Particles 2021, Hamburg, 2021.
Jean, M., Acary, V., Monerie, Y., Non-smooth Contact Dynamics approach of cohesive materials. Phil. Trans. R. Soc. A 359 (2001), 2497–2518, 10.1098/rsta.2001.0906.
Zhou, Z., Kuang, S., Chu, K., Yu, A., Discrete particle simulation of particle–fluid flow: model formulations and their applicability. J. Fluid Mech. 661 (2010), 482–510.
Feng, Y., Yu, A., Assessment of model formulations in the discrete particle simulation of gas- solid flow. Ind. Eng. Chem. Res. 43:26 (2004), 8378–8390.
Colburn, A.D., Analogy of mass transfer. 1933, 174 29.
Di Felice, R., The voidage function for fluid-particle interaction systems. Int. J. Multiph. Flow 20:1 (1994), 153–159, 10.1016/0301-9322(94)90011-6.
W.C. Y, Mechanics of Fluidization, in: Fluid Particle Technology, Chem. Eng. Progress. Symposium Series, Vol. 62, 1966, pp. 100–111.
DallaValle, J.M., Klemin, A., Micromeritics: The Technology of the Particles. 1943, Pitman Publishing Corporation, New York; Chicago.
Acetis, J.D., Thodos, G., Mass and heat transfer in flow of gases through spherical packings. ACS Publ., 2002, 10.1021/ie50612a026 https://pubs.acs.org/doi/pdf/10.1021/ie50612a026.
Komarnicky, W., Effect of Packing Geometry on Heat and Mass Transfer in Stacked Beds of Spheres. (Ph.D. thesis), 1956, University of British Columbia, 10.14288/1.0059067.
Malling, G.F., Thodos, G., Analogy between mass and heat transfer in beds of spheres: Contributions due to end effects. Int. J. Heat Mass Transfer 10:4 (1967), 489–498, 10.1016/0017-9310(67)90169-X.
Gupta, A.S., Thodos, G., Mass and heat transfer in the flow of fluids through fixed and fluidized beds of spherical particles. A.I.Ch.E. (Am. Inst. Chem. Eng.) J., 8, 1962, 10.1002/aic.690080509.
Wilke, C.R., Hougen, O., Mass transfer in the flow of gases through granular solids extended to low modified Reynolds numbers. Trans. Am. Inst. Chem. Eng. 41:4 (1945), 445–451.
N, S.C., Simultaneous heat and mass transfer in a duffusion-controlled chemical reaction; Part II : Studies in a packed bed. Chem. Eng. Prog. 50 (1954), 504–510.
Yang, J., Wang, J., Bu, S., Zeng, M., Wang, Q., Nakayama, A., Experimental analysis of forced convective heat transfer in novel structured packed beds of particles. Chem. Eng. Sci. 71 (2012), 126–137, 10.1016/j.ces.2011.12.005.
Shapes and Velocities of Single Drops and Bubbles Moving Freely through Immisicible Liquids | CiNii Research. https://cir.nii.ac.jp/crid/1573105974966585984.
Voivret, C., Radjai, F., Delenne, J.-Y., El Youssoufi, M.S., Space-filling properties of polydisperse granular media. Phys. Rev. E, 76(2), 2007, 021301.
F.Z. El Korchi, F. Jamin, M.S. El Youssoufi, Etude Expérimentale à l’échelle Locale de La Coalescence de Ponts Capillaires Dans Les Sols Granulaires, in: 35èmes Rencontres Universitaires de Génie Civil, in: Actes Des 35èmes Rencontres Universitaires de Génie Civil, Nantes, France, 2017.
Clarke, D.A., Sederman, A.J., Gladden, L.F., Holland, D.J., Investigation of void fraction schemes for use with CFD-DEM simulations of fluidized beds. Ind. Eng. Chem. Res. 57:8 (2018), 3002–3013.
Strobl, S., Formella, A., Pöschel, T., Exact calculation of the overlap volume of spheres and mesh elements. J. Comput. Phys. 311 (2016), 158–172.
F. Radjaï, F. Dubois, Modélisation numérique discrète des matériaux granulaires. 459.
Dubois, F., Acary, V., Jean, M., The contact dynamics method: A nonsmooth story. C. R. Mécanique 346:3 (2018), 247–262, 10.1016/j.crme.2017.12.009.
Yovanovich, M.M., Thermal contact resistance across elastically deformed spheres. J. Spacecr. Rockets 4:1 (1967), 119–122, 10.2514/3.28821.
Bejan, A., Kraus, A.D., Heat Transfer Handbook. 2003, John Wiley & Sons.
Batchelor, G.K., O'brien, R.W., Thermal or electrical conduction through a granular material. Proc. R. Soc. A 355:1682 (1977), 313–333.