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A B S T R A C T

Fluidised granular beds are used in a variety of industrial applications, such as heat exchangers, chemical
reactors and energy storage systems. Fluidisation increases the interaction surface between the grains and the
fluid, thus improving heat transfer. In this paper, an unresolved/semi-resolved FEM-DEM model is introduced
to simulate immersed granular flows, incorporating heat transfer and vaporisation. As the fluid is modelled
using a volume-averaged approach, constitutive laws are introduced to represent the momentum and heat
transfer between the grains and the fluid. Based on the Colburn–Reynolds analogy, a Nusselt correlation is
proposed to quantify the heat transfer of an assembly of grains within a fluid. The proposed law is validated
by experimental measurements of heated granular beds taken from the literature. Heat transfer in a bubbling
fluidised bed is studied as a numerical benchmark. The spontaneous digging of a droplet of water in a hot
granular bed is investigated. When a droplet of water is placed on the surface of a hot granular bed, depending
on the granular temperature, it can dig spontaneously into the bed. The main trends of the experiment, namely
digging, local fluidisation and the formation of a chimney, are reproduced by the simplified two-dimensional
numerical model. Heat transfer during the excavation process is investigated to highlight efficient transfer due
to the local fluidisation. It is demonstrated that both injection fluidisation and local vaporisation fluidisation
are correctly captured, as is heat transfer between the different phases.
1. Introduction

Fluidised bed reactor is a dynamic multiphase process: a fluid is
injected through a granular material. The procedure is mainly used
to extract chemical products from the granular material or to purify
the fluid phase. Fluidisation is also a promising process to extract
energy from a granular bed [1]. The granular material, when fluidised,
provides a large surface area for interaction. Taking advantage of
the low thermal conductivity of the granular material, energy not
used by the grid can be store in a sand silo by heating grains. Once
energy is needed, the heat can be released by injecting water through
pipes crossing the sand assemble to produce steam. Recently, a new
fluidisation process has been observed using liquid droplets which dig
into a granular bed [2]. This process allows a better exploitation of the
heat contained in the silo. On an industrial scale, circulating fluidised
bed boilers implement this process. Heat is generated by combustion
and efficiently transported by injecting a fluid in the granular bed.
Two kinds of particles are present in the bed, the bed particles, usually
sand or ash, and the fuel particles, coal or biomass. Depending on the
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injecting flow, various regimes can be observed: percolation, bubbling,
fast fluidisation, turbulent fluidisation and pneumatic regime. The most
common regimes used in the industry are bubbling fluidised bed and
fast fluidised bed [3]. In these cases, the fluidisation is obtained by
injecting a fluid at a velocity higher than the minimum fluidisation
velocity. The bubbling regime is characterised by the presence of
bubbles which carry particles in their wake. The suspension becomes
heterogeneous. The solid packing fraction decreases quickly close to
the bubbles but remains large in the rest of the bed. The fast fluidised
regime, obtained for higher fluid velocity, is characterised by particle
recirculation within the granular medium which tends to uniformise
the solid packing fraction across the suspension. As the efficiency of
the process is highly dependent on the fluidisation regime, studying
heat transfer inside the granular material is essential to optimise the
process.

A recent observation has suggested an alternative fluidisation pro-
cess using digging droplet . When a drop of water is released on a
https://doi.org/10.1016/j.ijheatmasstransfer.2025.126755
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hot granular bed, depending on the temperature of the granular bed,
the drop can either crash on the interface, spontaneously dig into
the granular bed, or levitate over it. At a temperature close to the
vaporisation temperature, the droplet collapses onto the granular bed.
Heat is transferred to the grains over a short period of time and only
at the top of the granular bed. At higher temperatures, the thrust of
the vapour expelled from the droplet is sufficient to sustain the droplet
isolated above the grains. This phenomenon is called the Leidenfrost
effect [4,5]. Another effect of the vapour is to locally fluidise an area
of the bed below the droplet. The droplet and its surrounding film of
vapour enter the fluidised region and begin to dig progressively. In this
regime, heat transfer is maximal as heat is released within the granular
bed and the temperature gradient is maintained by the recirculation of
the grains. At very high temperatures, the thrust is sufficient to prevent
the droplet from entering the fluidised zone. Heat transfer is reduced
as it only occurs at the top of the bed.

The interaction between a liquid droplet and a hot granular material
is challenging as the thermal exchanges are complex due tot he granular
contact network and the droplet shape. In the regimes considered, the
water undergoes a phase change which add complexity to the problem.
Modelling this situation is highly challenging but necessary to better
understand of both the Leidenfrost state and the thermal properties
of the granular materials. Over the last decades, many methods have
been developed to understand granular suspension flows [6,7]. We
use a discrete element method (DEM) for the grains coupled with
a classical computational fluid dynamics (CFD) method for the fluid
phase using volume-averaged equations [8]. Compared to a two-fluid
approach, where both the grains and the fluid are represented as
continuous phases [9], CFD-DEM allows to explicitly represent interac-
tions between grains [10,11]. The spatial resolution of the fluid phase
can be adjusted as a compromise between computational cost and
accuracy. Fully resolved methods have a fluid resolution smaller than
the grains and capture the boundary layer around them. Semi-resolved
and unresolved methods have a fluid resolution of the same order or
larger than the grains. Constitutive laws are required to couple the
exchange between the two phases [12,13]. In recent years, these meth-
ods have been used to investigate heat transfer in fluidised granular
flows [14,15]. While drag correlation for immersed granular flows are
well-established, the ones for heat transfer is not yet unified [16–19].

We propose a multi-scale model to study the heat transfer of a gran-
ular bed fluidised by injection from below and droplet deposition from
above. The mesh size varies from a semi-resolved approach around the
droplet to an unresolved approach away from the droplet. We present
and validate a correlation model for heat transfer across percolating
and bubbling regimes [20,21]. The numerical model is then extended
to study the heat transfer between a drop and a granular bed, taking
into account vaporisation. We investigate the spontaneous digging of
the drop in a two-dimensional granular bed, highlighting the conditions
under which this digging occurs. Finally, we study the efficiency of heat
transfer in different regimes to discuss the potential applications of this
phenomenon.

2. Multi-scale model

In the following first sub-section, the volume-averaged Navier–
Stokes equations (VANS) are introduced to model the fluid phase [8].
This choice ensures a reasonable computational cost while capturing
the global flow behaviour. In the Section 2, the solid phase is de-
scribed by the discrete element method (DEM). It is assumed that
each grain is tracked individually as a rigid body with a given mass,
velocity, and temperature. As the fluid resolution scale is larger than
the boundary layer formed around the grains, constitutive laws have
to be introduced to model momentum and heat transfer between the
fluid and the particles. The Section 3 is dedicated to the particle–
fluid interaction constitutive laws. The multi-scale representation of
the flow is illustrated in Fig. 1. The numerical implementation is
2 
Fig. 1. Immersed granular flow representation. The fluid phase is described by the
volume-averaged Navier–Stokes equations captured at the mesh scale. The discrete
element method models the particles, represented by the red discs. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

conducted using the open-source solver MigFlow1 [12,22–25]. The fluid
phase is solved using the classical finite element method, while the
solid phase is handled with the discrete element method. The fluid’s
spatial discretisation is achieved through a stabilised P1 − P1 mixed
formulation. Particle collisions are addressed using the non-smooth
contact dynamics approach [26]. Appendix B provides an overview
of the contact dynamics including heat transfer. To maintain stability
between the two solvers, a semi-implicit time integration scheme is
used [12].

2.1. Fluid phase

To represent the particles presence in the fluid, three aspects have to
be considered, the governing equations, the numerical scheme and the
particle–fluid interaction forces. The governing equations are obtained
through a local average of the Navier–Stokes equations based on the
work of Anderson [8]. The equations are expressed in terms of averaged
quantities over a control volume with a fluid volume fraction 𝜖. The
flow is described at a macroscopic scale and constitutive laws must
be introduced to model particle-force interaction. From the averaged
equations, three sets of equations can be derived as pointed out by
Zhou [27]. They differ by the way the fluid–particle interaction force is
incorporated into the momentum equation. Set I corresponds to the one
obtained only assuming the averaging process. Set II is obtained by de-
composing the stress tensor into a macroscopic and a microscopic part.
Set III used the same decomposition and a continuous representation
of the solid phase to eliminate the fluid stress tensor in the momentum
equation of the solid phase. For a detailed analysis of each set, the
reader is referred to the work of Zhou [27] and analysis of Feng [28]. In
this work, set I is used to model the fluid phase. The numerical scheme
and spatial discretisation of the particle–fluid interaction are detailed
in Appendix A. The flow is assumed to be incompressible and natural
convection is captured by the Boussinesq approximation. All other ma-
terial properties are assumed to be independent of temperature. It leads

1 https://www.migflow.be.
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to the following volume-averaged Navier–Stokes (VANS) equations in
heir non-conservative form,
𝜕 𝜖
𝜕 𝑡 + 𝛁 ⋅ (𝜖𝒖) = 0, (1)

𝜖 𝜌 d𝒖
d𝑡 = 𝛁 ⋅ 𝝈 + 𝒇 𝑝 +

(

1 + 𝛽 (𝑇 − 𝑇𝑅
))

𝜖 𝜌𝒈, (2)

𝜖 𝜌𝑐 d𝑇
d𝑡 = −𝛁 ⋅ 𝒒 + 𝑞𝑝, (3)

where 𝜌 is the fluid density, 𝑐 the specific heat at constant volume, 𝛽
the thermal expansion coefficient and 𝑇𝑅 the reference temperature.
The d∙

d𝑡 =
𝜕∙
𝜕 𝑡 +𝒖 ⋅𝛁∙ operator denotes the material derivative. The stress

tensor 𝝈 is modelled as

𝝈 = −𝑝𝑰 + 𝜖 𝜂 (𝛁𝒖 + 𝛁𝑇 𝒖
)

where 𝑝 is the pressure, 𝑰 is the identity tensor and 𝜂 is the dynamic
viscosity. A modified Fourier’s law is used to model the heat flux
density 𝒒 as

𝒒 = −𝜖 𝑘𝛁𝑇
where 𝑘 is the thermal conductivity. The momentum transfer and the
heat transfer exerted by the particles on the fluid are denoted by 𝒇 𝑝
and 𝑞𝑝 respectively. The force density incorporates both the averaged
stress tensor contribution and the boundary layer contribution. The
latter only accounts for the drag force, neglecting other forces such as
the Basset force or virtual mass effects. The force density contribution
exerted by the particles on the fluid is given by

𝒇 𝑝 =
{

−∇ ⋅ 𝝈 + 𝒇 𝑑 , 𝒙 ∈ 
𝟎, elsewhere (4)

where 𝒇 𝑑 represents the drag force density and  the domain occupied
y particles. Similarly, the heat transfer density is given by

𝑞𝑝 =
{

∇ ⋅ 𝒒 + 𝑞𝑐 , 𝒙 ∈ 
𝟎, elsewhere (5)

where 𝑞𝑐 is the forced convection due to the boundary layer around the
grain. In pratice, at the grain scale, both the viscous stress and heat flux
re negligible compared to the net force and to the forced convection.
he parametrisation of the drag force and the forced convection are
etailed in Section 2.3.

2.2. Solid phase

As each particle is modelled as a rigid body, the motion of a particle
s governed by Newton’s second law and its temperature by the energy

conservation equation.

𝜌d𝒗
d𝑡 = 𝒇 𝑐 − 𝒇 𝑝 + 𝜌𝒈 (6)

𝜌𝑐 d𝑇
d𝑡 = 𝑞𝑐 − 𝑞𝑝 (7)

where 𝜌 is the particle density, 𝒗 is the particle velocity, 𝒈 is the gravity
ector and 𝒇 𝑐 is the contact force density. The particle temperature is
enoted by 𝑇 , 𝑐 is the particle specific heat and 𝑞𝑐 is the heat transfer
ensity due to the collisions.

2.3. Constitutive laws

As the boundary layer is not captured by the fluid resolution scale,
constitutive laws are introduced to model its interaction with the
particles. Momentum and heat transfer are modelled by correlations of
their respective dimensionless numbers. The drag force is scaled by the
dynamic pressure and the cross-sectional area of the sphere 𝐴, leading
to the definition of the drag coefficient C𝑑 . The forced convection is
scaled by the conductive heat transfer and the surface area of the sphere
𝑆, which gives the Nusselt number Nu. These dimensionless numbers
are defined as

𝑓𝑑
1 2

𝑉
𝐴

= C𝑑 ,
𝑞𝑐 𝑑

𝑘(𝑇 − 𝑇 )
𝑉
𝑆

= Nu. (8)

2𝜌‖𝒗 − 𝒖‖ 𝑝 f

3 
where 𝑉 is the volume of the sphere. Correlations have to be valid de-
pending on the flow regime which is characterised by the fluid volume
raction 𝜖 and the Reynolds number Re. Heat transfer also depends on

the relative thickness of the momentum and thermal boundary layers,
hich is described by the Prandtl number Pr. These two dimensionless
umbers are defined as

Re =
𝜌𝑑‖𝒗 − 𝒖‖

𝜂
, Pr = 𝑐 𝜂

𝑘
.

As transport mechanisms are gathered by the same eddies for heat
nd momentum transfer, these two transfer can be correlated by the
eynolds–Colburn analogy [29],

Nu ∝ C𝑓RePr𝛼 . (9)

where C𝑓 is the skin friction coefficient, which accounts solely for
viscous stress, while the drag coefficient encompasses both viscous
stress and pressure contributions. This analogy does not strictly hold
across all flow regimes, as the thermal boundary layer also depends
n the momentum boundary layer. However, it offers a useful starting
oint for adjusting heat transfer correlations based on momentum
ransfer correlations. By relating the drag coefficient to the skin friction
oefficient, Duan & Duan [30] proposed a correlation for the Nusselt

number of a single sphere,

Nu ≈ 𝑓 (Re)
C𝑑Re
12

Pr𝛼 , 𝑓 (Re) = Re + 𝛿
0.11Re1.4 + Re + 𝛿

. (10)

Discrepancies in the analogy are modelled by the function 𝑓 (Re), with
he Prandtl exponent set to 𝛼 = 0.4. The 𝛿 value within 𝑓 (Re) is
djusted from the one proposed by Duan & Duan, reducing it from
= 5000 to 𝛿 = 500 for better alignment with experimental data

t intermediate Reynolds numbers. To extend this correlation to an
ssembly of spheres, the influence of neighbouring particles must be
onsidered. The methodology used to extend the drag force to an
ssembly is also applied to forced convection. The drag force on a
phere within an assembly is obtained by multiplying the drag force for
 single sphere by the voidage function 𝑔(𝜖 ,Re) and using the superficial
eynolds number instead of the Reynolds number. In this work, the
oidage function proposed by Di Felice [31,32] is used,

𝑔(𝜖 ,Re) = 𝜖
−1.8 + exp

[

−
(1.5 − logRe)2

2

]

, (11)

and the drag coefficient correlation is the one proposed by Dallavalle
[33]. It results in the following drag coefficient and Nusselt correlations
for a sphere in an assembly

C𝑑 ≈ 𝑔(𝜖 ,Re)
(

0.63 + 4.8
√

𝜖Re

)2

, (12)

Nu ≈ 𝑔(𝜖 ,Re) 𝑓 (𝜖Re)
(

0.18
√

𝜖Re + 1.39
)2

Pr0.4. (13)

The proposed Nusselt correlation is compared with a collection of
experimental data from the literature [20] in Fig. 2. The experiment
measures heat transfer through a heated packed bed of spheres. In this
dense regime the correlation is found to be in good agreement with the
xperimental data. As the purpose of the model is to be able to capture
ocal fluidisation, a bubbling fluidised granular bed boiler is studied.
ased on the analogy, the Nusselt constitutive law is dependent on the
ne used for the drag coefficient. The used drag correlation has been
xtensively employed in CFD-DEM modelisation of dense monodisperse
ssembly and fluidised bed reactors. This law has been successfully
sed to model drag force for different fluid nature such as water or
ir. Therefore, we expect the Nusselt correlation to be valid for these
luids as well.
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Table 1
Parameters used for the fluidisation of a heated packed bed.
Fluid properties Grain properties

Density 𝜌 kg m−3 1.204 Density 𝜌 kg m−3 2500
Viscosity 𝜂 kg m−1 s−1 2 10−5 Heat capacity 𝑐 J kg−1 K−1 840
Heat capacity 𝑐 J kg−1 K−1 1010 Heat conductivity 𝑘 J s−1 m−1 K−1 1.4
Heat conductivity 𝑘 J s−1 m−1 K−1 0.025 Young’s modulus 𝐸 kg m s−1 6 1010
Thermal expansion 𝛽 K−1 0.003 Poisson’s ratio 𝜈 ∖ 0.22

Dry friction 𝜇 ∖ 0.3

Geometry properties Boundary parameters

Height ℎ cm 25 Inflow velocity 𝑣̂ m s−1 1.2, 1.54, 1.71
Width 𝑤 cm 8 Inflow temperature 𝑇̂ K 290
Thickness 𝑝 cm 1.5 Wall temperature 𝑇̂𝑤 K 290
Nozzle 𝑙 cm 1.2
Grain diameter 𝑑 mm 1
t
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a

Fig. 2. Nusselt number correlation of a sphere in a dense assembly. The black curve
refers to the proposed correlation in Eq. (13) with a fluid volume fraction of 𝜖 = 0.45.

he markers refers to experimental data collected by Wakao [20] (see [34–39]).

3. Bubbling fluidised granular bed boiler

In this section, the model is validated in the context of a fluidised
ed based on the experiment proposed by Patil [21]. The bubbling
egime is obtained by the injection of air at a sufficiently high velocity
t the bottom of the container. The heat transfer between the particles
nd the fluid is driven by the bubble dynamics and the exchange at
ts boundary. Once a bubble arises through the particles bed, it drags

particles along its path which reduces the local solid fraction. This mo-
tion allows the air to invade the bed and cool the particles. To validate
the heat transfer model in this transient regime, an equivalent two-
dimensional model is proposed and validated against the experimental
data.

Two-dimensional simulations are performed based on a pseudo-2D
bubbling fluidised bed. Fig. 3 illustrates the geometry of the problem.
The granular bed consists of hot spherical glass beads immersed in air
initially at rest. Side walls at constant temperature 𝑇̂𝑤 cool down the
bed. At the bottom, a porous plate enables fluidisation by the injection
f air at a prescribed flow velocity 𝒖̂ = (0,−𝑣̂, 0). The injected air
orms bubbles that rise through the bed, ejecting particles along the
ay. A nozzle blocks the flow in the centre of the bottom plate. To
void cristallisation, the diameter of the beads is uniformly distributed
etween 0.8𝑑 and 𝑑. Table 1 describes the physical and the geometry
arameters used for the simulations.
4 
3.1. Numerical considerations

Due to the multi-scale nature of the model, the boundary layer is
not fully resolved close to the wall. The heat transfer associated with
hese conditions is assumed to follow a Newton’s law 𝑞𝑤 = ℎ𝑤

ℎ

(

𝑇̂𝑤 − 𝑇
)

nd its convection coefficient is set to be equivalent to the one used
n the reference experiment by Patil [21], ℎ𝑤 = 350 [W m−2 K−1].
he simulation is performed on a two-dimensional domain instead of

a three-dimensional Hele-Shaw cell. Since the viscous effects damping
the fluid flow and the forced convection in the vicinity of the front and
ear walls are not captured, a volumetric drag force and a volumetric
eat transfer model these longitudinal effects,

𝒇 𝑙 = −𝛾𝒖, 𝑞𝑙 = 𝜆(𝑇̂𝑤 − 𝑇 ). (14)

These two coefficients must be calibrated to reproduce experimental
data. As suggested in [22], the drag coefficient is estimated by con-
sidering a Hagen–Poiseuille flow. The drag coefficient is assumed to
be 𝛾 = 12𝜇∕𝑝2. Its value in these experiments is set to 𝛾 ≈ 1.067 [kg
m−3 s−1]. The heat transfer coefficient is estimated by comparing the
averaged particle temperature with the experimental data for an inflow
velocity of 𝑣̂ = 1.54 [m/s] and the mass bed of 𝑚 = 75 [g]. The estimated
heat transfer coefficient is found to be 𝜆 ≈ 4 104 [W m−3 K−1]. All
these parameters have been calibrated with a static friction coefficient
between two particles as 𝜇𝑠 = 0.3 and a coefficient of 𝜇𝑠 = 0.5 between
a particle and the wall. As long as the friction coefficient is non-zero, its
impact on the dynamics of the bed is expected to be limited. Describing
the beads as discs rather than spheres tends to underestimate their
mobility, a disc has only 3 degrees of freedom whereas a sphere has 6
of them. In order to reproduce the same packing fraction and a similar
mobility as in the three-dimensional case, the grains are assumed to be
orous to reach the jamming packing fraction of a sphere packing. The
amming packing fraction of a disc packing is 𝜙max = 0.9069 while the
amming packing fraction of a sphere packing is 𝜙max = 0.7405. The
oundary conditions at the walls, inflow and outflow are summarised
n the following table, either a Dirichlet or a Neumann condition is
pplied.

Inflow Outflow Lateral wall Longitudinal wall
𝒖 = 𝒖̂ 𝒇 = 𝒏 ⋅ (𝝈 − 𝜖 𝜌𝒖𝒖) 𝒖 = 𝟎 𝒇 = 𝒇 𝑙
𝑇 = 𝑇̂ 𝑞 = 𝒏 ⋅ (−𝒒 − 𝜌𝑐𝒖𝑇 ) 𝑞 = 𝑞𝑤 𝑞 = 𝑞𝑙

3.2. Dynamics

Fig. 4 shows the numerical results of the bed fluidisation by the
ir injection. As the bubbles rise through the granular bed, they drag

particles with them. Due to the symmetry of the problem, a central
aisle is naturally generated along which the particles are not dragged
because of to the closed nozzle. The cooled particles accumulate at the
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Fig. 3. On the left, schematic of the pseudo-2d bubbling fluidised bed setup. On the right, two-dimensional numerical representation of the problem. Air at a lower temperature
than the grains is injected through the bottom porous plate to fluidise the granular bed.
Fig. 4. Snapshots of the particle dynamics at different time for 𝑣̄ = 1.71 [m/s] with a bed mass of 𝑚 = 75 [g]. Particle temperature is represented by the colour map. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
bottom of the bed and are transported away by the convective cells
created by the bubbles (see Fig. 5).

Two symmetrical vortices can be seen in the wake of the bubbles.
In these vortices, the particle velocity is upward in the centre of the
domain and downward at the wall. As pointed out by Yang [40],
the preferred path of the bubbles is along the centre of their region,
resulting in a higher solid fraction at the edge of the domain (see
Fig. 6).
5 
3.3. Heat transfer

As the air flows through the bed, the particles are cooled down.
The heat transfer between the particles and the fluid is controlled by
the bubble dynamics and the exchange with the boundary. Increasing
the inflow velocity increases the heat transfer between the particles and
the fluid. Firstly, bubbles are more easily formed which favours particle
motion. This movement reduces the local solid fraction allowing air
to invade and cool the particles. Secondly, a higher inflow velocity
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Fig. 5. Time-averaged particle velocity over a time of 5 s starting at a time of 5 [s].
Fig. 6. Time-averaged solid packing fraction over a time of 5 s starting at a time of 5 [s].
increases the heat transfer coefficient. Fig. 7 shows good agreement be-
tween the experimental and numerical results of the averaged particle
temperature. The fluxes through the front and rear walls are calibrated
on the set of measurements with a mass of 𝑚 = 75 [g] and an inflow
velocity of 𝑣̂ = 1.54 [m/s] and validated on others inflow velocities. The
numerical model proposed on the basis of Eq. (13) is able to reproduce
qualitatively and quantitatively the heat transfer between the particles
and the fluid. Based on this representation of a bubbling fluidised bed,
local fluidisation is expected to be well represented.

4. Spontaneous water droplet digging

When a droplet falls into a hot granular bed, the droplet is able
to penetrate the granular medium spontaneously. The spontaneous
digging was firstly documented by Lin [2] in a quasi-2D experiment and
in a 3D granular bed. In this three-dimensional case, the observations
are limited to the grain ejection and to the final stage when the
droplet is stopped. Once the droplet is stopped, a cohesive spherical
structure can be extracted from the granular bed. In the quasi-2D
experiment, the droplet motion and the fluidisation of the granular
bed are observed through an Hele-Shaw cell. This cell is in fact quasi
6 
bi-dimensional regarding the droplet motion, the grains being smaller
than the droplet can still move in the depth direction. The numerical
experiment presented in this work assumes a two-dimensional domain
to mimic the experimental setup. However, the constraint in the third
direction does not allow a quantitative comparison with the physical
experiment. The main phenomena are still present and are investigated
in this study.

Different regimes have been observed depending on the droplet’s
ability to fluidise the granular medium. In the first regime, vaporisation
is not sufficient to create a layer of vapour at the interface between the
droplet and the granular medium. The droplet crashes into the granular
medium, and a small cavity may form but does not deepen. In the
second regime, a layer of vapour is created between the droplet and the
granular medium. The droplet fluidises the surrounding particles. The
grains are ejected into the resulting vertical chimney, and the droplet
goes downwards before the granular medium reorganises. The droplet
then takes the place of the ejected grains and continues to dig. In that
regime, the local fluidisation tends to favorise heat transfer with grains.
The main result is that the droplet stops at different depth according to
the temperature of the granular material. A maximum depth is found
for a temperature between the starting digging temperature and the
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Fig. 7. Mean particle temperature evolution. Experimental values, indicated by mark-
rs, have been extracted from [21]. Simulation results are shown by a continuous line

for each set of data corresponding to different inflow velocity, respectively, 1.20, 1.54
and 1.71 [m/s].

temperature for which the droplet remains at the surface. In the third
egime, at high temperature, the droplet stops digging and is close to
he surface. In the following, the droplet dynamics is studied in the

second regime, named the digging regime, and to understand the stop
of the droplet at high temperatures.

The numerical simulations aim to reproduce the non linear be-
haviour of the digging depth as a function of the temperature and to
measure the ability of the droplet to cool down the granular material.
The numerical experiment is based on the same material properties as
the physical experiment, these properties are summarised in Table 2.
Fig. 8 illustrates the experimental setup and the numerical domain. The

esh size close to the droplet is refined to capture the droplet motion
and the fluidisation of the granular medium. Further away from the
droplet, the mesh size is increased to reduce the computational cost.
Appendix A provides details on void fraction computation and force
integration.

The Section 1 describes the model used to track the digging droplet
in vaporisation. As the numerical model lives in a two-dimensional do-
main, the numerical considerations employed to mimic the experiment
are then presented. In the following section, the droplet is followed for
different granular bed temperatures to highlight the different regimes.
The heat exchange governing the digging is then investigated in this
egime at a initial temperature of 400 ◦C, as seen in Fig. 9. Finally,

similarities and differences between the experiment and the numerical
results are provided.

4.1. Droplet representation

As the droplet falls through the granular bed, it begins to absorb
grains. The particles and the surrounding fluid contribute to the dy-
namics of the droplet and to its vaporisation. The droplet is modelled
as a mixture of liquid phase and particles. The shape of a droplet is
determined by the balance between buoyancy and surface tension, as
well as the balance between inertial and viscous forces. These two
balances are modelled respectively by the Eötvös number Eo and the
Reynolds number Re𝐷. An approximation of the shape of the droplet
can be obtained using the Grace diagram [41]. In the experiment, these
numbers are given by
7 
Eo =
𝛥𝜌𝑔 𝐷2

𝜎
≈ 1, Re𝐷 =

𝜌𝐷 𝑈
𝜂

≈ 10.

The droplet is then assumed to retain its shape and only its mass
nd radius are modified. This hypothesis is also supported by the
xperimental observation from Lin [2]. During the droplet digging, its

shape stays circular until the droplet reaches its maximal depth. At
this point, the droplet does not have enough energy to fluidise and
the digging stops, the droplet fills up with grains. A spherical cohesive
structure can be extracted from the digging which tends to confirm that
the droplet shape is almost constant and does not dominate the digging
rocess. The volume of the droplet 𝑉 is given by the volume occupied
y the liquid phase 𝑉𝑓 and the absorbed particles 𝑉𝑝. The heat flux
t the interface is entirely used to vaporise the water. The mass ratio
̇ is then given by the latent heat of vaporisation  and the net heat
lux. This heat flux is the sum of the transfer between the droplet and
he surrounding air, 𝑄𝑓 and the transfer from the particles immersed
n the droplet 𝑄𝑝. The droplet dynamics is derived from the Volume-
veraged Navier–Stokes equations, Eq. (2), integrated over the droplet
olume. The stress tensor is computed using the solution in the fluid

phase since the inside of the droplet is not solved. The droplet is then
ully described by the following equations,

𝑉 = 𝑉𝑓 + 𝑉𝑝 (15)

𝑚̇ = 𝑄𝑓 +𝑄𝑝 (16)
d𝒖
d𝑡 = 𝑭 𝑓 + 𝑭 𝑝 + 𝑚𝒈, (17)

where 𝑭 𝑓 is the force applied by the fluid on the particles and 𝑭 𝑝 is
the force applied by the particles on the fluid. It is worth noting that
he resulting surface tension over the boundary is null as the droplet
emains circular. Fig. 10 illustrates the heat, mass and momentum

transfer over the droplet.

4.2. Numerical considerations

To represent the initial conditions of the experiment, the granular
bed is represented as an assembly of discs. A space-filling algorithm is
used to minimise voids between particles [42]. As solid packing fraction
controls the fluidisation of a granular bed, particles are assumed to be
porous to maintain a volume fraction similar to the physical experiment
measured at 𝜙 ≈ 0.4.

In order to limit the granular medium’s ability to reorganise itself,
ohesion is added between the grains. The vapour field 𝜓 acts as
n indicator of the fluidisation of the granular medium. A contact is
onsidered cohesive if it persists for several time steps and it is not
ocated in a fluidised region [43]:

𝐹𝑐 =
{

𝐹 0
𝑐 if 𝜓 < 𝜓0,

0 otherwise (18)

where 𝜓 is the vapour concentration at the contact point and 𝜓0 the
apour threshold. This is equivalent to assuming negligible the capillary
orce in the pendular regime and a constant force in the funicular
egime.

The vapour field is described by the advection-diffusion equation;

𝜖 𝜌𝑣
d𝜓
d𝑡 = 𝛁 ⋅

(

𝜖 𝐷𝑣𝛁𝜓
)

(19)

where 𝜌𝑣 is the vapour density and 𝐷𝑣 is the vapour diffusion coeffi-
cient. The cohesive force is modelled by a contact force between the
grains integrated into the non-smooth contact dynamics.

Since the walls are used to heat the granular medium, they are
assumed to maintain a constant temperature 𝑇̂𝑝, which corresponds
to the initial temperature of the grains. The high temperature of the
granular bed rapidly heats the droplet to its vaporisation temperature
𝑇̂𝑑 = 100 ◦C. This transient heating process is considered instantaneous,
after which the droplet is assumed to be at its vaporisation temperature.
The produced vapour generates a flow from the droplet to the surround-
ing fluid in the radial direction, denoted 𝒓̂. At the top of the domain,
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Fig. 8. On the left, schematic of the experiment. On the right, its numerical representation. The mesh close to the droplet is refined and the mesh further away is larger than the
particle size.
Table 2
Properties associated to the spontaneous digging experiment.
Fluid properties Grain properties

Density, 𝜌 kg m−3 1.204 Density, 𝜌 kg m−3 3200
Viscosity, 𝜂 kg m−1 s−1 2 10−5 Heat capacity, 𝑐 J kg−1 K−1 290
Heat capacity, 𝑐 J kg−1 K−1 1040 Heat conductivity, 𝑘 J s−1 m−1 K−1 234
Heat conductivity, 𝑘 J s−1 m−1 K−1 0.026 Young’s modulus, 𝐸 kg m s−1 1011

Thermal expansion, 𝛽 K−1 3 10−3 Poisson’s ratio, 𝜈 ∖ 0.35
Vapour diffusivity, 𝐷𝑣 m2 s−1 2 10−5 Dry friction, 𝜇 ∖ 0.3
Vapour density, 𝜌𝑣 kg m−3 1.204

Geometry properties Numerical parameters

Width, 𝑤 mm 10 Time step, 𝛥𝑡 s 5 10−4
Height, ℎ mm 30 Cohesive bond, 𝐹 0

𝑐 kg m s−2 7.5 10−4
Bed height, ℎ𝑝 mm 22.5 Vapour threshold, 𝜓0 ∖ 0.9
Droplet height, 𝑙 mm 1.5
Droplet diameter, D mm 2.5
Grain diameter, 𝑑 μm 55
an outflow boundary condition is applied. The boundary conditions
applied to the fluid conservation equations and the vapour field can
be summarised as,

Outflow Wall Droplet
𝒇 = 𝒏 ⋅ (𝝈 − 𝜖 𝜌𝒖𝒖) 𝒖 = 𝟎 𝒖 = 𝒖𝒅 + 𝑚̇

𝜌𝑣𝑆
𝒓̂

𝑞 = 𝒏 ⋅ (−𝒒 − 𝜌𝑐𝒖𝑇 ) 𝑇 = 𝑇̂𝑝 𝑇 = 𝑇̂𝑑
𝜓 = 𝒏 ⋅

(

𝜖 𝐷𝑣𝛁𝜓 − 𝜌𝑣𝒖𝜓
)

𝜓 = 0 𝜓 = 1

These boundary conditions are used to mimic the experimental
setup. Depending of the heating device and on the border mass, the
characteristic time to heat the granular assembly at the requested
temperature is much longer that the digging process that lasts about
one minute. The temperature of the granular material changes at the
vicinity of the droplet. However, since the droplets are far from the
border, except in the depth direction, the wall temperature can be
considered as constant. The front and rear walls are made of sapphire
or aluminium, respectively. Three facts can be evidenced to claim for
constant temperature walls: first, the droplet digs, that means that the
8 
droplet moves and does not cool down the wall at the same place.
Second, the walls are made of high thermal conductivity materials
compared to the granular material. Third, the mass of the walls are
large compared to the droplet. We can consider that the walls are
thermal reservoirs.

The numerical scheme is summarised in Fig. 11. At each time step,
the local fluid volume fraction over the domain is computed. To couple
the fluid conservation equations with particles, a semi-implicit scheme
is used [25]. Energy equation is solved to compute the temperature
field based on Eq. (3) using the Nusselt correlation (13). Mass rate is
computed based on the heat flux at the droplet interface using Eq. (16).
It provides the boundary condition to close the fluid model at the
droplet interface. Momentum conservation is solved using Eq. (2) with
the momentum transfer between the fluid and the particles (12). The
force from the fluid and the particles are exerted on the droplet to
compute its motion, based on Eq. (17). The droplet volume is updated
based on the mass rate and the particles entering the droplet (15). Once
the droplet has been updated, the mesh is deformed to track the droplet
motion. To keep the mesh quality, mesh nodes close to the droplet are
moved radially while keeping conformity with the droplet boundary. A
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Fig. 9. Snapshots of the droplet penetrating the granular bed at 400 ◦C. The vapour field is indicated by shades of grey. The temperature of the grains is shown in red. The grains
are ejected into the chimney as the droplet falls. The fluidisation of the grains allows the droplet to continue falling. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
node will be moved by the following expression:

𝒙𝑛𝑒𝑤 =

{

𝒙 −
(

1 − ‖𝒙−𝒙𝑑‖−𝑟𝑑
𝐿

)

𝒖𝑑𝛥𝑡, if ‖𝒙 − 𝒙𝑑‖ < 𝑟𝑑 + 𝐿
𝒙, otherwise

(20)

where 𝒙 is the node position, 𝒙𝑑 is the droplet position, 𝑟𝑑 is the droplet
radius, 𝐿 is the maximal from where a node can move, its value has
been set to 𝐿 = 1.5𝑟𝑑 , and 𝒖𝑑 is the droplet velocity. The node velocity
is taken into account in the material derivative in the conservation
equations using the Arbitrary Lagrangian-Eulerian (ALE) framework,
d∙ 𝜕∙

d𝑡 = 𝜕 𝑡 + (𝒖 − 𝒖𝒎) ⋅ 𝛁∙ (21)

9 
where 𝒖 is the fluid velocity, 𝒖𝒎 is the mesh velocity. The mesh velocity
is integrated explicitly in the time integration scheme, which leads to a
non-conservative ALE method. To avoid mesh distortion, the domain is
remeshed every 25 time steps, equivalent to every 0.0125 s. GMSH has
been used as the mesh generator. At this rate, remeshing has no impact
on the computational cost which is dominated by the contact dynamics
and the linear system resolution. Once the domain has been remeshed,
all the fluid degree of freedom are interpolated from the previous mesh
to the new one.
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Fig. 10. Droplet representation. The motion of the droplet is balanced by its weight 𝑚𝒈, the force exerted by the particles 𝑭 𝒑 and the force exerted by the surrounding fluid 𝑭 𝒇 .
Due to the temperature gradient, the droplet is subject to a heat flux 𝑄𝑓 from the surrounding fluid and a heat flux 𝑄𝑝 from the particles. The net heat transfer is used to vaporise
the droplet.
4.3. One droplet, three regimes

As briefly detailed above, when the droplet falls into the granular
medium, three regimes are obtained depending on the initial temper-
ature of the granular bed. These three regimes are characterised by
the ability of the droplet to fluidise the granular medium: (i) at low
temperatures, the droplet cannot fluidise on a long time, (ii) at inter-
mediate temperatures, the droplet digs, and (iii) at high temperatures,
the droplet remains at the top layers of the granular bed.

Fig. 12 illustrates the final depth reached by the droplet for different
temperatures ranging between 300 and 600 ◦C. Three regimes are
found. In the first regime, for temperatures below 350 ◦C, the droplet
crashes into the granular medium without being able to fluidise its
surrounding environment. The depth of the droplet is then limited to
the depth of the initial cavity, and the droplet does not hollow out.
Consequently, the droplet vapourizes at the surface of the granular
bed without ejections. On the other hand, at the highest temperatures,
one expects a large and violent ejection of grains since the production
of vapour increases with the temperature of the bed. However, we
observe that below the droplet, the grains are ejected but because the
vapour gap is large, the grains reorganise below the droplet before the
droplet can take their place. The intermediate regime is observed for
temperatures between 350 and 500 ◦C. In this regime, vapour ejection
is sufficient to locally fluidise the granular medium without stopping
the droplet from falling. Indeed, the grains below the droplet do not
have time to reorganise before the droplet takes their place.

Regarding the change of temperature produced by the passage of
the droplet, in Fig. 12, the colour of the grains is related to their
temperature (see colour bar). The area cooled down by the droplet can
therefore be observed. Remarkably, even if the droplet does not dig
deep, the temperature is modified on a range equivalent to at least one
droplet diameter, see 𝑇 = 500 ◦C for example.

The droplet depth evolution, namely the depth ℎ reached by the
droplet normalised by its diameter as a function of dimensionless time,
is shown in Fig. 13 and this, for four initial temperatures of the bed.
Dimensionless time is defined as the free fall time for the droplet
to travel its radius. We observe the same behaviour during the first
second. The droplet manages to penetrate the first layers of grains
10 
with the same apparent speed. Then, according to the temperature, the
droplet speed decreases before stopping at the maximum depth that
depends on the considered temperature. Note the peculiar behaviours
at 500 and 600 ◦C for which the droplet bounces back upwards. This is
due to the reorganisation of the grains below the droplet. The vapour
gap is large enough to allow the vapour to escape without entraining
grains. The grains move and reorganise provoking the local collapse
of the chimney. The droplet then goes up. On the other hand, when
the droplet digs, it can reach depths 10 times its initial radius. The
maximum depth is reached at a temperature of 400 ◦C.

Fig. 14 illustrates the evolution of the dimensionless falling velocity
with respect to dimensionless time for the same four temperatures of
Fig. 13. As observed on the trajectories, the starting speeds are of the
same order of magnitude whatever the temperature of the granular
bed. The speed of fall decreases as a function of time as the impact
of vaporisation becomes more and more important as the droplet loses
mass. The third regime is characterised by temperatures above 500 ◦C.
In this case, the droplet is considerably slowed down by the ejection of
steam, even though the grains are highly fluidised. The droplet starts
to bounce onto the granular bed and rises back to the surface.

The dependence of the speed with the temperature is not
monotonous. If we measure the speed at 𝑡 = 2 s, the speed increases
with the temperature until 𝑇 = 400 ◦C before decreasing. The speed for
the first and third regime is roughly zero as the droplet cannot dig. The
maximal speed and depth is found for the intermediate temperature,
namely when 𝑇 = 400 ◦C.

Comparing the simulations to the experiments, we can see that the
major features are fully reproduced by the simulations: (i) The three
regimes are found, two non-digging and one digging regime, (ii) The
depth is found to increase with time before stopping at a given depth
that depends on the temperature, (iii) the digging speed is maximum
at an intermediate temperature, and (iv) the reached depths depend on
the temperature and a maximum of the digging depth is found when
T = 400 ◦C. This is what is observed in the quasi-2D experiments. The
bounce back of the droplet is however not observed in the experiments.
Another difference with the experiments is that the droplet takes some
time to cross the interface before showing the constant digging speed
regimes. This difference with the simulations is attributed to the large
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Fig. 11. Numerical procedure.
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thermal gradients that are found along the first layers of grains in
he experiments. This is due to radiation and heat exchange with the
tmosphere that decrease the temperature of the first layers compared
o the bulk. This explains the difference with the numerical simulations
or which the temperature of the grains is more homogeneous. As
 consequence, the droplet experiences some difficulties to cross the
nterface in the experiments.

In the experiments, as soon as the droplet is at a depth larger
han its diameter, the droplet digs with a constant speed. That is

less marked in the numerical simulations. Indeed, the difference is
probably due to the fact that the simulations are pure 2D and to the fact
that experiments are quasi-2D. The ejection of the grains is not eased
y the 2D constraints since the grains organise along very compact
onfigurations. Finally, we cannot reject the influence of the border in
he experimental set-up: the front side is made of sapphire and the rear

side of copper. This friction is consequently not capture in the model.
As suggested by Fig. 12, fluidisation of the granular medium pro-

motes heat transfer between the droplet and the granular medium.
This increase can be seen in the average temperature of granular
bed over time, which can be observed in Fig. 15. The temperature

as normalised in order to be compared with the four considered
starting temperature. At 400 ◦C, the temperature decreases is the
most efficient because the droplet goes the deepest interacting with

ore grains. Generally speaking, in the intermediate temperatures, the
roplet motion is characterised by a prolonged period of fluidisation,
ncreasing the cooling of the grains. In addition, the ejection of grains
 w

11 
into the chimney allows the droplet to cool grains that are initially
deeper and still hot. The third regime does not follow this behaviour.
Indeed, the reorganisation of the granular medium before the droplet
alls leads to weaker interaction between the droplet and the granular
edium because the temperature differences are smaller. The heat

ransfer is localised at the first layers of the granular material, the
eat being conveyed to the droplet thanks to the contact network
etween the grains. In all regimes, a screening effect is observed as
he droplet becomes saturated with grains. Heat is then transferred less
ffectively between the droplet and the granular medium. This effect

is particularly visible in Fig. 16 indicating an estimate of the instant
lifetime of the droplet over time.

The instant lifetime is calculated as 𝑚(𝑡)∕𝑚̇(𝑡) and reported in Fig. 16.
This quantity allows to track the effective heat transfer as a function
of time. In the initial stages of the fall, the grains passing through
the droplet are rapidly ejected into the chimney and do not produce
any screening effect. The lifetime is then of the order of ten seconds.
Subsequently, the droplet becomes saturated with grains, the medium
containing the droplet is then described as a wet medium and the heat
is transferred less effectively. The lifetime increases sharply, reaching
up to several minutes. The heat transfer is observed to be maximum at
𝑇 = 400 ◦C which is coherent with the previous observations. As soon
as the droplet sits and does not move, the heat transfer decreases and a
plateau is observed. The heat transfer can then only proceed along the
ontact network and along the exchange with the gas. This contrasts

ith the moving droplet whose environment is at a larger temperature.
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Fig. 12. Final depth reached by the droplet at different initial temperature of the granular bed. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
Fig. 13. Droplet depth evolution. Depth is made dimensionless using the initial droplet
diameter as a characteristic length. Using this length and the gravitational acceleration,
the characteristic time is build to make the evolution time dimensionless.

4.4. Spontaneous digging at 400 ◦C

Since transfer is maximal at a temperature of 400 ◦C, the droplet
was carefully monitored at this temperature. Fig. 9 shows the droplet
penetration into the granular bed at different snapshots for a granular
bed temperature of 400 ◦C at 8 different times (see Legend). The
chimney starts building already after the first seconds. The cone of
cooling is clearly visible at 𝑡 = 3 s and even some bubbles of vapour
can be seen.

As the droplet interacts with the granular medium, a thick layer of
vapour is produced. The droplet is strongly slowed down by the force of
the steam and this ejection allows the grains to be fluidised around the
droplet. Finally, the grains are ejected in the wake of the droplet, and
the droplet is able to take the place of the ejected grains and continues
to dig. The different forces acting on the droplet can be isolated and
measured as a function of time. The weight 𝑚𝑔, the fluid–particle force
𝐹𝑓 , the particle–fluid force 𝐹𝑝, and the resulting force 𝐹𝑛𝑒𝑡 are presented
as a function of time in Fig. 17. In parallel, one can also follow the
evolution of the heat exchange 𝑄 , 𝑄 and 𝑄 in Fig. 18. The forces
𝑝 𝑓 𝑛𝑒𝑡

12 
Fig. 14. Droplet vertical velocity evolution Characteristic droplet velocity and the
droplet diameter are used to define the dimensionless falling velocity and the dimen-
sionless time.

have been scaled by the initial weight of the droplet and the heat fluxes
by the initial conductive flux at the droplet interface.

When the droplet fully penetrates the granular medium, the average
forces applied by the vapour and the grains balance the weight of
the droplet. The droplet then reaches its terminal velocity. Particles
ejected in the wake of the fall form a chimney which is maintained by
the fluidisation of the grains. As the droplet falls, the particles ejected
into the chimney fall back down and pass through the droplet, cooling
the granular medium. This leads to a reduction in heat flow in close
proximity to the droplet as seen in Fig. 18. Fluidisation of the granular
medium is then reduce. Once fluidisation stops, the droplet absorbs
the grains through its front. The droplet is then slowed down by the
captured grains, and the thrust force of the vapour is insufficient to
keep the droplet levitating. Digging stops and the droplet comes to rest.

As the droplet falls, it only cools the grains in its wake. The deeper
the droplet, the longer the chimney and the grains within it are cooled.
The temperature under the droplet changes only slightly during the
fall. Fig. 19 shows the vertical average particle temperature profile.
Grains in the chimney are cooled by the droplet without reaching
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Fig. 15. Mean particle temperature evolution. The dimensionless temperature mea-
sures the particle temperature relative to its initial difference with the droplet. The
characteristic time is obtained by considering a free-fall of the droplet using its diameter
as the characteristic length.

Fig. 16. Droplet instantaneous lifetime, which is estimated as the time required for the
roplet to evaporates its mass based on the instantaneous vaporisation rate. The time
cale is made dimensionless using the time taken for the droplet to fall of its radius in
 free-fall situation.

the vaporisation temperature. As the droplet gathers grains in itself,
they reach vaporisation temperature. Then, they are ejected into the
chimney where their temperature increases. The resulting temperatures
reach half their initial temperature. This effect can be seen in Fig. 20
which shows the horizontal average particle temperature profile at a
pecific height.

5. Conclusion

This paper presents a multiphysics model that describes the flow
f grains in a fluid including heat transfer. To accurately represent
his flow, a volume averaged stabilised finite element method has

been coupled with a non-smooth discrete element method. Particular
emphasis is placed on modelling the heat exchange between the grains
and the fluid. The averaged fluid description requires the introduction
of constitutive laws to represent the transfer of momentum and heat
etween the grains and the fluid. A correlation equation, Eq. (13), for
rain assemblies has been introduced to quantify heat transfer, based
13 
Fig. 17. Force contribution evolution to the droplet motion.

Fig. 18. Heat transfer evolution over the droplet.

on the Reynolds analogy [30] and the Di Felice pore function [31].
The proposed law was validated against experimental measurements
of heated granular beds taken from the literature [20]. The implemen-
tation of the model was then validated on the study of a bubbling
fluidised granular bed by reproducing Patil’s experiment [21].

The two-dimensional model was then applied to the study of the
spontaneous digging of a droplet of water in a hot granular bed.
Depending on the temperature, the vaporisation of the droplet causes
the granular bed to fluidise locally and dig into the granular bed. The
bsorption of grains within the droplet is achieved by representing the
roplet as a mixture of water and grains.

Depending on the temperature of the granular bed, three regimes
were observed as expected from the experiment. The first regime
is characterised by no digging, the vaporisation of the water is not
sufficient to fluidise the granular bed and the water droplet remains on
the surface. The second regime, obtained at intermediate temperatures,
is characterised by deeper digging. The water vaporisation is sufficient

to fluidise the granular bed while allowing the droplet to fall. The
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Fig. 19. Vertical particle temperature profile at different snapshots. The alternating
greys cells indicates the cell decomposition on which the averaging process is per-
formed.

Fig. 20. Horizontal particle temperature profile in a given cell highlighted in green.
(For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

droplet takes the place of the grains and penetrates into the granular
bed. At high temperatures, the third regime is reached where the
droplet returns to the surface. Vaporisation slows the droplet’s fall,
allowing the granular bed to reorganise around the droplet, preventing
it from sinking. The model greatly simplifies the experiment as the
local fluidisation of a granular bed is controlled by the cohesion of
the grains. This parameter has a significant effect as it limits the
mobility of the grains, which can favour digging by preventing the
grains from reorganising around the droplet. However, the numerical
model reproduces the main trends of the experiment, namely digging,
local fluidisation and chimney formation. The bidimensional numerical
experiment simplifies the three-dimensional experiment. However, as
grains are constrained to move in the plane, given the same force, it
is more difficult to fluidise the bi-dimensional granular bed than the
three-dimensional one. This is why the droplet is able to dig at higher
14 
temperatures as more energy is needed to fluidise the bed. Moreover,
the range of temperatures for which the droplet digs is narrower in the
two-dimensional case than in the three-dimensional case.

The vaporisation of the droplet is the main source of heat transfer in
the system and enables a local fluidisation in the wake of the fall. When
the grains are absorbed by the droplet, a screening effect is observed
which reduces the heat transfer. However, the heat contributed by
the retained grains does not account for the majority of the heat ex-
changed with the fluid. The fluid remains hot through the granular bed.
Evaporation reduces the surface area of the droplet, thereby reducing
vaporisation. When the vaporisation is no longer sufficient to eject the
grains towards the chimney, the droplet stops falling. It then fills up
with grains at the front and stops. The droplet becomes saturated and
can no longer transfer heat to the outside. Its lifetime then increases
considerably.

Future work will include investigating the effect of cohesion and
the effect of grain size on digging time. Grain size controls the flu-
idisation of the granular bed as smaller grain systems can be more
easily disrupted by fluid injection. This future work will provide a
better understanding of the phenomenon of spontaneous digging and
enable us to control it more effectively. The effect of droplet shape
on digging will also be investigated as the droplet tends to deform to
minimise its surface energy. This deformation can affect the digging
during the crossing of the granular interface. Extending the model
to three dimensions is a natural step in studying the phenomenon of
digging, which reduces the geometric constraints of the assembly.
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Appendix A. Spatial discretisation

In this appendix, the discretised weak form of the volume averaged
Navier–Stokes equations is presented within the finite element method
framework. Then, the smooth grain representation used for the fluid is
detailed, i.e. the void fraction and the solid velocity computations.
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Discretised weak form

The volume averaged Navier–Stokes equations are discretised using
he finite element method on an unstructured grid. The test solu-

tion spaces for the velocity, pressure and temperature are respectively
enoted by  ℎ, ℎ and  ℎ.

𝒖 ≈ 𝒖ℎ =
𝑛
∑

𝑖
𝑼 𝑖𝜙𝑖, 𝒖ℎ ∈  ℎ (A.1)

𝑝 ≈ 𝑝ℎ =
𝑛
∑

𝑖
𝑷 𝑖𝜙𝑖, 𝑝ℎ ∈ ℎ (A.2)

𝑇 ≈ 𝑇 ℎ =
𝑛
∑

𝑖
𝑻 𝑖𝜙𝑖, 𝑇 ℎ ∈  ℎ (A.3)

where 𝑛 refers to the number of nodes as linear equal-order interpo-
lation functions are used for all the fields. This choice is motivated to
keep the numerical efficiency of the multiscale model. However, the
Brezzi-Babuska condition is not satisfied and the discretisation leads
to a singular discrete matrix. In order to restore the rank deficiency,
a pressure stabilisation/Petrov–Galerkin (PSPG) term is added to the
continuity equation.

The continuous Galerkin method can also leads to difficulty when
pplied to a convective dominated problem as the convection term
s not symmetric positive definite. Therefore, the best approximation
roperty is not satisfied and the solution may be oscillatory. In order
o limit this effect, the test functions are enriched with a stream-
ine upwind Petrov–Galerkin (SUPG) term. This term is added to the

momentum equation and the energy conservation. It is equivalent to
dding a numerical diffusivity in the flow direction.

These stabilisations have a major drawback, once they become
dominant, the accuracy of the solution is not guaranteed. Therefore,
the stabilisation parameters have to be carefully chosen. In the case of
the PSPG, the loss of incompressibility should be limited. To restrict
this effect, the least square incompressibility constraint is used. It is
convenient to describe these stabilisations as residue-based stabilisation
methods where

𝑅𝑝 =
𝜕 𝜖
𝜕 𝑡 + 𝛁 ⋅ (𝜖𝒖) (A.4)

𝑹𝒖 = 𝜖 𝜌 d𝒖
d𝑡 − 𝛁 ⋅ 𝝈 − 𝒇 𝑝 +

(

1 + 𝛽 (𝑇 − 𝑇𝑅
))

𝜖 𝜌𝒈 (A.5)

𝑅𝑇 = 𝜖 𝜌𝑐 d𝑇
d𝑡 + 𝛁 ⋅ 𝒒 − 𝑞𝑝 (A.6)

are the residue of the conservation equations.
The stabilised finite element formulation of the volume averaged

Navier–Stokes equations is to find (𝒖ℎ, 𝑝ℎ, 𝑇 ℎ) ∈ ( ℎ × ℎ ×  ℎ) such
that ∀(𝒖̂ℎ, 𝑝̂ℎ, 𝑇̂ ℎ) ∈ (̂ ℎ

× ̂ℎ × ̂ ℎ)
⟨ 𝜕 𝜖
𝜕 𝑡 , 𝑝̂

ℎ
⟩

−
⟨

𝜖𝒖ℎ,∇𝑝̂ℎ
⟩

+ ⟨⟨𝜖𝒖ℎ, 𝑝̂ℎ𝒏⟩⟩
= −

∑

𝑒
𝜉𝑝

⟨

𝑹𝒖,∇𝑝̂ℎ
⟩

𝑒

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
PSPG

(A.7)

⟨

𝜖 𝜌d𝒖ℎ
d𝑡 + 𝛁𝑝ℎ −

(

1 + 𝛽 (𝑇 − 𝑇𝑅
))

𝜖 𝜌𝒈 − 𝒇 𝑝, 𝒖̂ℎ
⟩

+
⟨

𝜖 𝜂 (𝛁𝒖ℎ + 𝒖ℎ𝛁
)

,∇𝒖̂ℎ
⟩

− ⟨⟨𝜖 𝜂 (𝛁𝒖ℎ + 𝒖ℎ𝛁
)

, 𝒖̂ℎ ⋅ 𝒏⟩⟩

= −
∑

𝑒
𝜉𝑢

⟨

𝑹𝒖, 𝒖ℎ ⋅ 𝛁𝒖̂ℎ
⟩

𝑒

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
SUPG

−
∑

𝑒
𝜉𝑐

⟨

𝑅𝑝,∇ ⋅ 𝒖̂ℎ
⟩

𝑒

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
LSIC

(A.8)

⟨

𝜖 𝜌𝑐 d𝑇 ℎ
d𝑡 − 𝑞𝑝, 𝑇̂ ℎ

⟩

+
⟨

𝜖 𝑘𝛁𝑇 ℎ,∇𝒖̂ℎ⟩

− ⟨⟨𝜖 𝑘𝛁𝑇 , 𝒖̂ℎ ⋅ 𝒏⟩⟩
= −

∑

𝑒
𝜉𝑇

⟨

𝑅𝑇 , 𝒖ℎ ⋅ 𝛁𝑇̂ ℎ
⟩

𝑒

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(A.9)
SUPG 𝛾

15 
where ⟨⋅, ⋅⟩ and ⟨⟨⋅, ⋅⟩⟩ represents the inner products on the domain 𝛺
and its boundary 𝜕 𝛺 for which the outer normal is denoted by 𝒏. The
restriction 𝑒 indicates that the inner product is only performed on the
interior of the element 𝑒. The stabilisation parameters are given by

𝜉𝑐 = ℎ ‖𝒖ℎ‖min
(

ℎ𝜌‖𝒖ℎ‖
6𝜂

, 1
2

)

(A.10)

𝜉𝑢 = 𝜉𝑝 =

[

( 2
𝛥𝑡

)2
+
(

‖𝒖ℎ‖
ℎ

)2

+
(

4𝜂
𝜌ℎ2

)2
]−1∕2

(A.11)

𝜉𝑇 =

[

( 2
𝛥𝑡

)2
+
(

‖𝒖ℎ‖
ℎ

)2

+
(

4𝑘
𝜌𝑐 ℎ2

)2
]−1∕2

(A.12)

where ℎ is the element characteristic length. To estimate the rate of
fluid volume fraction, the divergence of the mean solid velocity is used
as both terms are related by the continuity equation,
𝜕 𝜖
𝜕 𝑡 = 𝛁 ⋅ [𝜙𝒗] (A.13)

where 𝜙 is the volume fraction of the solid phase and 𝒗 the solid
elocity. By using the same semi-implicit scheme employed in the
omentum conservation to predict the solid velocity, the model is able

o compute the rate of porosity at low fluid volume fraction. Details on
he discretisation of the solid velocity are given in the next section.

A smooth grains discretisation

The volume averaged Navier–Stokes equations assume the fluid
volume fraction, i.e. the void fraction, to be continuous. However, the
discrete representation of the grains is not continuous. To overcome this
issue, the volume of each grains must be distributed over the mesh. The
void fraction at the node 𝑖 is then given by

𝜖𝑖 = 1 − ∫𝛺𝐻𝑝(𝒙)𝜙𝑖(𝒙)d𝒙
∫𝛺 𝜙𝑖(𝒙)d𝒙

(A.14)

where 𝐻𝑝(𝒙) is the sum of the Heaviside functions associated to grains
nd 𝜙𝑖(𝒙) the shape function associated with the node 𝑖. As grains
re assumed to be spherical or discs in the two-dimensional case, the
umerator integral can be decomposed into sub-volumes based using
he elements facets to cut the grain [44,45]. Then, to estimate the
ntegral over the overlap, the centroid of each sub-volume is used as
he integration point. This choice maintains the volume of the grain
nd allows the mesh size to be of the same order as the grain size
ithout the need to introduce a additional kernel. Fig. A.21 illustrates

he overlap cells generated on the mesh to represent the grains. In the
ass conservation equation, the averaged solid velocity is computed

similarly to the void fraction, as it is also assumes to be continuous
field,

(𝜙𝒗)𝑖 =
∫𝛺

∑

𝑗∈ 𝐻𝑗 (𝒙)𝒗𝑗𝜙𝑖(𝒙)d𝒙
∫𝛺 𝜙𝑖(𝒙)d𝒙

(A.15)

where  is the set of particles, 𝐻𝑗 (𝒙) the Heaviside function associated
to the particle 𝑗 and 𝒗𝑗 its velocity. The fluid-grain interaction force is
omputed locally for each grain at the centroid of each sub-volume.

A scheme for zero void fraction

The exact computation of the void fraction allows for zero void
fraction in cells. In this case, two critical issues arise:

∙ the governing equations do not introduce any pressure dependency,

∙ the drag parametrisation may result in arbitrary large values.

If a naive explicit coupling is considered between the fluid and the
olid phase, the governing equations, Eqs. (1)–(2), for zero void fraction

reduces to find 𝒖 an 𝑝 such that
𝛁 ⋅ 𝒗𝑛 = 0,
𝑛 ( 𝑛 𝑛+1) (A.16)
𝒗 − 𝒖 = 𝟎,
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Fig. A.21. Representation of the grains on the mesh. On the right, a grain is cut into sub-volumes by the mesh facets. On the left, the volume of each sub-volume is distributed
over the mesh nodes to compute the void fraction. The integration point is the centroid of each sub-volume.
where 𝒗 is the solid mean velocity and 𝛾 is the drag force coefficient,
𝒖 is the fluid velocity and 𝑝 the pressure field. If the numerical solid
velocity field over the mesh is strictly divergence-free, the system
becomes under-determined. Otherwise, the mass conservation is never
satisfied and the system is impossible. To address these problems, a
closure relation is needed between the solid velocity and the pressure
field. This is achieved through a semi-implicit estimation of the solid
velocity field.

Semi-implicit coupling scheme. Our approach involves predicting the
solid velocity field to couple it with the pressure field. The system
is
𝛁 ⋅ 𝒗∗ = 0,
𝛾𝑛

(

𝒗∗ − 𝒖𝑛+1
)

= 0, (A.17)

The superscripts 𝑛 and 𝑛+ 1 indicate the time level and ∗ indicates the
predicted value. Using grain dynamics, Eq. (6), the solid velocity can
be predicted [12]

𝑚
𝒗∗𝑖 − 𝒗𝑛𝑖
𝛥𝑡

= 𝑭 𝑐 + 𝑚𝒈 − 𝑉𝑖𝛁𝑝𝑛+1 + 𝛾𝑛𝑖
(

𝒖𝑛+1𝑖 − 𝒗∗𝑖
)

(A.18)

where 𝑚𝑖 is the particle mass, 𝛥𝑡 is the time step, 𝒖 is the fluid velocity
at the particle position, 𝒈 is the gravity vector, 𝑭 𝑐 is the contact force,
𝑉𝑖 is the particle volume, and 𝑝 is the pressure field. By isolating the
predicate 𝒗∗𝑖 , the solid velocity is obtained depending on the pressure
gradient

𝒗∗𝑖 =
(𝑚𝑖
𝛥𝑡

+ 𝛾𝑛𝑖
)−1 (𝑚𝑖

𝛥𝑡
𝒗𝑛𝑖 + 𝛾

𝑛
𝑖 𝒖

𝑛+1
𝑖 + 𝑚𝑖𝒈 + 𝑭 𝑐 − 𝑉𝑖𝛁𝑝𝑛+1

)

. (A.19)

A smooth representation is built over the mesh, Eq. (A.15),

𝒗∗𝑖
(A.15)
←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝒗∗ (A.20)

To emphasise the pressure dependency, the solid velocity field is de-
composed into a pressure gradient term and an extra term, denoted 𝑭 ,
which depends on the fluid velocity, external forces and the previous
solid velocity,

𝒗∗ = 𝐶(𝒙)𝛁𝑝𝑛+1 + 𝑭 (𝒙, 𝒖𝑛+1, 𝒗𝑛, 𝒈,𝑭 𝑐 ). (A.21)

Once the divergence is taken, a pressure diffusive term is obtained.

Bound on the drag coefficient. As noted, the drag coefficient can lead
to unphysical results since it is a function of the void fraction and may
approach infinity as the void fraction approaches zero. To prevent this,
the void fraction is capped at a small value of 10−8.
16 
Appendix B. Non-smooth contact dynamics

Non-smooth contact dynamics is used to model the particle–particle
and particle–wall interactions. The dynamics is written in the contact
basis where the relative velocity between the two objects is denoted 𝐯
and the contact basis generated by the normal vector 𝐧 to the tangential
surface at the point of contact. Each collision is resolved by finding the
impulse 𝐩 required to prevent any overlapping at the end of the shock,
known as the Signorini condition [46]. As for the tangential reaction,
it is modelled by Coulomb’s friction law. Each contact must satisfy the
following conditions,
𝐯+ − 𝐯− = 𝐖 𝐩 Cinematic condition
(

𝐯+ ⋅ 𝐧
)

(𝐩 ⋅ 𝐧) = 0, Signorini condition
‖𝐩 − (𝐩 ⋅ 𝐧)𝐧‖ ≤ 𝜇 |𝐩 ⋅ 𝐧| , Coulomb’s friction law

(B.1)

where 𝐯− and 𝐯+ are the relative velocities before and after the collision
and 𝜇 is the coefficient of friction. The velocity response to an impulse
at the contact point is described by the Delassus operator 𝐖. This
problem is solved for each contact occurring in the system during a time
step 𝛥𝑡. To speed up the convergence of the global problem, the contact
network is solved iteratively using a Gauss–Seidel procedure [47]. The
resulting contact force density applied to particle 𝑖 by the contact
network, denoted 𝒇 𝑐 , is obtained as

𝒇 𝑐 =
1
𝑉

∑

𝑗∈
𝐩𝑖𝑗𝛥𝑡 (B.2)

where 𝑉 is the particle volume,  is the set of particles and 𝐩𝑖𝑗 is the
contact impulse between the 𝑖, 𝑗 particles.

Heat exchange between particles is assumed to be only due to
contact conduction, as convection is carried out by the fluid phase and
radiation is neglected. Contact conduction depends on the properties of
the materials and the force keeping them in contact. At first approxima-
tion, the contact heat transfers through the contact is dependent on the
exchange surface. However, the contacts dynamics assumed this surface
to be zero. An effective contact surface is estimated by the normal
reaction of the contact, denoted 𝑟𝑛, assuming elastic particles and
smooth surfaces. The contact reaction is related to the contact impulse
by the following relation, 𝑟𝑛𝛥𝑡 = 𝐩 ⋅ 𝒏. The net contact conduction
density 𝑞𝑐 submitted to the grain 𝑖 and the contact conductance between
two grains 𝑖, 𝑗, denoted 𝐻𝑖𝑗 are obtained as [48–50]

𝑞𝑐 =
1
𝑉

∑

𝑗∈
𝐻𝑖𝑗 (𝑇𝑖 − 𝑇𝑗 ), 𝐻𝑖𝑗 = 4𝑘𝑠

(

𝑟𝑛 𝑑∗

2𝜋 𝐿𝐸∗

)1∕4

(B.3)

where 𝑘𝑠 is the harmonic mean of the solid heat conductivity, 𝑟𝑛 is the
normal contact reaction between the two grains 𝑖, 𝑗, 𝐿 is the cylinder
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length, the effective Young’s modulus 𝐸∗, the effective contact diameter
𝑑∗ chosen as

1
𝑘𝑠

= 2
(

1
𝑘𝑖

+ 1
𝑘𝑗

)

, 1
𝐸∗ =

1 − 𝜈2𝑖
𝐸𝑖

+
1 − 𝜈2𝑗
𝐸𝑗

, 1
𝑑∗

= 1
𝑑𝑖

+ 1
𝑑𝑗

(B.4)

where 𝜈𝑖 is the Poisson’s ratio associated with grain 𝑖. A boundary
contact is assumed to behave like a particle with an infinite radius and
an infinite Young’s modulus.

Data availability

Data will be made available on request.
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