[en] Southern corn leaf blight (SCLB) caused by Bipolaris maydis is an important foliar disease of maize. In this study, a nematode-symbiotic bacterium Xenorhabdus budapestensis strain C72 was identified with remarkable inhibiting effect on mycelial growth and spore germination of B. maydis. The in vitro assay revealed that C72 cell-free culture media (CFCM) with thermostability exhibited broad-spectrum antifungal activities against other several important plant pathogenic fungi. The early colonization of B. maydis were significantly impaired by CFCM treatment under phytotron condition. This antagonism is likely to be the main contributor to the highly efficient plant protection of 40% (v/v) CFCM treatment against B. maydis, and the relative control effect reached to 59.15% and 77.96% in greenhouse and field experiments, which was comparable to the effect of fungicides. Moreover, we found that extracellular enzymes secreted by symbiotic bacterium may be one of the reasons for the antifungal potential of C72. Beside direct antagonistic effects provided by the bacterium, defense related genes were induced in maize after CFCM treatment. In summary, this study reported the first systematic evaluation of the effect of X. budapestensis C72 in controlling SCLB and exploration of its mode of action, then indicating that entomopathogenic bacteria have the potential to become a new and efficient biological control resource for plant fungal disease management.
Disciplines :
Entomology & pest control
Author, co-author :
Li, Bo; State Key Laboratory for Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China ; Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
Kong, Lingxiao; Integrated Pest Management Center of Hebei Province, Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding, China
Qiu, Dewen; State Key Laboratory for Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
Francis, Frédéric ; Université de Liège - ULiège > TERRA Research Centre > Gestion durable des bio-agresseurs
Wang, Shuangchao; State Key Laboratory for Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
Language :
English
Title :
Biocontrol potential and mode of action of entomopathogenic bacteria Xenorhabdus budapestensis C72 against Bipolaris maydis
NSCF - National Natural Science Foundation of China CAAS - Chinese Academy of Agricultural Sciences
Funding number :
2060302-051; 31901939; 2018120301
Funding text :
This work was financially supported by grants from the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences (Grant No. CAAS-2060302-051 ), the National Natural Science Foundation of China (Grant No. 31901939 ) and the Program of Finance Department of Hebei Province in China (Grant No. 2018120301 ).
Abdel-Rahim, I.R., Abo-Elyousr, K.A.M., Using of endophytic Saccharomycopsis fibuligera and thyme oil for management of gray mold rot of guava fruits. Biol. Control 110 (2017), 124–131, 10.1016/j.biocontrol.2017.04.014.
Böszörményi, E., Érsek, T., Fodor, A., Fodor, A.M., Földes, L.S., Hevesi, M., Hogan, J.S., Katona, Z., Klein, M.G., Kormány, A., Pekár, S., Szentirmai, A., Sztaricskai, F., Taylor, R.A.J., Isolation and activity of Xenorhabdus antimicrobial compounds against the plant pathogens Erwinia amylovora and Phytophthora nicotianae. J. Appl. Microbiol. 107 (2009), 746–759, 10.1111/j.1365-2672.2009.04249.x.
Burgettiné Böszörményi, E., Barcs, I., Domján, G., Bélafiné Bakó, K., Fodor, A., Makrai, L., Vozik, D., A Xenorhabdus budapestensis entomopatogén baktérium sejtmentes fermentlevének és tisztítottfehérje-frakciójának antimikrobiális hatása néhány zoonoticus baktériumra. Orv. Hetil. 156 (2015), 1782–1786, 10.1556/650.2015.30274.
Chen, G., Zhang, Y., Li, J., Dunphy, G.B., Punja, Z.K., Webster, J.M., Chitinase activity of Xenorhabdus and Photorhabdus species, bacterial associates of entomopathogenic nematodes. J. Invertebr. Pathol. 68 (1996), 101–108, 10.1006/jipa.1996.0066.
Cherkupally, R., Amballa, H., Bhoomi, N.R., In vitro screening for enzymatic activity of Trichoderma species for biocontrol potential. Ann. Plant Sci., 6, 2017, 1784, 10.21746/aps.2017.6.11.11.
Chitra, P., Sujatha, K., Jeyasankar, A., Entomopathogenic nematode as a biocontrol agent – Recent trends – A Review. Int. J. Adv. Res. Biol. Sci. 4 (2017), 9–20, 10.22192/ijarbs.2017.04.01.002.
Compant, S., Brader, G., Muzammil, S., Sessitsch, A., Lebrihi, A., Mathieu, F., Use of beneficial bacteria and their secondary metabolites to control grapevine pathogen diseases. BioControl, 2013, 10.1007/s10526-012-9479-6.
Dai, Y., Gan, L., Ruan, H., Shi, N., Du, Y., Chen, F., Yang, X., Characterization of natural isolates of Bipolaris maydis associated with mating types, genetic diversity, and pathogenicity in Fujian Province. China. Plant Dis. 104 (2020), 323–329, 10.1094/PDIS-03-19-0650-RE.
Dai, Y., Gan, L., Ruan, H., Shi, N., Du, Y., Liao, L., Wei, Z., Teng, Z., Chen, F., Yang, X., Sensitivity of Cochliobolus heterostrophus to three demethylation inhibitor fungicides, propiconazole, diniconazole and prochloraz, and their efficacy against southern corn leaf blight in Fujian Province, China. Eur. J. Plant Pathol. 152 (2018), 447–459, 10.1007/s10658-018-1490-z.
Di Francesco, A., Martini, C., Mari, M., Biological control of postharvest diseases by microbial antagonists: how many mechanisms of action?. Eur. J. Plant Pathol. 145 (2016), 711–717, 10.1007/s10658-016-0867-0.
Dreyer, J., Malan, A.P., Dicks, L.M.T., Bacteria of the genus Xenorhabdus, a novel source of bioactive compounds. Front. Microbiol., 9, 2018, 3177, 10.3389/fmicb.2018.03177.
Dreyer, J., Rautenbach, M., Booysen, E., van Staden, A.D., Deane, S.M., Dicks, L.M.T., Xenorhabdus khoisanae SB10 produces Lys-rich PAX lipopeptides and a Xenocoumacin in its antimicrobial complex. BMC Microbiol., 19, 2019, 132, 10.1186/s12866-019-1503-x.
Ehlers, R.-U., Mass production of entomopathogenic nematodes for plant protection. Appl. Microbiol. Biotechnol. 56 (2001), 623–633, 10.1007/s002530100711.
Eljounaidi, K., Lee, S.K., Bae, H., Bacterial endophytes as potential biocontrol agents of vascular wilt diseases – Review and future prospects. Biol. Control 103 (2016), 62–68, 10.1016/j.biocontrol.2016.07.013.
Ferrari, A.R., Gaber, Y., Fraaije, M.W., A fast, sensitive and easy colorimetric assay for chitinase and cellulase activity detection. Biotechnol. Biofuels, 7, 2014, 37, 10.1186/1754-6834-7-37.
Fuchs, S.W., Grundmann, F., Kurz, M., Kaiser, M., Bode, H.B., Fabclavines: bioactive peptide-polyketide-polyamino hybrids from Xenorhabdus. ChemBioChem 15 (2014), 512–516, 10.1002/cbic.201300802.
Haas, D., Défago, G., Biological control of soil-borne pathogens by Fluorescent pseudomonads. Nat. Rev. Microbiol. 3 (2005), 307–319, 10.1038/nrmicro1129.
Han, X., Zhao, H., Ren, W., Lv, C., Chen, C., Resistance risk assessment for fludioxonil in Bipolaris maydis. Pestic. Biochem. Physiol. 139 (2017), 32–39, 10.1016/j.pestbp.2017.04.006.
Huang, C.-J., Yang, K.-H., Liu, Y.-H., Lin, Y.-J., Chen, C.-Y., Suppression of southern corn leaf blight by a plant growth-promoting rhizobacterium Bacillus cereus C1L. Ann. Appl. Biol. 157 (2010), 45–53, 10.1111/j.1744-7348.2010.00408.x.
Keswani, C., Singh, H.B., Hermosa, R., García-Estrada, C., Caradus, J., He, Y., Mezaache-Aichour, S., Glare, T.R., Borriss, R., Vinale, F., Sansinenea, E., Antimicrobial secondary metabolites from agriculturally important fungi as next biocontrol agents. Appl. Microbiol. Biotechnol. 103 (2019), 9287–9303, 10.1007/s00253-019-10209-2.
Kim, D.S., Hwang, B.K., An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens. J. Exp. Bot. 65 (2014), 2295–2306, 10.1093/jxb/eru109.
Kinkema, M., Fan, W., Dong, X., Nuclear Localization of NPR1 Is Required for Activation of PR Gene Expression. Plant Cell 12 (2000), 2339–2350, 10.1105/tpc.12.12.2339.
Köhl, J., Kolnaar, R., Ravensberg, W.J., 2019. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front. Plant Sci. 10, Article 845. 10.3389/fpls.2019.00845.
Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35 (2018), 1547–1549, 10.1093/molbev/msy096.
Le Mire, G., Nguyen, M.L., Fassotte, B., Du Jardin, P., Verheggen, F., Delaplace, P., Haissam Jijakli, M., 2016. Implementing plant biostimulants and biocontrol strategies in the agroecological management of cultivated ecosystems. A review. Biotechnol. Agron. Soc. Environ. 20, 299–313. 10.25518/1780-4507.12717.
Ma, C.J., Cellulase elicitor induced accumulation of capsidiol in Capsicum annumm L. suspension cultures. Biotechnol. Lett. 30 (2008), 961–965, 10.1007/s10529-007-9624-y.
Ma, Y., Han, C., Chen, J., Li, H., He, K., Liu, A., Li, D., Fungal cellulase is an elicitor but its enzymatic activity is not required for its elicitor activity. Mol. Plant Pathol. 16 (2015), 14–26, 10.1111/mpp.12156.
Madbouly, A.K., Abo Elyousr, K.A.M., Ismail, I.M., Biocontrol of Monilinia fructigena, causal agent of brown rot of apple fruit, by using endophytic yeasts. Biol. Control, 144, 2020, 104239, 10.1016/j.biocontrol.2020.104239.
O'Brien, P.A., Biological control of plant diseases. Australas. Plant Pathol. 46 (2017), 293–304, 10.1007/s13313-017-0481-4.
Pliego, C., Ramos, C., de Vicente, A., Cazorla, F.M., Screening for candidate bacterial biocontrol agents against soilborne fungal plant pathogens. Plant Soil 340 (2011), 505–520, 10.1007/s11104-010-0615-8.
Ranum, P., Peña-Rosas, J.P., Garcia-Casal, M.N., Global maize production, utilization, and consumption. Ann. N. Y. Acad. Sci. 1312 (2014), 105–112, 10.1111/nyas.12396.
Raymaekers, K., Ponet, L., Holtappels, D., Berckmans, B., Cammue, B.P.A., Screening for novel biocontrol agents applicable in plant disease management – A review. Biol. Control, 144, 2020, 104240, 10.1016/j.biocontrol.2020.104240.
Rodriguez-Moreno, L., Ebert, M.K., Bolton, M.D., Thomma, B.P.H.J., Tools of the crook- infection strategies of fungal plant pathogens. Plant J., 2018, 10.1111/tpj.13810.
Schmittgen, T.D., Livak, K.J., Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3 (2008), 1101–1108, 10.1038/nprot.2008.73.
Shi, Y.-M., Bode, H.B., Chemical language and warfare of bacterial natural products in bacteria–nematode–insect interactions. Nat. Prod. Rep. 35 (2018), 309–335, 10.1039/C7NP00054E.
Tobias, N.J., Shi, Y.-M., Bode, H.B., Refining the natural product repertoire in entomopathogenic bacteria. Trends Microbiol. 26 (2018), 833–840, 10.1016/j.tim.2018.04.007.
Vozik, D., Bélafiné Bakó, K., Hevesi, M., Böszörményi, E., Fodor, A., 2015. Effectiveness of a peptide-rich Fraction from Xenorhabdus budapestensis culture against fire blight disease on apple blossoms. Not. Bot. Horti Agrobot. Cluj-Napoca 43, 547–553. 10.15835/nbha.43.2.9997.
Wang, X., Zhang, Y., Xu, X., Li, H., Wu, X., Zhang, S., Li, X., Evaluation of maize inbred lines currently used in Chinese breeding programs for resistance to six foliar diseases. Crop J. 2 (2014), 213–222, 10.1016/j.cj.2014.04.004.
Wu, Y., Zhang, D., Chu, J.Y., Boyle, P., Wang, Y., Brindle, I.D., De Luca, V., Després, C., The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep. 1 (2012), 639–647, 10.1016/j.celrep.2012.05.008.
Xi, X., Lu, X., Zhang, X., Bi, Y., Li, X., Yu, Z., Two novel cyclic depsipeptides Xenematides F and G from the entomopathogenic bacterium Xenorhabdus budapestensis. J. Antibiot. (Tokyo) 72 (2019), 736–743, 10.1038/s41429-019-0203-y.
Yoder, O.C., 1988. Cochliobolus heterostrophus. Cause of southern corn leaf blight, in: Sidhu, G.S. (Ed.), Advances in Plant Pathology. pp. 93–112. 10.1016/B978-0-12-033706-4.50009-8.
Zhang, X., Zhou, Y., Li, Y., Fu, X., Wang, Q., Screening and characterization of endophytic Bacillus for biocontrol of grapevine downy mildew. Crop Prot. 96 (2017), 173–179, 10.1016/j.cropro.2017.02.018.