[en] Poultry farming, because of its many potentialities (i.e. short duration of reproduction and production cycle, rapid return on investment), occupies a place of choice in development strategies and the fight against poverty in most African countries. In Niger, West Africa, poultry are fed specific protein-providing feed ingredients (such as fishmeal); however, these ingredients are very expensive and unsustainable. Larvae represent a potential alternative source of protein for poultry. Here, we investigated different substrates to optimise housefly (Musca domestica L. 1758) maggot production and nutritional composition. Eight dry substrates were tested. The highest larval biomass (larval biomass produced by 10 mg of house fly egg placed on 50 g dry substrate) and mean weight (individual house fly larvae 5 days after the incorporation of eggs on the substrate) were observed on millet and wheat bran (3,446.67±134.16 mg and 24.00±1.01 mg, respectively). However, larvae produced on Brewer’s spent grains had the highest protein and lipid content (53.79±1.04% and 24.13±5.20%, respectively). Ash content was highest for larvae produced on cow dung and a mixture of 50% wheat bran and 50% cow dung (15.01±0.32% and 15.41±0.09%, respectively). Maggots produced on rumen contents had the highest water content (80.89±0.22%). The profile of produced larvae included palmitic acid (30.99±0.48% on grain), palmitoleic acid (30.26±2.84% on cow dung), oleic acid (27.93±0.31% on rice hulls), and linoleic acid (26.41±0.18% on millet bran + rumen contents). For all substrates, Maggots contained more unsaturated fatty acids (57.59-66.52%) than saturated fatty acids (26.54-46.34%). This study, offers to farmers a wide variety of substrates that could be used to produce maggots, providing a sustainable source of protein that has not been previously available in Niger. We recommend the farmers to use the cow dung to produce maggots without cost.
Disciplines :
Entomology & pest control
Author, co-author :
Leyo, I.H. ; Université Abdou Moumouni de Niamey, Faculté d’Agronomie, Ecole doctorale Science de la Vie et de Terre EDSVT, Niger
Ousmane, Z.M.; Université Abdou Moumouni de Niamey, Faculté d’Agronomie, Ecole doctorale Science de la Vie et de Terre EDSVT, Niger
Francis, Frédéric ; Université de Liège - ULiège > TERRA Research Centre > Gestion durable des bio-agresseurs
Megido, R. Caparros; Université de Liège, Faculté Gembloux Agro Bio Tech, Unité d’entomologie fonctionnelle et évolutive, Gembloux, Belgium
Language :
English
Title :
Optimal substrates for producing housefly larvae with high nutritional composition for sustainable poultry feed in Niger
Adeboye, O.R, 2014. Effects of different feeding strategies on foraging ability and nutrient digestibility of a slow growing organic broiler genotype. Internship report, Faculty of Science and Technology, Aarhus University, Denmark. 33 pp. Available at: http://orgprints.org/27398
Adenji, A.A., 2007. Effect of replacing groundnut cake with maggot meal in the diet of broilers. International Journal of Poultry Science 6(11): 822-825. https://doi.org/10.3923/ijps.2007.822.825
Adesina, A.J., 2012. Comparability of the proximate and amino acids composition of maggot meal, earthworm meal and soybean meal for use as feedstuffs and feed formulations. Elixir Applied Biology 51: 10693-10699.
Adesulu, E.A. and Mustapha, A.K., 2000. Use of housefly maggots as a fishmeal replaces in tilapia culture: a recent vogue in Nigeria. In: Ftzimmons, K. and Filho, J.C. (ed.) Proceedings of the fifth international symposium on Tilapia Aquaculture. 3-7 September 2000. Rio de Janeiro, Brazil, pp. 138-143.
Akpodiete, O.J. and Ologhobo, A.D., 1999. Biological evaluation of maggot (larvae) meal on the growth and sexual maturity of replacement pullets. Tropical Journal of Animal Science 1(2): 45-51.
Alders, R., 2005. L’aviculture: source de profit et de plaisir. Food and Agriculture Organisation, Rome, Italy, 41 pp.
Anene, A., Afam-Anene, C.O., Ike, K. and Ekekwe, H.N., 2013. Preliminary investigations on quantity and proximate quality of maggots produced from four different sources of livestock wastes. Journal of Research in Biology 3: 1060-1065.
Aniebo, A.O., Erondu, E.S. and Owen, O.J., 2008. Proximate composition of housefly larvae (Musca domestica) meal generated from mixture of cattle blood and wheat bran. Livestock Research for Rural Developmen 20(15): 1-5.
Aniebo, A. and Owen, O., 2010. Effects of age and method of drying on the proximate composition of housefly larvae (Musca domestica Lineaus) meal. Pakistan Journal of Nutrition 9: 485-487.
Association of Official Analytical Chemists (AOAC), 2005. Official methods of chemical Analysis. 18th Edition. AOAC International, Rockville, MD, USA
Ayssiwede, S.B., Dieng, A., Houinato, M.R.B., Chrysostom, C.A.A.M., Hornick, J.L. and Missohou, A., 2013. Elevage des poulets traditionnels ou indigènes au Sénégal et en Afrique Subsaharienne: état des lieux et contraintes. Annales de Médecine Vétérinaire 158: 101-117.
Barroso, F.G., De Haro, C., Sánchez-Muros, M.J., Venegas, E., Martínez-Sánchez, A. and Pérez-Bañón, C., 2014. The potential of various insect species for use as food for fish. Aquaculture 422-423: 193-201. https://doi.org/10.1016/j.aquaculture.2013.12.024
Bartlett, M.S., 1937. Properties of sufficiency and statistical tests. Proceedings of the Royal Society of London Series A 160: 268-282. https://doi.org/10.1098/rspa.1937.0109.
Batal, A. and Dale, N., 2010. Ingredient analysis table: 2011. University of Georgia, Athens, GA, USA.
Bloukounon-Goubalan, A.Y., Saidou, A., Clottey, V., Chrysostom., C.A.A.M., Kenis, M. and Mensah, G.A., 2017. Typology of organic residues attracting flies and their utilization in the agricultural sector in southern Benin. International Journal of Biological Chemical Science 11(6): 2560-2572.
Bouafou, K.G.M., Kouame, K.G., Amoikon, K.E. and Offoumou, A.M., 2006. Potentiel pour la production d’asticots sur des sous-produits en Côte d’Ivoire. Tropicultura 24: 157-161.
Cadag, M.T., Lopez, P.L. and Mania, R.P., 1981. Production and evaluation of maggot meal from common housefly (Musca domestica) as animal feed. Philippine Journal of Veterinary and Animal Sciences 7(1): 40-41.
Charlton, A.J., Dickinson, M., Wakefield, M.E., Fitches, E., Kenis, M., Han, R., Zhu, F., Kone, N., Grant, M., Devic, E., Bruggeman, G., Prior, R. and Smith, R., 2015. Exploring the chemical safety of fly larvae as a source of protein for animal feed. Journal of Insects as Food and Feed 1(1): 7-16. https://doi.org/10.3920/JIFF2014.0020
Čičková, H., Kozánek, M. and Takáč, P., 2013. Improvement of survival of the house fly (Musca domestica L.) larvae under mass-rearing conditions. Bulletin of Entomological Research 103(01): 119-125. https://doi.org/10.1017/S000748531200065X
Cobb, 2008. Cobb 500 – performances et recommandations nutritionnelles. Available at: https://tinyurl.com/2bmueu2m
Coulibaly, K., Sankara, F., Pousga, S., Philippe, J.N., Marc, B.S. and Hassan, B., 2020a. Effects of poultry litter and the residues of maggot’s production on chemical fertility of a lixisol and maize (Zea mays L.) yield in western of Burkina Faso. Nigerian Journal of Soil Science 30(2): 95-102. https://doi.org/10.36265/njss.2020.300212
Coulibaly, K., Sankara, F., Pousga, S., Nacoulma, P.J., Somé, M.B. and Nacro, H.B., 2020a. On station maggot production using poultry litter as substrate: assessment on the quantity and the chemical quality of the litter before and after maggot production in Burkina Faso. International Journal of Biological Chemical Science 14(5): 1689-1697. https://doi.org/10.4314/ijbcs.v14i5.16
De Marco, M., Martínez, S., Hernandez, F., Madrid, J., Gai, F., Rotolo, L., Belforti, M., Bergero, D., Katz, H., Dabbou, S., Kovitvadhi, A., Zoccarato, I., Gasco, L. and Schiavone, A., 2015. Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: Apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Animal Feed Science and Technology 209: 211-218. https://doi.org/10.1016/j.anifeedsci.2015.08.006
Dillak, Y.F.G., Suryatni, N.P.F., Handayani, H.T., Temu, S.T., Nastiti, H.P., Osa, D.B., Ginting, R., Yunilas, and Henuk, Y.L., 2019. The effect of fed maggot meal as a supplement in the commercial diets on the performance of finisher broiler chickens. IOP Conference Series: Earth and Environmental Science. Vol. 260. International Conference on Agriculture, Environment, and Food Security 2018. 24-25 October 2018. Medan, Indonesia. Available at: https://doi.org/10.1088/1755-1315/260/1/012056
Drew, D.J.W. and Pieterse, E., 2015. Markets, money and maggots. Journal of Insects as Food and Feed 1: 227-231.
Fasakin, E.A., Balogun, A.M. and Ajayi, O.O., 2003. Evaluation of full-fat and defatted maggot meals in the feeding of clariid catfish Clarias gariepinus fingerlings. Aquaculture Research 34(9): 733-738.
Ferdousi, L., Bithi, U., Lisa, S., Momtaz, N., Rashid, M. and Islam, M., 2020. Nutritional composition of house fly larvae (Musca domestica) reared on different mixture ratio of cattle blood with organic wastes. International Journal of Biosciences 17: 518-527. https://doi.org/10.12692/ijb/17.6.518-527
Fetuga, B.I., 1977. Animal production in Nigeria and feed supplies. Nigerian Journal of Animal Production 418-421.
Fitches, E.C., Dickinson, M., De Marzo, D., Wakefield, M.E., Charlton, A.C. and Hall, H., 2019. Alternative protein production for animal feed: Musca domestica productivity on poultry litter and nutritional quality of processed larval meals. Journal of Insects as Food and Feed 5(2): 77-88. https://doi.org/10.3920/JIFF2017.0061
Folch, J., Lees, M. and Sloane Stanley, G.H., 1957. A simple method for the isolation and purification of total lipides from animal tissues. The Journal of Biological Chemistry, 226(1): 497-509.
Food and Agriculture Organisation (FAO), 2018. Classement des Etats d’Afrique par production de blé. Available at: https://tinyurl. com/hwnjf36m
Ganahi, A., Maizama, D.G., Assane, A., Boukari, M., Karimou, A., Salé, M., Hama, H., Mounkaila, M., Madougou, B. and Maimouna, N., 2016. Guide de l’aviculteur au Niger. Available at: https://reca-niger.org/IMG/pdf/Guide_Aviculture_Niger_VF.pdf
Ganda, H., Zannou-Boukari, E.T., Kenis, M., Chrysostome, C.A.A.M. and Mensah, G.A., 2019. Potentials of animal, crop and agri-food wastes for the production of fly larvae. Journal of Insects as Food and Feed 5(2): 59-60.
Ganda, H., Zannou, E.T., Kenis, M., Abihona, A.H., Houndonougbo, F.M., Chrysostome, C.A.A.M., Chougourou, C.D. and Mensah, G.A., 2021. Effect of four rearing substrates on the yield and the chemical composition of housefly larvae, Musca domestica L. 1758 (Diptera: Muscidae). International Journal of Tropical Insect Science 42: 1331-1339. https://doi.org/10.1007/s42690-021-00651-z
Holmes, L.A., Vanlaerhoven, S.L. and Tomberlin, J.K., 2012. Relative humidity effects on the life history of Hermetia illucens (Diptera: Stratiomyidae). Environmental Entomology 41(4): 971-978. https://doi.org/10.1603/EN12054
Hussein, M., Pillai, V.V., Goddard, J.M., Park, H.G., Kothapalli, K.S., Ross, D.A., Ketterings, Q.M., Brenna, J.T., Milstein, M.B., Marquis, H., Johnson, P.A., Nyrop, J.P. and Selvaraj, V., 2017. Sustainable production of housefly (Musca domestica) larvae as a proteinrich feed ingredient by utilizing cattle manure. PLoS ONE 12(2): e0171708. https://doi.org/10.1371/journal.pone.0171708
Institut de recherche pour le développement, 2009. Le mil, aliment du futur au Sahel. Available at: https://tinyurl.com/mt4u5md8
Itongwa, J.A., Wasso, D.S., Kazamwali, L.M., Bisimwa, N.P. and Jean-Pierre, B.B., 2019. Essai de production et composition chimique des asticots élevés sur des substrats locaux au Sud-Kivu (RDC). Journal of Applied Bioscience 142: 14529-14539.
Janssen, R.H., Vincken, J.P., Van den Broek, L.A.M., Fogliano, V. and Lakemond, C.M.M., 2017. Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. Journal of Agricultural and Food Chemistry 65(11): 2275-2278. https://doi.org/10.1021/acs.jafc.7b00471
Kelemu, S., Niassy, S., Torto, B., Fiaboe, K., Affognon, H., Tonnang, H., Maniania, N.K. and Ekesi, S., 2015. African edible insects for food and feed: inventory, diversity, commonalities and contribution to food security. Journal of Insects as Food and Feed 1(2): 103-119. https://doi.org/10.3920/JIFF2014.0016
Kenis, M., Koné, N., Chrysostome, C.A.A.M., Devic, E., Koko, G.K.D., Clottey, V.A., Nacambo, S. and Mensah, G.A., 2014. Insects used for animal feed in West Africa. Entomologia 2(2): 65. https://doi.org/10.4081/entomologia.2014.218
Keiding, J. and Arevad, K., 1964. Procedure and equipment for rearing a large number of housefly strains. Bulletin of the World Health Organization 31: 527-528.
Koné, N., Sylla, M., Nacambo, S. and Kenis, M., 2017. Production of house fly larvae for animal feed through natural oviposition. Journal of Insects as Food and Feed 3(3): 177-186. https://doi.org/10.3920/JIFF2016.0044
Kouba, M. and Mourot, J., 2011. A review of nutritional effects on fat composition of animal products with special emphasis on n-3 polyunsaturated fatty acids. Biochimie 93: 1317.
Lagarde, M., 2008. Docosahexaenoic acid: nutrient and precursor of bioactive lipids. European Journal of Lipid Science and Technology 110: 673-678.
Leyo, I.H., Ousman, Z.M., Francis, F. and Caparros Megido, R., 2021a. Techniques for the production of housefly (Musca domestica L. 1758) maggots for poultry feed, a literature review. Tropicultura 39(2): 2295-8010. https://doi.org/10.25518/2295-8010.1813.
Leyo, I.H., Ousmane, Z.M., Noël, G., Francis, F. and Caparros Megido, R., 2021b. Breeding enhancement of Musca domestica L. 1758: egg load as a measure of optimal larval density. Insects 12(11): 956. https://doi.org/10.3390/insects12110956
Lwelamira, J., 2012: Phenotypic and genetic parameters for body weights and antibody response against Newcastle disease virus (NDV) vaccine for kuchi chicken ecotype of Tanzania under extensive management. Tropical Animal Health and Production 44(7): 1529-34. https://doi.org/10.1007/s11250-012-0099-z
Makinde, O.J., 2015. Maggot meal: a sustainable protein source for livestock production – a review. Advances in Life Science and Technology 31: 34-41.
Makkar, H.P.S., Tran, G., Heuzé, V. and Ankers, P., 2014. State-of-the-art on use of insects as animal feed. Animal Feed Science and Technology 197: 1-33. https://doi.org/10.1016/j.anifeedsci.2014.07.008
Moussa, H.O., 2014. Caractérisation zootechnique et morphologique des poulets ‘Kolonto’ dans la zone de Gaya. Mémoire de Master, Université Abdou Moumouni de Niamey, Niamey, Niger, 71 pp.
National Research Council, 1994. Nutrient requirement of poultry, 9th revised edition. The National Academic Press, Washington, DC, USA. https://doi.org/10.17226/2114
Newton, G.L., Booram, C.V., Barker, R.W. and Hale, O.M., 1977. Dried Hermetia illucens larvae meal as a supplement for swine. Journal of Animal Science 44(3): 395-400. https://doi.org/10.2527/jas1977.443395x
Newton, L., Sheppard, C., Watson, D.W., Burtle, G., Dove, R., 2005. Using the black soldier fly, Hermetia illucens, as a value-added tool for the management of swine manure Animal and Poultry Waste Management Center, North Carolina State University, Raleigh, NC, USA.
Nigerian Industrial Standard, 2018. Standard for poultry feeds. Nigerian Industrial Standard, Lagos, Nigeria, 47 pp.
Niu, Y., Zheng, D., Yao, B., Cai, Z., Zhao, Z., Wu, S., Cong, P. and Yang, D., 2017. A novel bioconversion for value-added products from food waste using Musca domestica. Waste Management 61: 455-460. https://doi.org/10.1016/j.wasman.2016.10.054
Nyakeri, E.M., Ogola, H.J., Ayieko, M.A. and Amimo, F.A., 2017. An open system for farming black soldier fly larvae as a source of proteins for small scale poultry and fish production. Journal of Insects as Food and Feed 5: 39-51
Odesanya, B.O., Ajayi, S.O., Agbaogun, B.K.O. and Okuneye, B., 2011. Comparative evaluation of nutritive value of maggots. International Journal of Scientific and Engineering Research 2(11).
Ogunji, J.O., Kloas, W., Wirth, M., Neumann, N. and Pietsch, C., 2008b. Effect of housefly maggot meal (magmeal) diet on the performance, concentration of plasma glucose, cortisol and blood characteristics of Oreochromis niloticus fingerlings. Journal of Animal Physiology and Animal Nutrition 92(4): 511-518.
Ouedraogo, W.M., 2016. Analyse socio-économique de l’utilisation des balles de riz comme source d’énergie innovante dans le centre d’étuvage de Bama au Burkina Faso. Mémoire de Master, 51 pp.
Ouédraogo, B., Gnanda, I.B., Sanfo, R., Zoundi, S.J. and Bayala, B., 2015. Etude comparative des performances réalisées avec l’incorporation de la farine de co-produits de volaille et la farine des asticots dans des rations de poulets de chair au Burkina Faso. Revue Ivoirienne des Sciences et Technologies 25: 148-161.
Pastor, B., Velasquez, Y., Gobbi, P. and Rojo, S., 2015. Conversion of organic wastes into fly larval biomass: bottlenecks and challenges. Journal of Insects as Food and Feed 1(3): 179-193. https://doi.org/10.3920/JIFF2014.0024
Patrick, R., 1982. An extension of Shapiro and Wilk’s W test for normality to large samples. Applied Statistics 31: 115-124. https://doi.org/10.2307/2347973.
Pieterse, E. and Pretorius, Q., 2014. Nutritional evaluation of dried larvae and pupae meal of the housefly (Musca domestica) using chemical and broiler-based biological assays. Animal Production Science 54(3): 347. https://doi.org/10.1071/AN12370
Pomalégni, S.C.B., Gbemavo, D.S.J.C., Kpadé, C.P., Kenis, M. and Mensah, G.A., 2017. Traditional use of fly larvae by small poultry farmers in Benin. Journal of Insects as Food and Feed 3(3): 187-192.
Rana, K., 2014. Development of black soldier fly larvae rearing technique to supplement fish feed. Réseau national des chambres d’agricultures du Niger (RECA), 2010. Revue du secteur del’élevage au Niger.115 pp.
Sanou, A.G., Sankara, F., Pousga, S., Coulibaly, K., Nacoulma, J.P., Ouedraogo, I., Nacro, S., Kenis, M., Sanon, A. and Somda,
1., 2019. Production de masse de larves de Musca domestica L. (Diptera: Muscidae) pour l’aviculture au Burkina Faso: analyse des facteurs déterminants en oviposition naturelle. Journal of Applied Biosciences 134(1): 13689. https://doi.org/10.4314/jab.v134i1.6
Sogbesan, A.O. and Ugwumba, A.A.A., 2008. Nutritional values of some non-conventional animal protein feedstuffs used as fishmeal supplement in aquaculture practices in Nigeria. Turkish Journal of Fisheries and Aquatic Sciences 8: 159-164
Sogbesan, O.A., Ajuonu, N.D., Ugwumba, A.A.A. and Madu, C.T., 2005. Cost benefits of maggot meal as supplemented feed in the diets of Heterobranchu slongifilis × Clarias gariepinus (Pisces-Clariidae) hybrid fingerlings in outdoor concrete tanks. Journal of Industrial and Scientific Research 3(2): 51-55.
Spranghers, T., Ottoboni, M., Klootwijk, C., Ovyn, A., Deboosere, S., Meulenaer, B., Michiels, J., Eeckhout, M., De Clercq, P. and De Smet,
5., 2017. Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. Journal of the Science of Food and Agriculture 97: 2594-2600. https://doi.org/10.1002/jsfa.8081
Tchibozo, S., Van Huis, A. and Paoletti, M.G., 2005. Notes on edible insects of South Benin: a source of protein. In: Paoletti, M.G. (ed.) Ecological implications of mini livestock. Role of rodents, frogs, snails and insects for sustainable development. Science Publishers, Enfield, USA, pp. 246-250.
Teotia, J.S. and Miller, B.F., 1973. Fly pupae as a dietary ingredient for starting chicks. Poultry Science 53: 1830-1835.
Tschirner, M., Simon, A., 2015. Influence of different growing substrates and processing on the nutrient composition of black soldier fly larvae destined for animal feed. Journal of Insects as Food and Feed 1: 249-259.
Ugwumba, A.A.A. and Ugwumba, A.O., 2003. Aquaculture options and future of fish supply in Nigeria. The Zoologist 2(2): 96-122.
Van Huis, A., 2003. Insects as food in sub-Saharan Africa. International Journal of Tropical Insect Science 23(3): 163-185. https://doi.org/10.1017/S1742758400023572
Van Huis, A., Van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G. and Vantomme, P., 2013. Edible insects: future prospects for food and feed security. FAO Forestry Paper No. 171. FAO, Rome, Italy. Available at: https://www.fao.org/3/i3253e/i3253e.pdf
Vidogbena, F., Adegbidi, A., Garnett, S.T., Koudande, D., Agbo, V. and Zander, K., 2010. Peace, health or fortune? Preferences for chicken traits in rural Benin. Ecological Economics 69(9): 1848-1857.
Wang, H., Wang, S., Li, H., Wang, B., Zhou, Q., Zhang, X., Li, J. and Zhang, Z., 2016. Decomposition and humification of dissolved organic matter in swine manure during housefly larvae composting. Waste Management and Research 34(5): 465-473. https://doi.org/10.1177/0734242X16636675
XiaoMing, C., Ying, F., Hong, Z. and ZhiYong, C., 2010. Review of the nutritive value of edible insects. In: Durst, P.B., Johnson, D.V., Leslie, R.N. and Shono, K. (eds.) Forest insects as food: humans bite back. Proceedings of a workshop on Asia-Pacific resources and their potential for development. 19-21 February 2008. Chiang Mai, Thailand, pp. 85-92.
Youssao, A.K.I., Tougan, U.P., Ahounou, S.G., Houessionon, B.F.J. and Koutinhouin, B., 2013. Typology of local poultry breeding of Gallus gallus species in family poultry in Benin. International Journal of Agronomy and Agricultural Research 4: 1-13
Yu, G., Chen, Y., Yu, Z. and Cheng, P., 2009. Research progress on the larvae and prepupae of black soldier fly Hermetia illucens used as animal feedstuff. Chinese Bulletin of Entomology 46: 41-45.
Zakara, T.A.L., 2016. Effet d’une substitution de la farine de poisson par la farine de criquet sur les performances de croissance du poulet de chair au Niger. Thèse de Doctorat en Médecine Vétérinaire, E.I.S.M.V. Université Cheikh Anta Diop de Dakar, Dakar, Senegal, 91 pp.
Zhang, Z., Wang, H., Zhu, J., Suneethi, S. and Zheng, J., 2012. Swine manure vermicomposting via housefly larvae (Musca domestica): the dynamics of biochemical and microbial features. Bioresource Technology 118: 563-571. https://doi.org/10.1016/j.biortech.2012.05.048
Zheng, W., Dong, Z., Wang X.Q., Cao, M., Yan, B.L. and Li, S.H., 2010. Effects of dietary fly maggot (Musca domestica) on growth and body compositions in Chinese shrimp Fenneropenaeus chinensis juveniles. Fisheries Science 29(4): 187-192.