Rossini, Luca; Service d’Automatique et d’Analyse des Systèmes, Université Libre de Bruxelles, Brussels, Belgium
Contarini, Mario; Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, Viterbo, Italy
Speranza, Stefano; Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, Viterbo, Italy ; Centro de Estudios Parasitológicos y de Vectores CEPAVE, CONICET, UNLP, La Plata, Argentina
Mermer, Serhan; Department of Horticulture, Oregon State University, Corvallis, OR, United States ; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
Walton, Vaughn; Department of Horticulture, Oregon State University, Corvallis, OR, United States
Francis, Frédéric ; Université de Liège - ULiège > TERRA Research Centre > Gestion durable des bio-agresseurs
Garone, Emanuele; Service d’Automatique et d’Analyse des Systèmes, Université Libre de Bruxelles, Brussels, Belgium
Language :
English
Title :
Life tables in entomology: A discussion on tables’ parameters and the importance of raw data
Harcourt DG. Development and use of life tables in study of natural insect populations. Annual Review of Entomology. 1969; 14: 175. https://doi.org/10.1146/annurev.en.14.010169.001135
Caswell H. Life table response experiment analysis of the stochastic growth rate. Journal of Ecology. 2010; 98: 324–333. https://doi.org/10.1111/j.1365-2745.2009.01627.x
Chi H, You M, Atlıhan R, Smith CL, Kavousi A, Özgökçe MS, et al. Age-stage, two-sex life table: an introduction to theory, data analysis, and application. Entomologia Generalis. 2020; 40: 103–124. https://doi.org/10.1127/entomologia/2020/0936
Naranjo SE, Ellsworth PC. Methodology for developing life tables for sessile insects in the field using the whitefly, Bemisia tabaci, in cotton as a model system. Journal of Visualized Experiments. 2017; 2017: 1–12. https://doi.org/10.3791/56150 PMID: 29155758
Chi H. Life-table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology. 1988; 17: 26–34. https://doi.org/10.1093/ee/17.1.26
Chi H, Kavousi A, Gharekhani G, Atlihan R, Salih Özgökçe M, Güncan A, et al. Advances in theory, data analysis, and application of the age-stage, two-sex life table for demographic research, biological control, and pest management. Entomologia Generalis. 2023; 43: 705–732. https://doi.org/10.1127/entomologia/2023/2048
Chi H, Liu H. Two new methods for the study of insect population ecology. Bull Inst Zool. 1985; 24: 225–240.
Wagner TL, Wu H-I, Sharpe PJH, Coulson RN. Modeling distributions of Insect development time: a literature review and application of the Weibull function. Annals of the Entomological Society of America. 1984; 77: 475–483. https://doi.org/10.1093/aesa/77.5.475
Roy M, Brodeur J, Cloutier C. Relationship between temperature and developmental rate of Stethorus punctillum (Coleoptera: Coccinellidae) and its prey Tetranychus mcdanieli (Acarina: Tetranychidae). Environmental Entomology. 2002; 31: 177–187. https://doi.org/10.1603/0046-225X-31.1.177
Huang Y-B, Chi H. Age-stage, two-sex life tables of Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) with a discussion on the problem of applying female age-specific life tables to insect populations. Insect Science. 2012; 19: 263–273. https://doi.org/10.1111/j.1744-7917.2011.01424.x
Birch LC. The intrinsic rate of natural increase of an insect population. The Journal of Animal Ecology. 1948; 17: 15. https://doi.org/10.2307/1605
Govindan Hutchison. Influence of temperature on age-stage, two-sex life tables for a Minnesota-acclimated population of the brown marmorated stink bug (Halyomorpha halys). Insects. 2020; 11: 108. https://doi.org/10.3390/insects11020108 PMID: 32046093
De Campos MR, Béarez P, Amiens-Desneux E, Ponti L, Gutierrez AP, Biondi A, et al. Thermal biology of Tuta absoluta: demographic parameters and facultative diapause. Journal of Pest Science. 2020. https://doi.org/10.1007/s10340-020-01286-8
Martins JC, Picanço MC, Bacci L, Guedes RNC, Santana PA, Ferreira DO, et al. Life table determination of thermal requirements of the tomato borer Tuta absoluta. Journal of Pest Science. 2016; 89: 897–908. https://doi.org/10.1007/s10340-016-0729-8
Ryan GD, Emiljanowicz L, Wilkinson F, Kornya M, Newman JA. Thermal tolerances of the spotted-wing drosophila Drosophila suzukii (Diptera: Drosophilidae). Journal of Economic Entomology. 2016; 109: 746–752. https://doi.org/10.1093/jee/tow006 PMID: 26880397
Wang X-G, Serrato MA, Son Y, Walton VM, Hogg BN, Daane KM. Thermal performance of two indigenous pupal parasitoids attacking the invasive Drosophila suzukii (Diptera: Drosophilidae). Environmental Entomology. 2018; 47: 764–772. https://doi.org/10.1093/ee/nvy053 PMID: 29635366
Logan JA, Wollkind DJ, Hoyt SC, Tanigoshi LK. An analytic model for description of temperature dependent rate phenomena in arthropods. Environmental Entomology. 1976; 5: 1133–1140. https://doi.org/10.1093/ee/5.6.1133
Schoolfield RM, Sharpe PJH, Magnuson CE. Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. Journal of theoretical biology. 1981; 88: 719–31. https://doi.org/10.1016/0022-5193(81)90246-0 PMID: 6790878
Sharpe PJH, DeMichele DW. Reaction kinetics of poikilotherm development. Journal of Theoretical Biology. 1977; 64: 649–670. https://doi.org/10.1016/0022-5193(77)90265-x PMID: 846210
Briere J-F, Pracros P, Le Roux A-Y, Pierre J-S. A novel rate model of temperature-dependent development for arthropods. Environmental Entomology. 1999; 28: 22–29. https://doi.org/10.1093/ee/28.1.22
Damos P, Savopoulou-Soultani M. Temperature-driven models for insect development and vital thermal requirements. Psyche. 2012;2012. https://doi.org/10.1155/2012/123405
Ratkowsky DA, Reddy GVP. Empirical model with excellent statistical properties for describing temperature-dependent developmental rates of insects and mites. Annals of the Entomological Society of America. 2017; 110: 302–309. https://doi.org/10.1093/aesa/saw098
Mirhosseini MA, Fathipour Y, Reddy GVP. Arthropod development’s response to temperature: a review and new software for modeling. Annals of the Entomological Society of America. 2017; 110: 507–520. https://doi.org/10.1093/aesa/sax071
Quinn BK. A critical review of the use and performance of different function types for modeling temperature-dependent development of arthropod larvae. Journal of Thermal Biology. 2017; 63: 65–77. https://doi.org/10.1016/j.jtherbio.2016.11.013 PMID: 28010817
Lactin DJ, Holliday NJ, Johnson DL, Craigen R. Improved rate model of temperature-dependent development by arthropods. Environmental Entomology. 1995; 24: 68–75. https://doi.org/10.1093/ee/24.1. 68
Wang KS, Hsu FS, Liu PP. Modeling the bathtub shape hazard rate function in terms of reliability. Reliability Engineering & System Safety. 2002; 75: 397–406. https://doi.org/10.1016/S0951-8320(01) 00124-7
Son Y, Lewis EE. Modelling temperature-dependent development and survival of Otiorhynchus sulcatus (Coleoptera: Curculionidae). Agricultural and Forest Entomology. 2005; 7: 201–209. https://doi.org/10.1111/j.1461-9555.2005.00260.x
Kim DS, Lee JH. Oviposition model of Carposina sasakii (Lepidoptera: Carposinidae). Ecological Modelling. 2003; 162: 145–153. https://doi.org/10.1016/S0304-3800(02)00402-7
Rossini L, Severini M, Contarini M, Speranza S. Use of ROOT to build a software optimized for parameter estimation and simulations with Distributed Delay Model. Ecological Informatics. 2019; 50: 184–190. https://doi.org/10.1016/j.ecoinf.2019.02.002
Hoffmann AA, Chown SL, Clusella-Trullas S. Upper thermal limits in terrestrial ectotherms: how constrained are they? Fox C, editor. Functional Ecology. 2013; 27: 934–949. https://doi.org/10.1111/j.1365-2435.2012.02036.x
Amir-Maafi M, Chi H, Chen Z-Z, Xu Y-Y. Innovative bootstrap-match technique for life table set up. Entomologia Generalis. 2022; 42: 597–609. https://doi.org/10.1127/entomologia/2022/1334
Rossini L, Speranza S, Severini M, Locatelli DP, Limonta L. Life tables and a physiologically based model application to Corcyra cephalonica (Stainton) populations. Journal of Stored Products Research. 2021; 91: 101781. https://doi.org/10.1016/j.jspr.2021.101781
Cox PD, Crawford LA, Gjestrud G, Bell CH, Bowley CR. The influence of temperature and humidity on the life-cycle of Corcyra cephalonica (Stainton) (Lepidoptera: Pyralidae). Bulletin of Entomological Research. 1981; 71: 171–181. https://doi.org/10.1017/S000748530000821X
Osman NB, Wright VF, Mills RB. The effects of rearing temperatures on certain aspects of the biology of Corcyra cephalonica (Stainton), the Rice Moth. 1984; 99–106.
Krechemer F da S, Foerster LA. Tuta absoluta (Lepidoptera: Gelechiidae): Thermal requirements and effect of temperature on development, survival, reproduction and longevity. European Journal of Entomology. 2015; 112: 658–663. https://doi.org/10.14411/eje.2015.103
Wang XJ, Ma CS. Can laboratory-reared aphid populations reflect the thermal performance of field populations in studies on pest science and climate change biology? Journal of Pest Science. 2022. https://doi.org/10.1007/s10340-022-01565-6
Wang X, Levy K, Son Y, Johnson MW, Daane KM. Comparison of the thermal performance between a population of the olive fruit fly and its co-adapted parasitoids. Biological Control. 2012; 60: 247–254. https://doi.org/10.1016/j.biocontrol.2011.11.012
Vansickle J. Analysis of a distributed-parameter population model based on physiological age. Journal of Theoretical Biology. 1977; 64: 571–586. https://doi.org/10.1016/0022-5193(77)90289-2 PMID: 839821
Zhang X, Zhou Y, Peng P, Wang G. A Novel multimodal species distribution model fusing remote sensing images and environmental features. Sustainability. 2022; 14: 14034. https://doi.org/10.3390/ su142114034
Cumming GS, Havlicek TD. Evolution, ecology, and multimodal distributions of body size. Ecosystems. 2002; 5: 705–711. https://doi.org/10.1007/s10021-002-0118-4
Matthews TJ, Borges PAV, Whittaker RJ. Multimodal species abundance distributions: a deconstruction approach reveals the processes behind the pattern. Oikos. 2014; 123: 533–544. https://doi.org/10.1111/j.1600-0706.2013.00829.x
Antão LH, Connolly SR, Magurran AE, Soares A, Dornelas M. Prevalence of multimodal species abundance distributions is linked to spatial and taxonomic breadth. Global Ecol Biogeogr. 2017; 26: 203–215. https://doi.org/10.1111/geb.12532
Thibault KM, White EP, Hurlbert AH, Ernest SKM. Multimodality in the individual size distributions of bird communities. Global Ecology and Biogeography. 2011; 20: 145–153. https://doi.org/10.1111/j.1466-8238.2010.00576.x
Menu F. Strategies of emergence in the chestnut weevil Curculio elephas (Coleoptera: Curculionidae). Oecologia. 1993; 96: 383–390. https://doi.org/10.1007/BF00317509 PMID: 28313654
Damos PT, Stoeckli SC, Rigas A. Editorial: Current trends of insect physiology and population dynamics: Modeling insect phenology, demography, and circadian rhythms in variable environments. Frontiers in Physiology. 2018;9. https://doi.org/10.3389/fphys.2018.00336 PMID: 29674974
Grimm V, Johnston ASA, Thulke H-H, Forbes VE, Thorbek P. Three questions to ask before using model outputs for decision support. Nature Communications. 2020; 11: 4959. https://doi.org/10.1038/ s41467-020-17785-2 PMID: 32999285
Rossi V, Sperandio G, Caffitito, Simonetto A, Gilioli G. Critical success factors for the adoption of decision tools in IPM. Agronomy. 2019; 9: 710. https://doi.org/10.3390/agronomy9110710
Pasquali S, Soresina C, Marchesini E. Mortality estimate driven by population abundance field data in a stage-structured demographic model. The case of Lobesia botrana. Ecological Modelling. 2022; 464: 109842. https://doi.org/10.1016/j.ecolmodel.2021.109842
Rossini L, Bruzzone OA, Contarini M, Bufacchi L, Speranza S. A physiologically based ODE model for an old pest: Modeling life cycle and population dynamics of Bactrocera oleae (Rossi). Agronomy. 2022; 12: 2298. https://doi.org/10.3390/agronomy12102298
Rossini L, Bono Rosselló N, Contarini M, Speranza S, Garone E. Modelling ectotherms’ populations considering physiological age structure and spatial motion: A novel approach. Ecological Informatics. 2022; 70: 101703. https://doi.org/10.1016/j.ecoinf.2022.101703
Donatelli M, Magarey RD, Bregaglio S, Willocquet L, Whish JPM, Savary S. Modelling the impacts of pests and diseases on agricultural systems. Agricultural Systems. 2017; 155: 213–224. https://doi.org/10.1016/j.agsy.2017.01.019 PMID: 28701814
Bono Rosselló N, Rossini L, Speranza S, Garone E. Towards pest outbreak predictions: Are models supported by field monitoring the new hope? Ecological Informatics. 2023; 78: 102310. https://doi.org/10.1016/j.ecoinf.2023.102310
Pfab F, Stacconi MVR, Anfora G, Grassi A, Walton V, Pugliese A. Optimized timing of parasitoid release: a mathematical model for biological control of Drosophila suzukii. Theoretical Ecology. 2018; 11: 489–501. https://doi.org/10.1007/s12080-018-0382-3
Buffoni G, Pasquali S. Structured population dynamics: Continuous size and discontinuous stage structures. Journal of Mathematical Biology. 2007. https://doi.org/10.1007/s00285-006-0058-2 PMID: 17151883
Al-Omari JFM, Gourley SA. A nonlocal reaction-diffusion model for a single species with stage structure and distributed maturation delay. European Journal of Applied Mathematics. 2005; 16: 37–51. https://doi.org/10.1017/S0956792504005716
Severini M, Baumgärtner J, Ricci M. Theory and practice of parameter estimation of distributed delay models for insect and plant phenologies. Meteorology and Environmental Sciences. 1990; 674–719.
Manetsch TJ. Time-varying distributed delays and their use in aggregative models of large systems. IEEE Transactions on Systems, Man, and Cybernetics. 1976; SMC-6: 547–553. https://doi.org/10.1109/TSMC.1976.4309549
Von Foerster H. Some remarks on changing populations. In The Kinetics of Cellular Proliferation. 1959;382–407.
Rossini L, Severini M, Contarini M, Speranza S. A novel modelling approach to describe an insect life cycle vis-à-vis plant protection: description and application in the case study of Tuta absoluta. Ecological Modelling. 2019; 409: 108778. https://doi.org/10.1016/j.ecolmodel.2019.108778
Rossini L, Bono Rosselló N, Speranza S, Garone E. A general ODE-based model to describe the physiological age structure of ectotherms: Description and application to Drosophila suzukii. Ecological Modelling. 2021; 456: 109673. https://doi.org/10.1016/j.ecolmodel.2021.109673
Rossini L, Virla EG, Albarracín EL, Van Nieuwenhove GA, Speranza S. Evaluation of a physiologically based model to predict Dalbulus maidis occurrence in maize crops: validation in two different subtropical areas of South America. Entomologia Experimentalis et Applicata. 2021; 169: 597–609. https://doi.org/10.1111/eea.13066
Rossini L, Contarini M, Severini M, Talano D, Speranza S. A modelling approach to describe the Anthonomus eugenii (Coleoptera: Curculionidae) life cycle in plant protection: A priori and a posteriori analysis. Florida Entomologist. 2020; 103: 259–263. https://doi.org/10.1653/024.103.0217
Rossini L, Contarini M, Giarruzzo F, Assennato M, Speranza S. Modelling Drosophila suzukii adult male populations: A physiologically based approach with validation. Insects. 2020; 11: 751. https://doi.org/10.3390/insects11110751 PMID: 33142832
Mironidis GK. Development, survivorship and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae) under fluctuating temperatures. Bulletin of Entomological Research. 2014; 104: 751–764. https://doi.org/10.1017/S0007485314000595 PMID: 25208831
D’Antona G, Ferrero A. Digital signal processing for measurement systems. Boston, MA: Springer US; 2006. https://doi.org/10.1007/0-387-28666-7
Villasenor Alva JA, Estrada EG. A generalization of Shapiro–Wilk’s test for multivariate normality. Communications in Statistics—Theory and Methods. 2009; 38: 1870–1883. https://doi.org/10.1080/ 03610920802474465
Najim K, Ikonen E, Daoud A-K. Stochastic processes: Estimation, optimization and analysis. 2004. Available: https://doi.org/10.1016/B978-1-903996-55-3.X5008-7
Patel JK, Read CB. The handbook of the normal distribution. CRC press, editor. 1996.
Demétrio CGB, Hinde J, Moral RA. Ecological modelling applied to entomology. Ferreira CP, Godoy WAC, editors. Ecological Modelling Applied to Entomology. Cham: Springer International Publishing; 2014. https://doi.org/10.1007/978-3-319-06877-0
Rossini L, Speranza S, Contarini M. Distributed Delay Model and Von Foerster’s equation: Different points of view to describe insects’ life cycles with chronological age and physiological time. Ecological Informatics. 2020; 59: 101117. https://doi.org/10.1016/j.ecoinf.2020.101117
Severini M, Baumgärtner J, Limonta L. Parameter estimation for distributed delay based population models from laboratory data: egg hatching of Oulema duftschmidi Redthenbacher (Coleoptera, Chrysomelidae) as an example. Ecological Modelling. 2003; 167: 233–246. https://doi.org/10.1016/S0304-3800(03)00188-1
Rossini L, Contarini M, Severini M, Speranza S. Reformulation of the Distributed Delay Model to describe insect pest populations using count variables. Ecological Modelling. 2020; 436: 109286. https://doi.org/10.1016/j.ecolmodel.2020.109286
Studens K, Bolker BM, Candau J-N. Predicting the temperature-driven development of stage-structured insect populations with a Bayesian hierarchical model. JABES. 2023 [cited 23 Dec 2023]. https://doi.org/10.1007/s13253-023-00581-y
Jukic AM, Baird DD, Weinberg CR, McConnaughey DR, Wilcox AJ. Length of human pregnancy and contributors to its natural variation. Human Reproduction. 2013; 28: 2848–2855. https://doi.org/10.1093/humrep/det297 PMID: 23922246
Smith GCS. Use of time to event analysis to estimate the normal duration of human pregnancy. Human Reproduction. 2001; 16: 1497–1500. https://doi.org/10.1093/humrep/16.7.1497 PMID: 11425837
Nogalski Z, Piwczyński D. Association of length of pregnancy with other reproductive traits in dairy cattle. Asian-Australasian Journal of Animal Sciences. 2011; 25: 22–27. https://doi.org/10.5713/ajas.2011. 11084 PMID: 25049473
Brakel WJ, Rife DC, Salisbury SM. Factors associated with the duration of gestation in dairy cattle. Journal of Dairy Science. 1952; 35: 179–194. https://doi.org/10.3168/jds.S0022-0302(52)93690-4
Young RR, Anderson N, Overend D, Tweedie RL, Malafant KWJ, Preston GAN. The effect of temperature on times to hatching of eggs of the nematode Ostertagia circumcincta. Parasitology. 1980; 81: 477–491. https://doi.org/10.1017/S0031182000061874 PMID: 7195000
Yaro AS, Dao A, Adamou A, Crawford JE, Ribeiro JM, Gwadz R, et al. The distribution of hatching time in Anopheles gambiae. Malaria Journal. 2006; 5: 19. https://doi.org/10.1186/1475-2875-5-19 PMID: 16553960
Candy SG. Predicting time to peak occurrence of insect life-stages using regression models calibrated from stage-frequency data and ancillary stage-mortality data. Agricultural and Forest Entomology. 2003; 5: 43–49. https://doi.org/10.1046/j.1461-9563.2003.00161.x
Kakde AM, Patel KG, Tayade S. Role of life table in insect pest management—A review. Journal of Agriculture and Veterinary Science. 2014; 7: 40–43.
Rossini L, Severini M, Contarini M, Speranza S. EntoSim, a ROOT-based simulator to forecast insects’ life cycle: Description and application in the case of Lobesia botrana. Crop Protection. 2020; 129: 105024. https://doi.org/10.1016/j.cropro.2019.105024
Wilbur HM, Collins JP. Ecological aspects of amphibian metamorphosis: Nonnormal distributions of competitive ability reflect selection for facultative metamorphosis. Science. 1973; 182: 1305–1314. https://doi.org/10.1126/science.182.4119.1305 PMID: 17733097
Legendre P, Legendre L. Complex ecological data sets. Developments in Environmental Modelling. Elsevier; 2012. pp. 1–57. https://doi.org/10.1016/B978-0-444-53868-0.50001–0
Landler L, Ruxton GD, Malkemper EP. The multivariate analysis of variance as a powerful approach for circular data. Mov Ecol. 2022; 10: 21. https://doi.org/10.1186/s40462-022-00323-8 PMID: 35478074
Day RW, Quinn GP. Comparisons of treatments after an analysis of variance in ecology. Ecological Monographs. 1989; 59: 433–463. https://doi.org/10.2307/1943075
Dalal PK, Singh JK. Role of modeling in insect pest and disease management. Journal of Entomology and Zoology Studies. 2017; 5: 1773–1777.