[en] Insect trehalases have been identified as promising new targets for pest control. These key enzymes are involved in trehalose hydrolysis and plays an important role in insect growth and development. In this contribution, plant and microbial compounds, namely validamycin A, amygdalin, and phloridzin, were evaluated for their effect, through trehalase inhibition, on Acyrthosiphon pisum aphid. The latter is part of the Aphididae family, main pests as phytovirus vectors and being very harmful for crops. Validamycin A was confirmed as an excellent trehalase inhibitor with an half maximal inhibitory concentration and inhibitor constant of 2.2 × 10-7 and 5 × 10-8 M, respectively, with a mortality rate of ~80% on a A. pisum population. Unlike validamycin A, the insect lethal efficacy of amygdalin and phloridzin did not correspond to their trehalase inhibition, probably due to their hydrolysis by insect β-glucosidases. Our docking studies showed that none of the three compounds can bind to the trehalase active site, unlike their hydrolyzed counterparts, that is, validoxylamine A, phloretin, and prunasin. Validoxylamine A would be by far the best trehalase binder, followed by phloretin and prunasin.
Disciplines :
Entomology & pest control
Author, co-author :
Neyman, Virgile ; Université de Liège - ULiège > TERRA Research Centre ; Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, Namur, Belgium ; Namur Institute of Structures Matter (NISM), University of Namur, Namur, Belgium
Quicray, Maude ; Université de Liège - ULiège > TERRA Research Centre > Gestion durable des bio-agresseurs ; Institute of Life Earth and Environment (ILEE), University of Namur, Namur, Belgium
Francis, Frédéric ; Université de Liège - ULiège > TERRA Research Centre > Gestion durable des bio-agresseurs
Michaux, Catherine ; Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, Namur, Belgium ; Namur Institute of Structures Matter (NISM), University of Namur, Namur, Belgium ; Namur Research, Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
Language :
English
Title :
Toxicological, biochemical, and in silico investigations of three trehalase inhibitors for new ways to control aphids.
This study was supported by the Win2Wal Research Program\u2014Exercise 2019 (convention n\u00B01910079). Virgile\u00A0Neyman thanks the Belgian National Fund for Scientific Research (FNRS) for his FRIA PhD Student position. Computational resources have been provided by the Consortium des \u00C9quipements de Calcul Intensif (C\u00C9CI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11 and by the Walloon Region. Catherine Michaux thanks the National Fund for Scientific Research for her senior Research associate position.
Adhav, A., Harne, S., Bhide, A., Giri, A., Gayathri, P. & Joshi, R. (2019) Mechanistic insights into enzymatic catalysis by trehalase from the insect gut endosymbiont Enterobacter cloacae. The FEBS Journal, 286(9), 1700–1716. Available from: https://doi.org/10.1111/febs.14760
Ai, D., Lin, R., Wang, M., Liang, X. & Yu, C. (2018) Chemical modification of soluble trehalse from Helicoverpa armigera (Lepidoptera: Noctuiadae). Acta Entomologica Sinica, 61(7), 801–807. Available from: https://doi.org/10.16380/j.kcxb.2018.07.006
Asano, N., Kato, A. & Matsui, K. (1996) Two subsites on the active center of pig kidney trehalase. European Journal of Biochemistry, 240(3), 692–698. Available from: https://doi.org/10.1111/j.1432-1033.1996.0692h.x
Asano, N., Takeuchi, M., Kameda, Y., Matsui, K. & Kono, Y. (1990) Trehalase inhibitors, validoxylamine A and related compounds as insecticides. The Journal of Antibiotics, 43(6), 722–726. Available from: https://doi.org/10.7164/antibiotics.43.722
Asano, N., Yamaguchi, T., Kameda, Y. & Matsui, K. (1987) Effect of validamycins on glycohydrolases of Rhizoctonia solani. The Journal of Antibiotics, 40(4), 526–532. Available from: https://doi.org/10.7164/antibiotics.40.526
Bates, D., Mächler, M., Bolker, B. & Walker, S. (2015) Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. Available from:https://doi.org/10.18637/jss.v067.i01
Bourquelot, E. (1893) Transformation du trehalose en glucose dans les champignons par un ferment soluble: la trehalase. Bulletin de la Société Mycologique de France, 9, 189–194.
Campbell, B.C., Molyneux, R.J. & Jones, K.C. (1987) Differential inhibition by castanospermine of various insect disaccharidases. Journal of Chemical Ecology, 13(7), 1759–1770. Available from: https://doi.org/10.1007/BF00980216
Davies, G. & Henrissat, B. (1995) Structures and mechanisms of glycosyl hydrolases. Structure, 3(9), 853–859. Available from: https://doi.org/10.1016/S0969-2126(01)00220-9
Demir, E., Kansız, S., Doğan, M., Topel, Ö., Akkoyunlu, G., Kandur, M.Y. et al. (2022) Hazard assessment of the effects of acute and chronic exposure to permethrin, copper hydroxide, acephate, and validamycin nanopesticides on the physiology of Drosophila: novel insights into the cellular internalization and biological effects. International Journal of Molecular Sciences, 23, 9121. Available from: https://doi.org/10.3390/ijms23169121
Dhaene, S., Van der Eycken, J., Beerens, K., Franceus, J., Desmet, T. & Caroen, J. (2020) Synthesis, trehalase hydrolytic resistance and inhibition properties of 4- and 6-substituted trehalose derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 1964–1989. Available from: https://doi.org/10.1080/14756366.2020.1837125
Friedman, S. (1960) The purification and properties of trehalase isolated from Phormia regina, Meig. Archives of Biochemistry and Biophysics, 87, 252–258. Available from: https://doi.org/10.1016/0003-9861(60)90169-7
García, M.D. & Argüelles, J.C. (2021) Trehalase inhibition by validamycin A may be a promising target to design new fungicides and insecticides. Pest Management Science, 77, 3832–3835. Available from: https://doi.org/10.1002/ps.6382
Gomez, A., Cardoso, C., Genta, F.A., Terra, W.R. & Ferreira, C. (2013) Active site characterization and molecular cloning of Tenebrio molitor midgut trehalase and comments on their insect homologs. Insect Biochemistry and Molecular Biology, 43(8), 768–780. Available from: https://doi.org/10.1016/j.ibmb.2013.05.010
Guerrieri, E. & Digilio, M.C. (2008) Aphid-plant interactions: a review. Journal of Plant Interactions, 3(4), 223–232. Available from: https://doi.org/10.1080/17429140802567173
Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E. & Hutchison, G.R. (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(1), 17. Available from: https://doi.org/10.1016/j.aim.2014.05.019
Horlacher, R., Uhland, K., Klein, W., Ehrmann, M. & Boos, W. (1996) Characterization of a cytoplasmic trehalase of Escherichia coli. Journal of Bacteriology, 178(21), 6250–6257. Available from: https://doi.org/10.1128/jb.178.21.6250-6257.1996
Hothorn, T., Bretz, F. & Westfall, P. (2008) Simultaneous inference in general parametric models. Biometrical Journal, 50(3), 346–363. Available from: https://doi.org/10.1002/bimj.200810425
Ishihara, R., Taketani, S., Sasai-Takedatsu, M., Kino, M., Tokunaga, R. & Kobayashi, Y. (1997) Molecular cloning, sequencing and expression of cDNA encoding human trehalase. Gene, 202(1–2), 69–74. Available from: https://doi.org/10.1016/S0378-1119(97)00455-1
Ito, T. & Tanaka, M. (1959) Beta-glucosidase of the midgut of the silkworm Bombyx mori. The Biological Bulletin, 116(1), 95–105. Available from: https://doi.org/10.2307/1539159
Jin, L.Q. & Zheng, Y.G. (2009) Inhibitory effects of validamycin compounds on the termites trehalase. Pesticide Biochemistry and Physiology, 95(1), 28–32. Available from: https://doi.org/10.1016/j.pestbp.2009.05.001
Jones, G., Willett, P., Glen, R.C., Leach, A.R. & Taylor, R. (1997) Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology, 267(3), 727–748. Available from: https://doi.org/10.1006/jmbi.1996.0897
Koffi, Y.G., Konan, H.K. & Kouadio, J.P.E.N. (2012) Purification and biochemical characterization of beta-glucosidase from cockroach, Periplaneta americana. Journal of Animal & Plant Sciences, 13(2), 1747–1757.
Kyosseva, S.V., Kyossev, Z.N. & Elbein, A.D. (1995) Inhibitors of pig kidney trehalase.Archives of Biochemistry and Biophysics, 316(2), 821–826. Available from: https://doi.org/10.1006/abbi.1995.1110
Lindsay, H. (1973) A colorimetric estimation of reducing sugars in potatoes with 3,5-dinitrosalicylic acid. Potato Research, 16(3), 176–179. Available from: https://doi.org/10.1007/BF02356048
Matassini, C., Parmeggiani, C. & Cardona, F. (2020) New frontiers on human safe insecticides and fungicides: an opinion on trehalase inhibitors. Molecules, 25(13), 3013. Available from: https://doi.org/10.3390/molecules25133013
Moriwaki, N., Matsushita, K., Nishina, M. & Kono, Y. (2003) High concentrations of trehalose in aphid hemolymph. Applied Entomology and Zoology, 38(2), 241–248. Available from: https://doi.org/10.1303/aez.2003.241
Müller, J., Boller, T. & Wiemken, A. (1995) Trehalose and trehalase in plants: recent developments. Plant Science, 112(1), 1–9. Available from: https://doi.org/10.1016/0168-9452(95)04218-J
Neyman, V., Francis, F., Matagne, A., Dieu, M., Michaux, C. & Perpète, E.A. (2021) Purification and characterization of trehalase from Acyrthosiphon pisum, a target for pest control. The Protein Journal, 41, 189–200. Available from: https://doi.org/10.1007/s10930-021-10032-7
Park, N.J., Lim, H.K. & Hwang, I.T. (2008) An enhanced system to screen trehalase inhibitors using a microplate assay with a housefly enzyme source. Journal of Asia-Pacific Entomology, 11(3), 161–166. Available from: https://doi.org/10.1016/j.aspen.2008.07.004
Peng, X., Zha, W., He, R., Lu, T., Zhu, L., Han, B. et al. (2011) Pyrosequencing the midgut transcriptome of the brown planthopper, Nilaparvata lugens. Insect Molecular Biology, 20(6), 745–762. Available from: https://doi.org/10.1111/j.1365-2583.2011.01104.x
Pontoh, J. & Low, N.H. (2002) Purification and characterization of β-glucosidase from honey bees (Apis mellifera). Insect Biochemistry and Molecular Biology, 32(6), 679–690. Available from: https://doi.org/10.1016/S0965-1748(01)00147-3
Qu, Y., Ullah, F., Luo, C., Monticelli, L.S., Lavoir, A.V., Gao, X. et al. (2020) Sublethal effects of beta-cypermethrin modulate interspecific interactions between specialist and generalist aphid species on soybean. Ecotoxicology and Environmental Safety, 206, 111302. Available from: https://doi.org/10.1016/j.ecoenv.2020.111302
Salleh, H.M. & Honek, J.F. (1990) Time-dependent inhibition of porcine kidney trehalase by aminosugars. FEBS Letters, 262(2), 359–362. Available from: https://doi.org/10.1016/0014-5793(90)80229-C
Shukla, E., Thorat, L.J., Nath, B.B. & Gaikwad, S.M. (2015) Insect trehalase: physiological significance and potential applications. Glycobiology, 25(4), 357–367. Available from: https://doi.org/10.1093/glycob/cwu125
Silva, M.C.P., Terra, W.R. & Ferreira, C. (2004) The role of carboxyl, guanidine and imidazole groups in catalysis by a midgut trehalase purified from an insect larvae. Insect Biochemistry and Molecular Biology, 34(10), 1089–1099. Available from: https://doi.org/10.1016/j.ibmb.2004.07.001
Silva, M.C.P., Terra, W.R. & Ferreira, C. (2006) Absorption of toxic β-glucosides produced by plants and their effect on tissue trehalases from insects. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 143(3), 367–373. Available from: https://doi.org/10.1016/j.cbpb.2005.12.011
Silva, M.C.P., Terra, W.R. & Ferreira, C. (2010) The catalytic and other residues essential for the activity of the midgut trehalase from Spodoptera frugiperda. Insect Biochemistry and Molecular Biology, 40(10), 733–741. Available from: https://doi.org/10.1016/j.ibmb.2010.07.006
Tang, B., Yang, M., Shen, Q., Xu, Y., Wang, H. & Wang, S. (2017) Suppressing the activity of trehalase with validamycin disrupts the trehalose and chitin biosynthesis pathways in the rice brown planthopper, Nilaparvata lugens. Pesticide Biochemistry and Physiology, 137, 81–90. Available from: https://doi.org/10.1016/j.pestbp.2016.10.003
Tatun, N., Tungjitwitayakul, J. & Sakurai, S. (2016) Developmental and lethal effects of trehalase inhibitor (Validamycin) on the Tribolium castaneum (Coleoptera: Tenebrionidae). Annals of the Entomological Society of America, 109(2), 224–231. Available from: https://doi.org/10.1093/aesa/sav111
The International Aphid Genomics Consortium. (2010) Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biology, 8(2), e1000313. Available from: https://doi.org/10.1371/journal.pbio.1000313
Thompson, S.N. (2003) Trehalose—the insect ‘blood’ sugar. Advances in Insect Physiology, 31, 205–285. Available from:https://doi.org/10.1016/S0065-2806(03)31004-5
Valaitis, A.P. & Bowers, D.F. (1993) Purification and properties of the soluble midgut trehalase from the gypsy moth, Lymantria dispar. Insect Biochemistry and Molecular Biology, 23(5), 599–606. Available from: https://doi.org/10.1016/0965-1748(93)90033-O
Yu, C., Ai, D., Lin, R. & Cheng, S. (2019) Effects of toxic β-glucosides on carbohydrate metabolism in cotton bollworm, Helicoverpa armigera (Hübner). Archives of Insect Biochemistry and Physiology, 100(4), 1–11. Available from: https://doi.org/10.1002/arch.21526
Yu, Y., Bai, L., Minagawa, K., Jian, X., Li, L., Li, J. et al. (2005) Gene cluster responsible for validamycin biosynthesis in Streptomyces hygroscopicus subsp. jinggangensis 5008. Applied and Environmental Microbiology, 71(9), 5066–5076. Available from: https://doi.org/10.1128/AEM.71.9.5066-5076.2005
Zimmermann, A.L.S., Terenzi, H.F. & Jorge, J.A. (1990) Purification and properties of an extracellular conidial trehalase from Humicola grisea var.thermoidea. Biochimica et Biophysica Acta (BBA) - General Subjects, 1036(1), 41–46. Available from: https://doi.org/10.1016/0304-4165(90)90211-e