[en] Bacteriophages ("phage") play important roles in nutrient cycling and ecology in environments by regulating soil microbial community structure. Here, metagenomic sequencing showed that a low relative abundance of nitrogen-fixing bacteria but high abundance of Enterobacter-infecting phages in paddy soil where rice plants showed nitrogen deficiency. From soil in the same field, we also isolated and identified a novel virulent phage (named here as Apdecimavirus NJ2) that infects several species of Enterobacter and characterized its impact on nitrogen fixation in the soil and in plants. It has the morphology of the Autographiviridae family, with a dsDNA genome of 39,605 bp, 47 predicted open reading frames and 52.64 % GC content. Based on genomic characteristics, comparative genomics and phylogenetic analysis, Apdecimavirus NJ2 should be a novel species in the genus Apdecimavirus, subfamily Studiervirinae. After natural or sterilized field soil was potted and inoculated with the phage, soil nitrogen-fixation capacity and rice growth were impaired, the abundance of Enterobacter decreased, along with the bacterial community composition and biodiversity changed compared with that of the unadded control paddy soil. Our work provides strong evidence that phages can affect the soil nitrogen cycle by changing the bacterial community. Controlling phages in the soil could be a useful strategy for improving soil nitrogen fixation.
Disciplines :
Agriculture & agronomy
Author, co-author :
Liu, Yu ; Université de Liège - ULiège > TERRA Research Centre
Wang, Yajiao; Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China
Shi, Wenchong; State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
Wu, Nan; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Liu, Wenwen; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Francis, Frédéric ; Université de Liège - ULiège > TERRA Research Centre > Gestion durable des bio-agresseurs
Wang, Xifeng; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address: wangxifeng@caas.cn
Language :
English
Title :
Enterobacter-infecting phages in nitrogen-deficient paddy soil impact nitrogen-fixation capacity and rice growth by shaping the soil microbiome.
NSCF - National Natural Science Foundation of China
Funding text :
We thank Dr. B. E. Hazen (Willows End scientific editing and writing, USA) for critical reading and revising of the manuscript. This work was supported by the Inter-Governmental S&T Cooperation Project, National Key Research and Development Program of China (2019YFE0108500) and National Natural Science Foundation of China (32400110).
Aasfar, A., Bargaz, A., Yaakoubi, K., Hilali, A., Bennis, I., Zeroual, Y., Meftah Kadmiri, I., Nitrogen fixing Azotobacter species as potential soil biological enhancers for crop nutrition and yield stability. Front. Microbiol., 12, 2021, 628379, 10.3389/fmicb.2021.628379.
Adriaenssens, E.M., Sullivan, M.B., Knezevic, P., van Zyl, L.J., Sarkar, B.L., Dutilh, B.E., Alfenas-Zerbini, P., Łobocka, M., Tong, Y., Brister, J.R., Moreno Switt, A.I., Klumpp, J., Aziz, R.K., Barylski, J., Uchiyama, J., Edwards, R.A., Kropinski, A.M., Petty, N.K., Clokie, M.R.J., Kushkina, A.I., Morozova, V.V., Duffy, S., Gillis, A., Rumnieks, J., Kurtböke, İ., Chanishvili, N., Goodridge, L., Wittmann, J., Lavigne, R., Jang, H.B., Prangishvili, D., Enault, F., Turner, D., Poranen, M.M., Oksanen, H.M., Krupovic, M., Taxonomy of prokaryotic viruses: 2018-2019 update from the ICTV Bacterial and Archaeal Viruses Subcommittee. Arch. Virol. 165 (2020), 1253–1260, 10.1007/s00705-015-2728-0.
Ankrah, N.Y., May, A.L., Middleton, J.L., Jones, D.R., Hadden, M.K., Gooding, J.R., LeCleir, G.R., Wilhelm, S.W., Campagna, S.R., Buchan, A., Phage infection of an environmentally relevant marine bacterium alters host metabolism and lysate composition. ISME J. 8 (2014), 1089–1100, 10.1038/ismej.2013.216.
Berlanas, C., Berbegal, M., Elena, G., Laidani, M., Cibriain, J.F., Sagües, A., The fungal and bacterial rhizosphere microbiome associated with grapevine rootstock genotypes in mature and young vineyards. Front. Microbiol., 10, 2019, 1142, 10.3389/fmicb.2019.01142.
Best, A.N., Payne, W.J., Preliminary enzymatic eevents in asparagine-dependent denitrification by Pseudomonas perfectomarinus. J. Bacteriol. 89 (1965), 1051–1054, 10.1128/jb.89.4.1051-1054.1965.
Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K., Brejnrod, A., Brislawn, C.J., Brown, C.T., Callahan, B.J., Caraballo-Rodríguez, A.M., Chase, J., Cope, E.K., Da Silva, R., Diener, C., Dorrestein, P.C., Douglas, G.M., Durall, D.M., Duvallet, C., Edwardson, C.F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J.M., Gibbons, S.M., Gibson, D.L., Gonzalez, A., Gorlick, K., Guo, J., Hillmann, B., Holmes, S., Holste, H., Huttenhower, C., Huttley, G.A., Janssen, S., Jarmusch, A.K., Jiang, L., Kaehler, B.D., Kang, K.B., Keefe, C.R., Keim, P., Kelley, S.T., Knights, D., Koester, I., Kosciolek, T., Kreps, J., Langille, M.G.I., Lee, J., Ley, R., Liu, Y.X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B.D., McDonald, D., McIver, L.J., Melnik, A.V., Metcalf, J.L., Morgan, S.C., Morton, J.T., Naimey, A.T., Navas-Molina, J.A., Nothias, L.F., Orchanian, S.B, Pearson, T., Peoples, S.L., Petras, D., Preuss, M.L., Pruesse, E., Rasmussen, L.B., Rivers, A., Robeson, M.S., Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S.J., Spear, J.R., Swafford, A.D., Thompson, L.R., Torres, P.J., Trinh, P., Tripathi, A., Turnbaugh, P.J., Ul-Hasan, S., van der Hooft, J.J.J., Vargas, F., Vázquez-Baeza, Y., Vogtmann, E., von Hippel, M., Walters, W., Wan, Y., Wang, M., Warren, J., Weber, K.C., Williamson, C.H.D., Willis, A.D., Xu, Z.Z., Zaneveld J.R., Zhang, Y., Zhu, Q., Knight, R., Caporaso, J.G., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857. doi: https://doi.org/10.1038/s41587-019-0209-9.
Braga, L.P.P., Soucy, S.M., Amgarten, D.E., da Silva, A.M., Setubal, J.C., Bacterial diversification in the light of the interactions with phages: the genetic symbionts and their role in ecological speciation. Front. Ecol. Evol., 6, 2018, 6, 10.3389/fevo.2018.00006.
Braga, L.P.P., Spor, A., Kot, W., Breuil, M.-C., Hansen, L.H., Setubal, J.C., Philippot, L., Impact of phages on soil bacterial communities and nitrogen availability under different assembly scenarios. Microbiome, 8, 2020, 52, 10.1186/s40168-020-00822-z.
Bujak, K., Decewicz, P., Kitowicz, M., Radlinska, M., Characterization of three novel virulent Aeromonas phages provides insights into the diversity of the Autographiviridae family. Viruses, 14, 2022, 1016, 10.3390/v14051016.
Cameron, B., Briggs, K., Pridmore, S., Brefort, G., Crouzet, J., Cloning and analysis of genes involved in coenzyme B12 biosynthesis in Pseudomonas denitrificans. J. Bacteriol. 171:1 (1989), 547–557, 10.1128/jb.171.1.547-557.1989.
Cechin, I., da Silva, L.P., Ferreira, E.T., Barrochelo, S.C., de Melo, F.P.S.R., Dokkedal, A.L., Saldanha, L.L., Physiological responses of Amaranthus cruentus L. to drought stress under sufficient- and deficient-nitrogen conditions. PLoS One., 17, 2022, e0270849, 10.1371/journal.pone.0270849.
Chakraborty, P., Sarker, R.K., Roy, R., Ghosh, A., Maiti, D., Tribedi, P., Bioaugmentation of soil with Enterobacter cloacae AKS7 enhances soil nitrogen content and boosts soil microbial functional-diversity. 3 Biotech., 9, 2019, 253, 10.1007/s13205-019-1791-8.
Chen, H., Boutros, P.C., VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinform., 12, 2011, 35, 10.1186/1471-2105-12-35.
Daims, H., Sebastian, L., Wagner, M., Daime, a novel image analysis program for microbial ecology and biofilm research. Environ. Microbiol. 8 (2006), 200–213, 10.1111/j.1462-2920.2005.00880.x.
Daly, R.A., Roux, S., Borton, M.A., Morgan, D.M., Johnston, M.D., Booker, A.E., Hoyt, D.W., Meulia, T., Wolfe, R.A., Hanson, A.J., Mouser, P.J., Moore, J.D., Wunch, K., Sullivan, M.B., Wrighton, K.C., Wilkins, M.J., Viruses control dominant bacteria colonizing the terrestrial deep biosphere after hydraulic fracturing. Nat. Microbiol. 4 (2019), 352–361, 10.1038/s41564-018-0312-6.
Davin-Regli, A., Lavigne, J.P., Pagès, J.M., Enterobacter spp.: update on taxonomy, clinical aspects, and emerging antimicrobial resistance. Clin. Microbiol. Rev., 32, 2019, e00002-19, 10.1128/CMR.00002-19.
Delcher, A.L., Bratke, K.A., Powers, E.C., Salzberg, S.L, 2007. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23, 673–679. https://doi.org/10.1093/bioinformatics/btm009.
Escudero-Martinez, C., Coulter, M., Alegria Terrazas, R., Foito, A., Kapadia, R., Pietrangelo, L., Maver, M., Sharma, R., Aprile, A., Morris, J., Hedley, P.E., Maurer, A., Pillen, K., Naclerio, G., Mimmo, T., Barton, G.J., Waugh, R., Abbott, J., Bulgarelli, D., Identifying plant genes shaping microbiota composition in the barley rhizosphere. Nat. Commun., 13, 2022, 3443, 10.1038/s41467-022-31022-y.
Gao, G., Zhang, Y., Niu, S., Chen, Y., Wang, S., Anwar, N., Chen, S., Li, G., Ma, T., Reclassification of Enterobacter sp. FY-07 as Kosakonia oryzendophytica FY-07 and its potential to promote plant growth. Microorganisms, 10, 2022, 575, 10.3390/microorganisms10030575.
Grasso, C.R., Pokrzywinski, K.L., Waechter, C., Rycroft, T., Zhang, Y., Aligata, A., Kramer, M., Lamsal, A., A review of cyanophage–host relationships: highlighting cyanophages as a potential cyanobacteria control strategy. Toxins (Basel), 14, 2022, 385, 10.3390/toxins14060385.
Gumaelius, L., Magnusson, G., Pettersson, B., Dalhammar, G., Comamonas denitrificans sp. nov., an efficient denitrifying bacterium isolated from activated sludge. Int. J. Syst. Evol. Microbiol. 51 (2001), 999–1006, 10.1099/00207713-51-3-999.
Hyman, P., Abedon, S.T., Bacteriophage host range and bacterial resistance. Advances in Applied Microbiology, 1st ed, 2010, Elsevier Inc., 10.1016/S0065-2164(10)70007-1.
Jack, R., De Zamaroczy, M., Merrick, M., The signal transduction protein GlnK is required for NifL-dependent nitrogen control of nif gene expression in Klebsiella pneumoniae. J. Bacteriol. 181 (1999), 1156–1162, 10.1128/jb.181.4.1156-1162.1999.
James, E.K., Nitrogen fixation in endophytic and associative symbiosis. Field Crop Res. 65 (2000), 197–209, 10.1016/S0378-4290(99)00087-8.
Ji, C., Liu, Z., Hao, L., Song, X., Liu, X., Effects of Enterobacter cloacae HG-1 on the nitrogen-fixing community structure of wheat rhizosphere soil and on salt tolerance. Front. Plant Sci., 11, 2020, 10.3389/fpls.2020.01094.
Kämpfer, P., Ruppelb, S., Remus, R., Enterobacter radicincitans sp. nov., a plant growth promoting species of the family Enterobacteriaceae. Syst. Appl. Microbiol. 28 (2005), 213–221, 10.1016/j.syapm.2004.12.007.
Kõljalg, U., Nilsson, R.H., Abarenkov, K., Tedersoo, L., Taylor, A.F.S., Bahram, M., Bates, S.T., Bruns, T.D., Bengtsson-Palme, J., Callaghan, T.M., Douglas, B., Drenkhan, T., Eberhardt, U., Dueñas, M., Grebenc, T., Griffith, G.W., Hartmann, M., Kirk, P.M., Kohout, P., Larsson, E., Lindahl, B.D., Lücking, R., Martín, M.P., Matheny, P.B., Nguyen, N.H., Niskanen, T., Oja, J., Peay, K.G., Peintner, U., Peterson, M., Põldmaa, K., Saag, L., Saar, I., Schüßler, A., Scott, J.A., Senés, C., Smith, M.E., Suija, A., Taylor, D.L., Telleria, M.T., Weiss, M., Larsson, K.H., Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22 (2013), 5271–5277, 10.1111/mec.12481.
Koren, S., Walenz, B.P., Berlin, K., Miller, J.R., Bergman, N.H., Phillippy, A.M., Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27 (2017), 722–736, 10.1101/gr.215087.116.
Koskella, B., Brockhurst, M.A., Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol. Rev. 38 (2014), 916–931, 10.1111/1574-6976.12072.
Koskey, G., Mburu, S.W., Njeru, E.M., Kimiti, J.M., Ombori, O., Maingi, J.M., Potential of native rhizobia in enhancing nitrogen fixation and yields of climbing beans (Phaseolus vulgaris L.) in contrasting environments of eastern Kenya. Front. Plant Sci., 8, 2017, 443, 10.3389/fpls.2017.00443.
Kuzyakov, Y., Mason-Jones, K., Viruses in soil: Nano-scale undead drivers of microbial life, biogeochemical turnover and ecosystem functions. Soil Biol. Biochem. 127 (2018), 305–317, 10.1016/j.soilbio.2018.09.032.
Lavigne, R., Seto, D., Mahadevan, P., Ackermann, H.W., Kropinski, A.M., Unifying classical and molecular taxonomic classification: analysis of the Podoviridae using BLASTP-based tools. Res. Microbiol. 159 (2008), 406–414, 10.1016/j.resmic.2008.03.005.
Li, B., Tang, F., Isolation and lysis test of chicken Escherichia coli phage. China Poultry, 33, 2011, 2, 10.16372/j.issn.1004-6364.2011.14.002 (in Chinese).
Li, Y.T., Sun, H., Yang, W.C., Chen, G.X., Xu, H., Dynamics of bacterial and viral communities in paddy soil with irrigation and urea application. Viruses, 11, 2019, 347, 10.3390/v11040347.
Liang, X., Radosevich, M., DeBruyn, J.M., Wilhelm, S.W., McDearis, R., Zhuang, J., Incorporating viruses into soil ecology: a new dimension to understand biogeochemical cycling. Crit. Rev. Environ. Sci. Technol. 54 (2024), 117–137, 10.1080/10643389.2023.2223123.
Lopez-Lozano, N.E., Carcaño-Montiel, M.G., Bashan, Y., Using native trees and cacti to improve soil potential nitrogen fixation during long-term restoration of arid lands. Plant Soil 403 (2016), 317–329, 10.1007/s11104-016-2807-3.
Masters, R.A., Madigan, M., Nitrogen metabolism in the phototrophic bacteria Rhodocyclus purpureus and Rhodospirillum tenue. J. Bacteriol. 155 (1983), 222–227, 10.1128/jb.155.1.222-227.1983.
Mellbye, B.L., Giguere, A.T., Bottomley, P.J., Sayavedra-Soto, L.A., Quorum quenching of Nitrobacter winogradskyi suggests that quorum sensing regulates fluxes of nitrogen oxide(s) during nitrification. mBio, 7, 2016, e01753-16, 10.1128/mbio.01753-16.
Naqqash, T., Malik, K.A., Imran, A., Hameed, S., Shahid, M., Hanif, M.K., Majeed, A., Iqbal, M.J., Qaisrani, M.M., van Elsas, J.D, 2022. Inoculation with Azospirillum spp. acts as the liming source for improving growth and nitrogen use efficiency of potato. Front. Plant Sci. 13, 929114. doi: https://doi.org/10.3389/fpls.2022.929114.
Nelson, D.W., Sommers, L.E., Determination of total nitrogen in plant material. Agron. J. 65 (1973), 109–112, 10.2134/agronj1973.00021962006500010033x.
Pashaei, R., Zahedipour-Sheshglani, P., Dzingelevičienė, R., Abbasi, S., Rees, R.M., Effects of pharmaceuticals on the nitrogen cycle in water and soil: a review. Environ. Monit. Assess., 194, 2022, 105, 10.1007/s10661-022-09754-7.
Paula, D.M., Danczak, R.E., Simon, R., Simon, R., Jeroen, F., Mikayla, A.B., Richard, A.W., Marie, N.B., Michael, J.W., Viral and metabolic controls on high rates of microbial sulfur and carbon cycling in wetland ecosystems. Microbiome, 6, 2018, 138, 10.1186/s40168-018-0522-4.
Pratama, A.A., van Elsas, J.D., The ‘neglected’ soil virome–potential role and impact. Trends Microbiol. 26 (2018), 649–662, 10.1016/j.tim.2017.12.004.
Quirós, P., Sala-Comorera, L., Gómez-Gómez, C., Ramos-Barbero, M.D., Rodríguez-Rubio, L., Vique, G., Yance-Chávez, T., Atarés, S., García-Gutierrez, S., García-Marco, S., Vallejo, A., Salaet, I., Muniesa, M., Identification of a virulent phage infecting species of Nitrosomonas. ISME J. 17 (2023), 645–648, 10.1038/s41396-023-01380-6.
Reitter, C., Petzoldt, H., Korth, A., Schwab, F., Stange, C., Hambsch, B., Tiehm, A., Lagkouvardos, I., Gescher, J., Hügler, M., Seasonal dynamics in the number and composition of coliform bacteria in drinking water reservoirs. Sci. Total Environ., 787, 2021, 147539, 10.1101/2021.02.16.428560.
Ribarska, T., Bjørnstad, P.M., Sundaram, A.Y.M., Gilfillan, G.D., Optimization of enzymatic fragmentation is crucial to maximize genome coverage: a comparison of library preparation methods for Illumina sequencing. BMC Genomics, 23, 2022, 92, 10.1186/s12864-022-08316-y.
Rodriguez-Valera, F., Martin-Cuadrado, A.B., Rodriguez-Brito, B., Pašić, L., Thingstad, T.F., Rohwer, F., Mira, A., Explaining microbial population genomics through phage predation. Nat. Rev. Microbiol. 7 (2009), 828–836, 10.1038/nrmicro2235.
Rosenwasser, S., Ziv, C., Creveld, S.G.V., Vardi, A., Virocell metabolism: metabolic innovations during host-virus interactions in the ocean. Trends Microbiol. 24:10 (2016), 821–832, 10.1016/j.tim.2016.06.006.
Roslan, M.A.M., Zulkifli, N.N., Sobri, Z.M., Zuan, A.T.K., Cheak, S.C., Abdul, Rahman, N.A., 2020. Seed biopriming with P- and K-solubilizing Enterobacter hormaechei sp. improves the early vegetative growth and the P and K uptake of okra (Abelmoschus esculentus) seedling. PLoS One 15, e0232860. doi: https://doi.org/10.1371/journal.pone.0232860.
Samson, J.E., Magadán, A.H., Sabri, M., Moineau, S., Revenge of the phages: defeating bacterial defences. Nat. Rev. Microbiol. 11 (2013), 675–687, 10.1038/nrmicro3096.
Singh, N.K., Bezdan, D., Checinska, Sielaff. A., Wheeler, K., Mason, C.E., Venkateswaran, K., 2018. Multi-drug resistant Enterobacter bugandensis species isolated from the international Space Station and comparative genomic analyses with human pathogenic strains. BMC Microbiol. 18, 175. doi: https://doi.org/10.1186/s12866-018-1325-2.
Stern, A., Sorek, R., The phage-host arms race: shaping the evolution of microbes. Bioessays 33 (2011), 43–51, 10.1002/bies.201000071.
Summer, E.J., Liu, M., Gill, J.J., Grant, M., Chan-Cortes, T.N., Ferguson, L., Janes, C., Lange, K., Bertoli, M., Moore, C., Orchard, R.C., Cohen, N.D., Young, R., Genomic and functional analyses of Rhodococcus equi phages ReqiPepy6, ReqiPoco6, ReqiPine5, and ReqiDocB7. Appl. Environ. Microbiol. 77 (2011), 669–683, 10.1128/AEM.01952-10.
Suttle, C.A., Viruses in the sea. Nature 437:7057 (2005), 356–361, 10.1038/nature04160.
Suttle, C.A., Chan, A.M., Dynamics and distribution of cyanophages and their effect on marine Synechococcus spp. Appl. Environ. Microbiol. 60 (1994), 3167–3174, 10.1128/aem.60.9.3167-3174.1994.
Tran, P.Q., Anantharaman, K., Biogeochemistry goes viral: towards a multifaceted approach to study viruses and biogeochemical cycling. mSystems, 6, 2021, e01138-21, 10.1128/msystems.01138-21.
Uemoto, H., Saiki, H., Nitrogen removal by tubular gel containing Nitrosomonas europaea and Paracoccus denitrificans. Appl. Environ. Microbiol. 62 (1996), 4224–4228, 10.1128/aem.62.11.4224-4228.1996.
Wang, X., Wei, Z., Yang, K., Wang, J., Jousset, A., Xu, Y., Shen, Q., Friman, V.P., Phage combination therapies for bacterial wilt disease in tomato. Nat. Biotechnol. 37 (2019), 1513–1520, 10.1038/s41587-019-0328-3.
Wang, S., Chen, A., Xie, K., Yang, X., Luo, Z., Chen, J., Zeng, D., Ren, Y., Yang, C., Wang, L., Feng, H., López-Arredondo, D.L., Herrera-Estrella, L.R., Xu, G., Functional analysis of the OsNPF4.5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants. Proc. Natl. Acad. Sci. USA 117 (2020), 16649–16659, 10.1073/pnas.2000926117.
Wang, Y., Liu, Y., Wu, Y., Wu, N., Liu, W., Wang, X., Heterogeneity of soil bacterial and bacteriophage communities in three rice agroecosystems and potential impacts of bacteriophage on nutrient cycling. Environ. Microbiome., 17, 2022, 17, 10.1186/s40793-022-00410-8.
Wang, Y., Tian, S., Wu, N., Liu, W., Li, L., Wang, X., Differential microbial communities in paddy soils between Guiyang plateaus and Chengdu basins drive the incidence of rice bacterial diseases. Plant Dis. 106 (2022), 1882–1889, 10.1094/PDIS-09-21-1974-RE.
Wickham, H., ggplot2: Elegant Graphics for Data Analysis. 2016, Springer 978-3-319-24277-4, 10.1007/978-0-387-98141-3.
Xu, M., Li, T., Liu, W., Ding, J., Lili Gao, L., Han, X., Zhang, X., Sensitivity of soil nitrifying and denitrifying microorganisms to nitrogen deposition on the Qinghai–Tibetan plateau. Ann. Microbiol., 71, 2021, 6, 10.1186/s13213-020-01619-z.