Eprint already available on another site (E-prints, working papers and research blog)
Regularity of Weighted Tensorized Fractional Brownian Fields and associated function spaces
Esser, Céline; Loosveldt, Laurent; Vedel, Béatrice
2024
 

Files


Full Text
main.pdf
Author preprint (501.49 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Mathematics - Probability; Mathematics - Functional Analysis
Abstract :
[en] We investigate a new class of self-similar fractional Brownian fields, called Weighted Tensorized Fractional Brownian Fields (WTFBS). These fields, introduced in the companion paper \cite{ELLV}, generalize the well-known fractional Brownian sheet (FBs) by relaxing its tensor-product structure, resulting in new self-similar Gaussian fields with stationary rectangular increments that differ from the FBs. We analyze the local regularity properties of these fields and introduce a new concept of regularity through the definition of Weighted Tensorized Besov Spaces. These spaces combine aspects of mixed dominating smoothness spaces and hyperbolic Besov spaces, which are similar in structure to classical Besov spaces. We provide a detailed characterization of these spaces using Littlewood-Paley theory and hyperbolic wavelet analysis.
Disciplines :
Mathematics
Author, co-author :
Esser, Céline  ;  Université de Liège - ULiège > Département de mathématique > Analyse mathématique et ses interactions avec la théorie des probabilités
Loosveldt, Laurent  ;  Université de Liège - ULiège > Département de mathématique > Probabilités - Analyse stochastique
Vedel, Béatrice
Language :
English
Title :
Regularity of Weighted Tensorized Fractional Brownian Fields and associated function spaces
Publication date :
December 2024
Available on ORBi :
since 29 January 2025

Statistics


Number of views
62 (0 by ULiège)
Number of downloads
35 (1 by ULiège)

Bibliography


Similar publications



Contact ORBi