CP: Cancer; CRISPR screen; breast cancer; histone demethylase; mitochondrial signaling; Transcription Factors; DNA-Binding Proteins; KDM5A protein, human; ZBTB7A protein, human; Retinoblastoma-Binding Protein 2; Histones; NF-kappa B; Humans; Female; Cell Line, Tumor; Gene Regulatory Networks; Retinoblastoma-Binding Protein 2/metabolism; Retinoblastoma-Binding Protein 2/genetics; Histones/metabolism; Promoter Regions, Genetic/genetics; NF-kappa B/metabolism; Animals; Breast Neoplasms/genetics; Breast Neoplasms/pathology; Breast Neoplasms/metabolism; Transcription Factors/metabolism; Transcription Factors/genetics; DNA-Binding Proteins/metabolism; DNA-Binding Proteins/genetics; Gene Expression Regulation, Neoplastic; Breast Neoplasms; Promoter Regions, Genetic; Biochemistry, Genetics and Molecular Biology (all)
Abstract :
[en] We previously described that the KDM5B histone H3 lysine 4 demethylase is an oncogene in estrogen-receptor-positive breast cancer. Here, we report that KDM5A is amplified and overexpressed in basal breast tumors, and KDM5 inhibition (KDM5i) suppresses the growth of KDM5-amplified breast cancer cell lines. Using CRISPR knockout screens in a basal breast cancer cell line with or without KDM5i, we found that deletion of the ZBTB7A transcription factor and core SAGA complex sensitizes cells to KDM5i, whereas deletion of RHO-GTPases leads to resistance. Chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) revealed co-localization of ZBTB7A and KDM5A/B at promoters with high histone H3K4me3 and dependence of KDM5A chromatin binding on ZBTB7A. ZBTB7A knockout altered the transcriptional response to KDM5i at NF-κB targets and mitochondrion-related pathways. High expression of ZBTB7A in triple-negative breast cancer is significantly associated with poor response to neoadjuvant chemotherapy. Our work furthers the understanding of KDM5-mediated gene regulation and identifies mediators of sensitivity to KDM5i.
Disciplines :
Oncology
Author, co-author :
DiCiaccio, Benedetto; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
Seehawer, Marco; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
Li, Zheqi; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
Patmanidis, Andriana; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
Bui, Triet; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
Foidart, Pierre ; Université de Liège - ULiège > Département des sciences cliniques ; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
Nishida, Jun; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
D'Santos, Clive S; Cambridge Research Institute, University of Cambridge, Cambridge, UK
Papachristou, Evangelia K; Cambridge Research Institute, University of Cambridge, Cambridge, UK
Papanastasiou, Malvina; The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA
Reiter, Andrew H; The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA
Qiu, Xintao; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
Li, Rong; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
Jiang, Yijia; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
Huang, Xiao-Yun; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
Simeonov, Anton; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
Kales, Stephen C; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
Rai, Ganesha; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
Lal-Nag, Madhu; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
Jadhav, Ajit; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
Brown, Myles; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
Carroll, Jason S; Cambridge Research Institute, University of Cambridge, Cambridge, UK
Long, Henry W; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
Polyak, Kornelia ; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA, The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA, The Ludwig Center at Harvard, Boston, MA 02115, USA. Electronic address: kornelia_polyak@dfci.harvard.edu
NCI - National Cancer Institute NCATS - National Center for Advancing Translational Sciences NIH - National Institutes of Health
Funding text :
We thank members of our laboratories for their critical reading of the manuscript and useful discussions. We thank the Dana-Farber Cancer Institute Molecular Biology Core Facility for their outstanding sequencing service. This research was supported by National Cancer Institute R35 CA197623 (K.P.) and P01 CA250959 (K.P., H.W.L., and M.B.), by the Ludwig Center at Harvard (K.P.), and in part by the Intramural Research Program of the National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (A.S., S.C.K., G.R., M.L.-N., and A.J). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.We thank members of our laboratories for their critical reading of the manuscript and useful discussions. We thank the Dana-Farber Cancer Institute Molecular Biology Core Facility for their outstanding sequencing service. This research was supported by National Cancer Institute R35 CA197623 (K.P.) and P01 CA250959 (K.P., H.W.L., and M.B.), by the Ludwig Center at Harvard (K.P.), and in part by the Intramural Research Program of the National Center for Advancing Translational Sciences ( NCATS ), National Institutes of Health (A.S., S.C.K., G.R., M.L.-N., D.J.M., and A.J). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health .
Feinberg, A.P., Koldobskiy, M.A., Göndör, A., Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat. Rev. Genet. 17 (2016), 284–299, 10.1038/nrg.2016.13.
Flavahan, W.A., Gaskell, E., Bernstein, B.E., Epigenetic plasticity and the hallmarks of cancer. Science, 357, 2017, eaal2380, 10.1126/science.aal2380.
Shen, C., Vakoc, C.R., Gain-of-function mutation of chromatin regulators as a tumorigenic mechanism and an opportunity for therapeutic intervention. Curr. Opin. Oncol. 27 (2015), 57–63, 10.1097/CCO.0000000000000151.
Hinohara, K., Polyak, K., Intratumoral Heterogeneity: More Than Just Mutations. Trends Cell Biol. 29 (2019), 569–579, 10.1016/j.tcb.2019.03.003.
Yuan, S., Norgard, R.J., Stanger, B.Z., Cellular Plasticity in Cancer. Cancer Discov. 9 (2019), 837–851, 10.1158/2159-8290.CD-19-0015.
Perou, C.M., Sørlie, T., Eisen, M.B., van de Rijn, M., Jeffrey, S.S., Rees, C.A., Pollack, J.R., Ross, D.T., Johnsen, H., Akslen, L.A., et al. Molecular portraits of human breast tumours. Nature 406 (2000), 747–752, 10.1038/35021093.
Yamamoto, S., Wu, Z., Russnes, H.G., Takagi, S., Peluffo, G., Vaske, C., Zhao, X., Moen Vollan, H.K., Maruyama, R., Ekram, M.B., et al. JARID1B is a luminal lineage-driving oncogene in breast cancer. Cancer Cell 25 (2014), 762–777, 10.1016/j.ccr.2014.04.024.
Zou, M.R., Cao, J., Liu, Z., Huh, S.J., Polyak, K., Yan, Q., Histone demethylase jumonji AT-rich interactive domain 1B (JARID1B) controls mammary gland development by regulating key developmental and lineage specification genes. J. Biol. Chem. 289 (2014), 17620–17633, 10.1074/jbc.M114.570853.
Choi, H.J., Joo, H.S., Won, H.Y., Min, K.W., Kim, H.Y., Son, T., Oh, Y.H., Lee, J.Y., Kong, G., Role of RBP2-Induced ER and IGF1R-ErbB Signaling in Tamoxifen Resistance in Breast Cancer. J. Natl. Cancer Inst., 110, 2018, 400, 10.1093/jnci/djx207.
Hinohara, K., Wu, H.J., Vigneau, S., McDonald, T.O., Igarashi, K.J., Yamamoto, K.N., Madsen, T., Fassl, A., Egri, S.B., Papanastasiou, M., et al. KDM5 Histone Demethylase Activity Links Cellular Transcriptomic Heterogeneity to Therapeutic Resistance. Cancer Cell 34 (2018), 939–953.e9, 10.1016/j.ccell.2018.10.014.
Cao, J., Liu, Z., Cheung, W.K.C., Zhao, M., Chen, S.Y., Chan, S.W., Booth, C.J., Nguyen, D.X., Yan, Q., Histone demethylase RBP2 is critical for breast cancer progression and metastasis. Cell Rep. 6 (2014), 868–877, 10.1016/j.celrep.2014.02.004.
Klein, B.J., Piao, L., Xi, Y., Rincon-Arano, H., Rothbart, S.B., Peng, D., Wen, H., Larson, C., Zhang, X., Zheng, X., et al. The histone-H3K4-specific demethylase KDM5B binds to its substrate and product through distinct PHD fingers. Cell Rep. 6 (2014), 325–335, 10.1016/j.celrep.2013.12.021.
Li, Q., Shi, L., Gui, B., Yu, W., Wang, J., Zhang, D., Han, X., Yao, Z., Shang, Y., Binding of the JmjC demethylase JARID1B to LSD1/NuRD suppresses angiogenesis and metastasis in breast cancer cells by repressing chemokine CCL14. Cancer Res. 71 (2011), 6899–6908, 10.1158/0008-5472.CAN-11-1523.
Hou, J., Wu, J., Dombkowski, A., Zhang, K., Holowatyj, A., Boerner, J.L., Yang, Z.Q., Genomic amplification and a role in drug-resistance for the KDM5A histone demethylase in breast cancer. Am. J. Transl. Res. 4 (2012), 247–256.
Liu, H., Liu, L., Holowatyj, A., Jiang, Y., Yang, Z.Q., Integrated genomic and functional analyses of histone demethylases identify oncogenic KDM2A isoform in breast cancer. Mol. Carcinog. 55 (2016), 977–990, 10.1002/mc.22341.
Johansson, C., Velupillai, S., Tumber, A., Szykowska, A., Hookway, E.S., Nowak, R.P., Strain-Damerell, C., Gileadi, C., Philpott, M., Burgess-Brown, N., et al. Structural analysis of human KDM5B guides histone demethylase inhibitor development. Nat. Chem. Biol. 12 (2016), 539–545, 10.1038/nchembio.2087.
Paroni, G., Bolis, M., Zanetti, A., Ubezio, P., Helin, K., Staller, P., Gerlach, L.O., Fratelli, M., Neve, R.M., Terao, M., Garattini, E., HER2-positive breast-cancer cell lines are sensitive to KDM5 inhibition: definition of a gene-expression model for the selection of sensitive cases. Oncogene 38 (2019), 2675–2689, 10.1038/s41388-018-0620-6.
Maeda, T., Hobbs, R.M., Pandolfi, P.P., The transcription factor Pokemon: a new key player in cancer pathogenesis. Cancer Res. 65 (2005), 8575–8578, 10.1158/0008-5472.CAN-05-1055.
Lunardi, A., Guarnerio, J., Wang, G., Maeda, T., Pandolfi, P.P., Role of LRF/Pokemon in lineage fate decisions. Blood 121 (2013), 2845–2853, 10.1182/blood-2012-11-292037.
Constantinou, C., Spella, M., Chondrou, V., Patrinos, G.P., Papachatzopoulou, A., Sgourou, A., The multi-faceted functioning portrait of LRF/ZBTB7A. Hum. Genomics, 13, 2019, 66, 10.1186/s40246-019-0252-0.
Blumbach, K., Zweers, M.C., Brunner, G., Peters, A.S., Schmitz, M., Schulz, J.N., Schild, A., Denton, C.P., Sakai, T., Fässler, R., et al. Defective granulation tissue formation in mice with specific ablation of integrin-linked kinase in fibroblasts - role of TGFbeta1 levels and RhoA activity. J. Cell Sci. 123 (2010), 3872–3883, 10.1242/jcs.063024.
Ohguchi, H., Park, P.M.C., Wang, T., Gryder, B.E., Ogiya, D., Kurata, K., Zhang, X., Li, D., Pei, C., Masuda, T., et al. Lysine Demethylase 5A is Required for MYC Driven Transcription in Multiple Myeloma. Blood Cancer Discov. 2 (2021), 370–387, 10.1158/2643-3230.BCD-20-0108.
Helmlinger, D., Tora, L., Sharing the SAGA. Trends Biochem. Sci. 42 (2017), 850–861, 10.1016/j.tibs.2017.09.001.
Liu, C.J., Prazak, L., Fajardo, M., Yu, S., Tyagi, N., Di Cesare, P.E., Leukemia/lymphoma-related factor, a POZ domain-containing transcriptional repressor, interacts with histone deacetylase-1 and inhibits cartilage oligomeric matrix protein gene expression and chondrogenesis. J. Biol. Chem. 279 (2004), 47081–47091, 10.1074/jbc.M405288200.
Pavlenko, E., Ruengeler, T., Engel, P., Poepsel, S., Functions and Interactions of Mammalian KDM5 Demethylases. Front. Genet., 13, 2022, 906662, 10.3389/fgene.2022.906662.
Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M., BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34 (2006), D535–D539, 10.1093/nar/gkj109.
Oughtred, R., Rust, J., Chang, C., Breitkreutz, B.J., Stark, C., Willems, A., Boucher, L., Leung, G., Kolas, N., Zhang, F., et al. The BioGRID database: A comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci. 30 (2021), 187–200, 10.1002/pro.3978.
Szklarczyk, D., Morris, J.H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., Santos, A., Doncheva, N.T., Roth, A., Bork, P., et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 45 (2017), D362–D368, 10.1093/nar/gkw937.
Nishibuchi, G., Shibata, Y., Hayakawa, T., Hayakawa, N., Ohtani, Y., Sinmyozu, K., Tagami, H., Nakayama, J.-I., Physical and Functional Interactions between the Histone H3K4 Demethylase KDM5A and the Nucleosome Remodeling and Deacetylase (NuRD) Complex. J. Biol. Chem. 289 (2014), 28956–28970, 10.1074/jbc.m114.573725.
Choi, W.I., Jeon, B.N., Yoon, J.H., Koh, D.I., Kim, M.H., Yu, M.Y., Lee, K.M., Kim, Y., Kim, K., Hur, S.S., et al. The proto-oncoprotein FBI-1 interacts with MBD3 to recruit the Mi-2/NuRD-HDAC complex and BCoR and to silence p21WAF/CDKN1A by DNA methylation. Nucleic Acids Res. 41 (2013), 6403–6420, 10.1093/nar/gkt359.
Papachristou, E.K., Kishore, K., Holding, A.N., Harvey, K., Roumeliotis, T.I., Chilamakuri, C.S.R., Omarjee, S., Chia, K.M., Swarbrick, A., Lim, E., et al. A quantitative mass spectrometry-based approach to monitor the dynamics of endogenous chromatin-associated protein complexes. Nat. Commun., 9, 2018, 2311, 10.1038/s41467-018-04619-5.
Wang, S., Sun, H., Ma, J., Zang, C., Wang, C., Wang, J., Tang, Q., Meyer, C.A., Zhang, Y., Liu, X.S., Target analysis by integration of transcriptome and ChIP-seq data with BETA. Nat. Protoc. 8 (2013), 2502–2515, 10.1038/nprot.2013.150.
Yu, H., Pardoll, D., Jove, R., STATs in cancer inflammation and immunity: a leading role for STAT3. Nat. Rev. Cancer 9 (2009), 798–809, 10.1038/nrc2734.
Ren, R., Horton, J.R., Chen, Q., Yang, J., Liu, B., Huang, Y., Blumenthal, R.M., Zhang, X., Cheng, X., Structural basis for transcription factor ZBTB7A recognition of DNA and effects of ZBTB7A somatic mutations that occur in human acute myeloid leukemia. J. Biol. Chem., 299, 2023, 102885, 10.1016/j.jbc.2023.102885.
Scarpulla, R.C., Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol. Rev. 88 (2008), 611–638, 10.1152/physrev.00025.2007.
Zheng, R., Wan, C., Mei, S., Qin, Q., Wu, Q., Sun, H., Chen, C.H., Brown, M., Zhang, X., Meyer, C.A., Liu, X.S., Cistrome Data Browser: expanded datasets and new tools for gene regulatory analysis. Nucleic Acids Res. 47 (2019), D729–D735, 10.1093/nar/gky1094.
Jovanovic, B., Temko, D., Stevens, L.E., Seehawer, M., Fassl, A., Murphy, K., Anand, J., Garza, K., Gulvady, A., Qiu, X., et al. Heterogeneity and transcriptional drivers of triple-negative breast cancer. Cell Rep., 42, 2023, 113564, 10.1016/j.celrep.2023.113564.
Zhang, S.M., Cai, W.L., Liu, X., Thakral, D., Luo, J., Chan, L.H., McGeary, M.K., Song, E., Blenman, K.R.M., Micevic, G., et al. KDM5B promotes immune evasion by recruiting SETDB1 to silence retroelements. Nature 598 (2021), 682–687, 10.1038/s41586-021-03994-2.
Tokuyama, M., Kong, Y., Song, E., Jayewickreme, T., Kang, I., Iwasaki, A., ERVmap analysis reveals genome-wide transcription of human endogenous retroviruses. Proc. Natl. Acad. Sci. USA 115 (2018), 12565–12572, 10.1073/pnas.1814589115.
Hatzis, C., Pusztai, L., Valero, V., Booser, D.J., Esserman, L., Lluch, A., Vidaurre, T., Holmes, F., Souchon, E., Wang, H., et al. A genomic predictor of response and survival following taxane-anthracycline chemotherapy for invasive breast cancer. JAMA 305 (2011), 1873–1881, 10.1001/jama.2011.593.
Popovici, V., Chen, W., Gallas, B.G., Hatzis, C., Shi, W., Samuelson, F.W., Nikolsky, Y., Tsyganova, M., Ishkin, A., Nikolskaya, T., et al. Effect of training-sample size and classification difficulty on the accuracy of genomic predictors. Breast Cancer Res., 12, 2010, R5, 10.1186/bcr2468.
Silver, D.P., Richardson, A.L., Eklund, A.C., Wang, Z.C., Szallasi, Z., Li, Q., Juul, N., Leong, C.O., Calogrias, D., Buraimoh, A., et al. Efficacy of neoadjuvant Cisplatin in triple-negative breast cancer. J. Clin. Oncol. 28 (2010), 1145–1153, 10.1200/JCO.2009.22.4725.
Yoo, J., Kim, G.W., Jeon, Y.H., Kim, J.Y., Lee, S.W., Kwon, S.H., Drawing a line between histone demethylase KDM5A and KDM5B: their roles in development and tumorigenesis. Exp. Mol. Med. 54 (2022), 2107–2117, 10.1038/s12276-022-00902-0.
Redondo Monte, E., Kerbs, P., Greif, P.A., ZBTB7A links tumor metabolism to myeloid differentiation. Exp. Hematol. 87 (2020), 20–24.e1, 10.1016/j.exphem.2020.05.010.
Redondo Monte, E., Wilding, A., Leubolt, G., Kerbs, P., Bagnoli, J., Hiddemann, W., Enard, W., Theurich, S., Greif, P.A., Loss of ZBTB7A Enhances Glycolysis and Beta Oxidation in Myeloid Leukemia. Blood, 134, 2019, 1453, 10.1182/blood-2019-128378.
Redondo Monte, E., Wilding, A., Leubolt, G., Kerbs, P., Bagnoli, J.W., Hartmann, L., Hiddemann, W., Chen-Wichmann, L., Krebs, S., Blum, H., et al. ZBTB7A prevents RUNX1-RUNX1T1-dependent clonal expansion of human hematopoietic stem and progenitor cells. Oncogene 39 (2020), 3195–3205, 10.1038/s41388-020-1209-4.
Roesch, A., Vultur, A., Bogeski, I., Wang, H., Zimmermann, K.M., Speicher, D., Körbel, C., Laschke, M.W., Gimotty, P.A., Philipp, S.E., et al. Overcoming Intrinsic Multidrug Resistance in Melanoma by Blocking the Mitochondrial Respiratory Chain of Slow-Cycling JARID1Bhigh Cells. Cancer Cell 23 (2013), 811–825, 10.1016/j.ccr.2013.05.003.
Zhu, X., Trimarco, J.D., Williams, C.A., Barrera, A., Reddy, T.E., Heaton, N.S., ZBTB7A promotes virus-host homeostasis during human coronavirus 229E infection. Cell Rep., 41, 2022, 111540, 10.1016/j.celrep.2022.111540.
Liu, C., Zheng, Z., Li, W., Tang, D., Zhao, L., He, Y., Li, H., Inhibition of KDM5A attenuates cisplatin-induced hearing loss via regulation of the MAPK/AKT pathway. Cell. Mol. Life Sci., 79, 2022, 596, 10.1007/s00018-022-04565-y.
Liu, X., Secombe, J., The Histone Demethylase KDM5 Activates Gene Expression by Recognizing Chromatin Context through Its PHD Reader Motif. Cell Rep. 13 (2015), 2219–2231, 10.1016/j.celrep.2015.11.007.
Wu, L., Cao, J., Cai, W.L., Lang, S.M., Horton, J.R., Jansen, D.J., Liu, Z.Z., Chen, J.F., Zhang, M., Mott, B.T., et al. KDM5 histone demethylases repress immune response via suppression of STING. PLoS Biol., 16, 2018, e2006134, 10.1371/journal.pbio.2006134.
Kaltschmidt, B., Kaltschmidt, C., Hofmann, T.G., Hehner, S.P., Dröge, W., Schmitz, M.L., The pro- or anti-apoptotic function of NF-κB is determined by the nature of the apoptotic stimulus. Eur. J. Biochem. 267 (2000), 3828–3835, 10.1046/j.1432-1327.2000.01421.x.
Pickering, A.M., Vojtovich, L., Tower, J., A Davies, K.J., Oxidative stress adaptation with acute, chronic, and repeated stress. Free Radic. Biol. Med. 55 (2013), 109–118, 10.1016/j.freeradbiomed.2012.11.001.
Walter, L., Canup, B., Pujada, A., Bui, T.A., Arbasi, B., Laroui, H., Merlin, D., Garg, P., Matrix metalloproteinase 9 (MMP9) limits reactive oxygen species (ROS) accumulation and DNA damage in colitis-associated cancer. Cell Death Dis., 11, 2020, 767, 10.1038/s41419-020-02959-z.
Tumber, A., Nuzzi, A., Hookway, E.S., Hatch, S.B., Velupillai, S., Johansson, C., Kawamura, A., Savitsky, P., Yapp, C., Szykowska, A., et al. Potent and Selective KDM5 Inhibitor Stops Cellular Demethylation of H3K4me3 at Transcription Start Sites and Proliferation of MM1S Myeloma Cells. Cell Chem. Biol. 24 (2017), 371–380, 10.1016/j.chembiol.2017.02.006.
Cornwell, M., Vangala, M., Taing, L., Herbert, Z., Köster, J., Li, B., Sun, H., Li, T., Zhang, J., Qiu, X., et al. VIPER: Visualization Pipeline for RNA-seq, a Snakemake workflow for efficient and complete RNA-seq analysis. BMC Bioinform., 19, 2018, 135, 10.1186/s12859-018-2139-9.
Kuleshov, M.V., Jones, M.R., Rouillard, A.D., Fernandez, N.F., Duan, Q., Wang, Z., Koplev, S., Jenkins, S.L., Jagodnik, K.M., Lachmann, A., et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44 (2016), W90–W97, 10.1093/nar/gkw377.
Xie, Z., Bailey, A., Kuleshov, M.V., Clarke, D.J.B., Evangelista, J.E., Jenkins, S.L., Lachmann, A., Wojciechowicz, M.L., Kropiwnicki, E., Jagodnik, K.M., et al. Gene Set Knowledge Discovery with Enrichr. Curr. Protoc., 1, 2021, e90, 10.1002/cpz1.90.
Liberzon, A., Birger, C., Thorvaldsdóttir, H., Ghandi, M., Mesirov, J.P., Tamayo, P., The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 1 (2015), 417–425, 10.1016/j.cels.2015.12.004.
Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., Mesirov, J.P., Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102 (2005), 15545–15550, 10.1073/pnas.0506580102.
Sanjana, N.E., Shalem, O., Zhang, F., Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11 (2014), 783–784, 10.1038/nmeth.3047.
Creech, A.L., Taylor, J.E., Maier, V.K., Wu, X., Feeney, C.M., Udeshi, N.D., Peach, S.E., Boehm, J.S., Lee, J.T., Carr, S.A., Jaffe, J.D., Building the Connectivity Map of epigenetics: chromatin profiling by quantitative targeted mass spectrometry. Methods 72 (2015), 57–64, 10.1016/j.ymeth.2014.10.033.
Taing, L., Bai, G., Cousins, C., Cejas, P., Qiu, X., Herbert, Z.T., Brown, M., Meyer, C.A., Liu, X.S., Long, H.W., Tang, M., CHIPS: A Snakemake pipeline for quality control and reproducible processing of chromatin profiling data. F1000Res., 10, 2021, 517, 10.12688/f1000research.52878.1.
Li, H., Durbin, R., Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25 (2009), 1754–1760, 10.1093/bioinformatics/btp324.
Quon, G., Haider, S., Deshwar, A.G., Cui, A., Boutros, P.C., Morris, Q., Computational purification of individual tumor gene expression profiles leads to significant improvements in prognostic prediction. Genome Med., 5, 2013, 29, 10.1186/gm433.
Hanzelmann, S., Castelo, R., Guinney, J., GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform., 14, 2013, 1, 10.1186/1471-2105-14-7.
Yoshihara, K., Shahmoradgoli, M., Martínez, E., Vegesna, R., Kim, H., Torres-Garcia, W., Treviño, V., Shen, H., Laird, P.W., Levine, D.A., et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun., 4, 2013, 2612, 10.1038/ncomms3612.
Xiao, T., Li, W., Wang, X., Xu, H., Yang, J., Wu, Q., Huang, Y., Geradts, J., Jiang, P., Fei, T., et al. Estrogen-regulated feedback loop limits the efficacy of estrogen receptor-targeted breast cancer therapy. Proc. Natl. Acad. Sci. USA 115 (2018), 7869–7878, 10.1073/pnas.1722617115.
Li, W., Köster, J., Xu, H., Chen, C.H., Xiao, T., Liu, J.S., Brown, M., Liu, X.S., Quality control, modeling, and visualization of CRISPR screens with MAGeCK-VISPR. Genome Biol., 16, 2015, 281, 10.1186/s13059-015-0843-6.
Chen, C.H., Xiao, T., Xu, H., Jiang, P., Meyer, C.A., Li, W., Brown, M., Liu, X.S., Improved design and analysis of CRISPR knockout screens. Bioinformatics 34 (2018), 4095–4101, 10.1093/bioinformatics/bty450.
Shu, S., Wu, H.-J., Ge, J.Y., Zeid, R., Harris, I.S., Jovanović, B., Murphy, K., Wang, B., Qiu, X., Endress, J.E., et al. Synthetic Lethal and Resistance Interactions with BET Bromodomain Inhibitors in Triple-Negative Breast Cancer. Mol. Cell 78 (2020), 1096–1113.e8, 10.1016/j.molcel.2020.04.027.
Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., Smyth, G.K., limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 43, 2015, e47, 10.1093/nar/gkv007.
Benjamini, Y., Yosef, H., Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. Royal Statis. Soc. Series B (Methodol.) 57 (1995), 289–300.