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SUMMARY
Wepreviously described that theKDM5B histone H3 lysine 4 demethylase is an oncogene in estrogen-recep-
tor-positive breast cancer. Here, we report that KDM5A is amplified and overexpressed in basal breast tu-
mors, and KDM5 inhibition (KDM5i) suppresses the growth of KDM5-amplified breast cancer cell lines. Using
CRISPR knockout screens in a basal breast cancer cell line with or without KDM5i, we found that deletion of
theZBTB7A transcription factor and core SAGA complex sensitizes cells to KDM5i, whereas deletion of RHO-
GTPases leads to resistance. Chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing
(RNA-seq) revealed co-localization of ZBTB7A and KDM5A/B at promoters with high histone H3K4me3 and
dependence of KDM5A chromatin binding on ZBTB7A. ZBTB7A knockout altered the transcriptional
response to KDM5i at NF-kB targets andmitochondrion-related pathways. High expression of ZBTB7A in tri-
ple-negative breast cancer is significantly associated with poor response to neoadjuvant chemotherapy. Our
work furthers the understanding of KDM5-mediated gene regulation and identifies mediators of sensitivity to
KDM5i.
INTRODUCTION

Histone modifications regulate chromatin structure and tran-

scription, and abnormalities in this process are involved in

cancer.1,2 Genes encoding histones and chromatin modifiers

are frequently mutated in human cancers,1,3 yet the role of

these in tumorigenesis remains poorly defined. Epigenetic

regulators define cell states, and cellular phenotypic hetero-

geneity is a driver of tumor progression and therapeutic

resistance.4,5

The KDM5 family of histone 3 lysine 4 (H3K4) demethylases

has been implicated as oncogenes in breast cancer. Breast can-

cer is a heterogeneous disease clinically classified based on the

presence of estrogen receptors (ERs) and progesterone recep-

tors (PRs) and HER2 into ER+, HER2+, and triple-negative

(ER�/PR�/HER2�; TNBC) subtypes, while gene expression

profiling has demonstrated luminal, basal, and mesenchymal

molecular subtypes.6 We previously identified KDM5B as a

luminal lineage-driving oncogene frequently amplified in ER+ tu-
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mors and associated with endocrine resistance.7 In line with this,

deletion of Kdm5b in mice delays mammary gland development

by perturbing luminal epithelial cell differentiation.8 Subse-

quently, both KDM5A and KDM5B paralogs were found to

contribute to endocrine therapy resistance, indicating redun-

dancy as oncogenes in ER+ breast cancer.9,10 In addition, inhibi-

tion of KDM5 catalytic activity decreased cellular transcriptomic

heterogeneity, overcoming endocrine resistance.10

The role of KDM5 demethylases in TNBC is less clear, with

KDM5A and KDM5B demonstrating divergent results. KDM5A

is significantly associated with metastatic relapse in ER� breast

cancer patients, and KDM5A knockdown significantly reduced

lung metastasis in vivo.11 However, studies of KDM5B in TNBC

models implicate KDM5B as a tumor suppressor.12,13 KDM5B

inhibits the expression of CCL14 through interaction with the

LSD1/NuRD complex, thus suppressing angiogenesis.13 In addi-

tion,KDM5B overexpression reduced in vitromigration and inva-

sion of TNBC cell lines, depending on the interaction between

KDM5B’s PHD1 domain and unmethylated H3K4.12 Therefore,
ber 24, 2024 ª 2024 The Authors. Published by Elsevier Inc. 1
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Figure 1. Characterization of the SUM149CR cell line

(A) Viability of SUM149 and SUM149CR cells after 7 days of treatment across C70 concentrations. p = t test comparing area under the curve. Data are the mean ±

standard deviation (n = 6).

(B) Gene Set Enrichment Analysis (GSEA) comparing RNA-seq profiles of SUM149CR and SUM149 cells.

(C) Oxygen consumption rate (OCR) in SUM149 and SUM149CR cells ± pre-treatment with 10 mMC70 for 6 days; plot (left) and bar graph depicting quantification

of differences (right). Values are the mean ± standard deviation. n = 3 for all conditions. One-way ANOVA with multiple comparison within either DMSO- or C70-

treated groups for each respiration phase test was used.

(D) GSEA comparing RNA-seq profiles of SUM149 ± 10 mMC70 and SU149CR ± 10 mMC70. Top 10 most significant gene sets from each database are shown.

(legend continued on next page)
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the function of KDM5 demethylases and their therapeutic poten-

tial in TNBC are still unclear.

To investigate the functional relevance of KDM5 in TNBC and

basal breast cancer, we analyzed genetic alterations in the

KDM5 family and found the KDM5A paralog to be specifically

amplified and overexpressed in basal breast cancer. We next

analyzed KDM5 inhibition (KDM5i) sensitivity in breast cancer

cell lines and identified the SUM149 KDM5A-amplified basal

TNBC line with high sensitivity to KDM5i. Using this line and

its KDM5i-resistant derivative, we performed genome-wide

CRISPR screens to identify modulators of KDM5 inhibitor sensi-

tivity. We followed up top hits and integrated these data with

RNA sequencing (RNA-seq) and chromatin immunoprecipitation

sequencing (ChIP-seq) to understand the signaling pathways

associated with KDM5 activity in basal breast cancer.

RESULTS

KDM5A is commonly amplified and overexpressed in
basal breast cancer
Both KDM5A and KDM5B were reported to be amplified and

overexpressed in breast cancer.7,14 However, paralog-specific

differences between luminal and basal breast cancer have not

been analyzed. Thus, we assessed the mutational landscape

of KDM5 paralogs in luminal A (LumA) and basal breast tumors

in the TCGA cohort. We previously reported that KDM5B is spe-

cifically amplified in LumA breast cancer (Figure S1A).7,10 How-

ever, KDM5A was specifically amplified in basal breast cancer

to a similar degree (Figures S1A and S1B), and KDM5A expres-

sion was also the highest in the basal subtype (Figure S1C).15

Although KDM5A had been reported in the 12p13.3 amplicon

detected in �15% of breast cancers,14,15 we demonstrate that

this amplification is basal subtype specific, with KDM5A being

amplified in over 50% of basal breast cancers (Figure S1B).

Given that basal breast cancers tend to be ER�, this could

explain why KDM5A expression correlates with metastatic pro-

gression only in ER� tumors.11

To address if KDM5A and KDM5B are co-amplified passenger

genes and not drivers of their amplicons, we assessed all regions

of chromosomes 1 (KDM5B amplicon) and 12 (KDM5A ampli-

con), respectively, to identify the most frequent amplifications

(Figures S1D and S1E). Amplification of chromosome 1q

(KDM5B locus) is frequent in LumA breast cancer (Figure S1D),

while chromosome 12p13.33 (KDM5A locus) gain is frequent in

basal tumors (Figure S1E). In addition, among all genes on chro-

mosome 12, KDM5A is the second most frequently amplified

gene next to ETV6. However, the oncoPrint plot shows that

KDM5A amplification commonly occurs in the absence of
(E) Heatmap of normalized peptide intensities from mass spectrometry analysis o

48 h. Lysine residues that can be methylated are shown. Peptide intensities were

processing replicates.

(F) Boxplot depicting quantification of H3K4me3 peptide intensities. The p value

(G) Uniform Manifold Approximation and Projection (UMAP) of scRNA-seq in SU

(H) Hexagonal plots showing classification of single cells as parental (black), par

(I) Boxplot showing transcriptomic cell-to-cell Euclidean distance from PCA dim

(J) Dot plot illustrating the enrichment of hallmark pathways in the top 200 genes w

rate (FDR) < 0.05 in at least one groups are selected.
ETV6 amplification (Figure S1F), indicating it is not a passenger

associated with ETV6.

The effect of the C70 KDM5 inhibitor on breast cancer
cell lines
To determine subtype-specific difference in response to KDM5i,

we tested the sensitivity of breast cancer cell lines to the

pan-KDM5 inhibitor C70.16 HER2+ and some TNBC cell lines

(MDA-MB-436 mesenchymal and SUM149 basal) were the

most sensitive (Figures S2A and S2B). Sensitivity to C70 did

not significantly correlate with the expression levels of KDM5

family members (Figure S2C), potentially due to small sample

size. While high sensitivity of HER2+ breast cancer has been

shown before,17 similar sensitivity in a subset of TNBC lines

has not been described. Thus, we chose the SUM149 basal

KDM5A-amplified TNBC cell line for further studies.

To study mechanisms of acquired resistance to KDM5i,

we generated C70-resistant derivatives of SUM149 cells,

SUM149CR, by prolonged culture with 10 mM C70 (Figure 1A).

We then performed RNA-seq and gene set enrichment analysis

(GSEA) on untreated SUM149 and SUM149CR cells. GSEA of

differentially expressed genes (DEGs) revealed oxidative phos-

phorylation as the top enriched pathway in SUM149CR, while in-

flammatory response and interleukin-10 (IL-10) and nuclear fac-

tor kB (NF-kB) signaling were enriched in SUM149 (Figure 1B;

Table S1). To test potential differences in mitochondrial function

between SUM149 and SUM149CR cells, we performed the Mito

Stress Test ± 10 mM C70. SUM149CR showed significantly

higher basal respiration compared to SUM149, validating the

RNA-seq data, while C70 treatment decreased respiration in

both cell lines (Figure 1C).

To identify C70 resistance-associated gene expression

changes, we performed RNA-seq on SUM149 and SUM149CR

cells± 10 mMC70 for 2 or 7 days. SUM149CRhad a delayed tran-

scriptional response to C70, indicated by a smaller shift in RNA-

seq principal-component analysis (PCA) coordinates at 2 days,

but this differencediminishedby7daysof treatment (FigureS2E).

Quantification using Euclidian distances confirmed this observa-

tion (Figure S2F). In line with this, SUM149CR cells had attenu-

ated enrichment of signaling pathways after C70 treatment (Fig-

ure1D). InSUM149cells,we foundenrichment for tumor necrosis

factor a (TNF-a) signaling via NF-kB and inflammatory response

upon C70 treatment (Figure 1D). However, in SUM149CR, these

pathways were either delayed (TNF-a signaling via NF-kB) or ab-

sent (inflammatory response). Quantitative histone mass spec-

trometry demonstrated muted response of SUM149CR cells to

C70 after 2 days of treatment compared to SUM149 based on

changes in H3K4me3 (Figures 1E and 1F; Table S2).
f histone modifications in SUM149 and SUM149CR ± 10 mMC70 treatment for

normalized to the DMSO control within each cell line, in which there were three

s are based on the t test.

M149 and SUM149CR ± 10 mM C70 for 7 days.

ental C70-treated (C70; teal), or C70-resistant (SUM149CR; red) populations.

ension reduction in the indicated groups. Mann Whitney U test was used.

ith increased Gini index in the indicated groups. Pathways with false discovery
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To explore resistance and response to C70 at the single-cell

level, we performed single-cell RNA-seq (scRNA-seq) on

SUM149 and SUM149CR cell lines ± C70 for 7 days. Both

SUM149 and SUM149CR cells tended to occupy different

regions of Uniform Manifold Approximation and Projection

(UMAP) space (Figure 1G). To determine if these cell states

are acquired or pre-existing, we next generated cell state sig-

natures from DEGs between SUM149, SUM149CR, and C70-

treated SUM149 + C70 from bulk RNA-seq and classified

each individual cell into these states. The resistant state was

present in a subset of SUM49 cells prior to treatment, while

the C70 state was quite distinct, and very few cells occupied

this state (Figure 1H). The transition to this C70 state after

7 days of treatment was similar between SUM149 and

SUM149CR, indicating that SUM149CR maintains a similar,

yet delayed, transcriptional response to C70 treatment.

Previously, we found that C70 treatment reduced cellular tran-

scriptomic heterogeneity of luminal ER+ cell lines but had the

opposite effect in the SUM159 TNBC cell line.10 To explore

C70 effects in SUM149 and SUM149CR lines, we calculated

cell-to-cell transcriptomic distances ± C70 treatment. We found

that C70 treatment increased cell-to-cell transcriptomic

distances in both SUM149 and SUM149CR cells and that

SUM149CR cells had higher baseline heterogeneity compared

to SUM149 (Figure 1I). To investigate transcriptomic heteroge-

neity changes, we performed GSEA on genes with increasing

Gini index after C70 treatment or resistance (i.e., more heteroge-

neously expressed genes). Pathways related to oxidative phos-

phorylation and reactive oxygen species (ROS) were top

enriched in both cell lines after C70 treatment, while prolifera-

tion-related pathways were enriched in SUM149CR compared

to SUM149 (Figure 1J).

These results imply that C70 has the largest impact on genes

related to mitochondrial function and proliferation.

CRISPR viability screen to identify modulators of KDM5
inhibitor sensitivity
To identify synthetic lethal targets and mechanisms of

resistance to C70 in basal breast cancer, we performed a

genome-wide CRISPR-Cas9 knockout (KO) viability screen ±

C70 in SUM149 and SUM149CR. In SUM149 we identified 69

and 138 genes that when deleted made cells more sensitive

or resistant to C70, respectively (p < 0.001) (Figure 2A;

Table S3). Although KDM5A was a resistance hit (Figure 2A),

it had a low robust rank aggregation (RRA) score, and

KDM5A and KDM5B KO cell lines did not reveal significant dif-

ferences in C70 response in cell growth or histone H3K4me3

levels (Figures S2G–S2I). SUM149CR produced fewer hits (24

resistance and 39 sensitizers; p < 0.001) and displayed limited

overlap with SUM149 cells (Figures 2A and 2B; Table S3). Only

three targets increased sensitivity to C70 in both the SUM149

and the SUM149CR cells: XPR1 (retrovirus receptor), TADA2B

(transcriptional adaptor), andMTCH2 (mitochondrial carrier ho-

molog) (Figure 2B; Table S2). We also integrated our RNA-seq

data with the CRISPR hits. SOX7, IL7, KIAA1257, MUC6, and

DLG5 were differentially enriched in the SUM149 CRISPR

screen (p < 0.001) and differentially expressed (padj < 0.05

and abs(log2(FC)) > 1) between SUM149CR and SUM149,
4 Cell Reports 43, 114991, December 24, 2024
while ROS1 and FUT3 were CRISPR hits and differentially ex-

pressed between C70- and DMSO-treated SUM149 cells

(Table S3).

Among the most significantly depleted hits in C70-treated

SUM149 was the transcription factor ZBTB7A (Figure 2A;

Table S3).18 ZBTB7A is thought to act as a transcriptional

repressor and associates with DNA-repressive complexes

(e.g., NuRD, Sin3a, and NCoR).19,20 Among the most signifi-

cantly enriched hits in C70-treated SUM149 were members of

the RHOA/RAC1 GTPase cycle (Figures 2A, S2J, and S2K;

Table S3). Four of the top six resistance hits included the

RHOA andRAC1GTPases in addition to the RHOA-effector pro-

teins PKN2 and ILK (integrin-linked kinase). Because ILK and

RHO/RAC regulate extracellular matrix attachment and cell

shape,21 their identification as top C70 resistance hits implies

that cell shape might influence response to KDM5i.

We then performed GSEA for Hallmark, KEGG, and Reactome

gene sets and CORUM protein complexes within the differen-

tially enriched CRISPR screen hits. Within SUM149, loss of

MYC targets was associated with increased resistance (Fig-

ure 2C), consistent with prior reports identifying KDM5A required

for MYC-driven transcription in multiple myeloma.22 In addition,

the RAC1-RHOA-VANGL2 and the SAGA complex were signifi-

cantly enriched among gRNA targets associated with resistance

(Figure 2D). The SAGA complex is a transcriptional co-activator

with both histone acetyltransferase (H3K9ac and H3K14ac) and

deubiquitinase (H2BK120ub) enzymatic activity.23 Four of the

eight SAGA subunits were hits in the SUM149 screen (TADA1,

SUPT7L, SPT20H, and TAF5L), and one member of the SAGA

histone acetyltransferase (TADA2B) was a hit in both SUM149

and SUM149CR screens (Figures 2A and 2B). This implies that

a decrease in SAGA complex activity may increase sensitivity

to KDM5i.

To validate the role of ZBTB7A, RHOA, and PKN2 deletion in

KDM5i sensitivity, we generated SUM149 cell lines expressing

constitutive Cas9 and individual gRNAs (Figure S2L). ZBTB7A

deletion reduced growth in the presence of C70, but not

DMSO, compared to control guides targeting the ROSA26 locus

as well as a non-targeting control guide, confirming the screen

results (Figures 2E and 2F). For RHOA and PKN2, only one guide

per gene induced a sufficient decrease in protein levels (RHOA-

g1 andPKN2-g1, Figure S2L). Consequently, only these effective

guides led to increased growth in the presence of C70 compared

to controls (Figures 2E and 2F). In addition, RHOA/PKN2 KO had

a larger effect on growth in C70 than in DMSO, in agreement with

our CRISPR screen.

To investigate how RHO-GTPase signaling could alter sensi-

tivity to KDM5i, we assessed if cell density affects C70-mediated

growth arrest and performed RHOA/RAC1-GTP pull-down as-

says.We found that cellsplatedathigherdensitieshaddiminished

sensitivity to C70 (Figure S2M). Pull-downs for GTP-boundRHOA

andRAC1±C70showed that under sparse conditions, KDM5i led

toa reduction inGTP-boundRHOA (FigureS2N). Therefore,RHO-

GTPase signaling might modify KDM5i and vice versa, but delin-

eating these interactions requires further studies.

Because our eventual goal is to evaluate the therapeutic po-

tential of KDM5 inhibitors in breast cancer, we focused on sensi-

tizing hits. We selected ZBTB7A for further studies as it was a top



Figure 2. CRISPR screen results and validation

(A) Rank plots of CRISPR KO viability screens in SUM149 and SUM149CR cells after 10 doublings ± 10 mMC70. Genes are ranked based on the computed RRA

score fromMaGECK RRA, which indicates the essentiality of each gene. Positive RRA scores indicate enriched in C70. Negative RRA scores indicate enriched in

DMSO. Differentially enriched hits (p < 0.001) are marked in blue and red for DMSO-enriched and C70-enriched hits, respectively.

(B) Comparison of CRISPR hits with p < 0.001 in either the SUM149 or the SUM149CR CRISPR screens ± C70.

(C and D) GSEA on RRA-ranked CRISPR screen results in SUM149. Top 10 most significant gene sets with padj < 0.05 from the indicated databases (C) and

CORUM protein complexes (D) are shown.

(E) Cell growth assays of SUM149 cells expressing constitutive Cas9 and guide RNAs (gRNAs) targeting ZBTB7A, RHOA, PKN2, or non-targeting controls.

gRNAs with more efficient KO efficiency are marked with an asterisk (see also Figure S2L). Data are the mean ± standard deviation (n = 4, controls are merged

ROSA26 and NonTargeting cells with n = 4 each).

(F) Bar plot depicting quantification of ratios in viable cell numbers upon DMSO vs. C70 treatment at day 6. Data are the mean ± standard deviation, one-way

ANOVA followed by Dunnett’s multiple comparisons test comparing to control group only (n = 4, controls aremerged ROSA26 and cells expressing non-targeting

gRNAs with n = 4 each).

See also Figure S2.
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hit sensitizing cells to C70 and the ZBTB7A DNA binding motif

was the second most enriched motif in our prior KDM5B ChIP-

seq data,7 implying that ZBTB7A and KDM5 family members

may interact at common loci.
ZBTB7A, KDM5A/B, repressive chromatin complexes,
and response to KDM5i
ZBTB7A and KDM5s are considered repressive factors that

associate with multiple histone deacetylase (HDAC)-containing
Cell Reports 43, 114991, December 24, 2024 5



Figure 3. ZBTB7A and KDM5A/B interact and co-localize on DNA with high H3K4me3 levels

(A) Immunoblot analysis of ZBTB7A, KDM5A, and KDM5B in total cell lysates (input), control IgG, and the indicated immunoprecipitants in SUM149 cells.

(B) Heatmap of ChIP-seq for ZBTB7A, KDM5A, KDM5B, and H3K4me3. Peaks are clustered based on the intersection of peak calls among the three proteins.

(C) Venn diagram illustrating overlap of ChIP-seq peaks.

(D) Example ChIP-seq bigwig tracks with the hg19 genome as a reference.

(E) Genomic feature distribution of peaks within clusters.

(F) MA plots showing differential peak enrichment for the indicated proteins (columns) after the indicated perturbations (rows). Each perturbation is compared to

SUM149-ROSA26-g1 in DMSO. Differential peaks are indicated in red (padj < 0.05; default output from CoBRA (Containerized Bioinformatics Workflow for

Reproducible ChIP/ATAC-seq Analysis) using the Wald test from DEseq2). The y axis shows log fold change; x axis shows mean of normalized counts.

(legend continued on next page)

6 Cell Reports 43, 114991, December 24, 2024

Article
ll

OPEN ACCESS



Article
ll

OPEN ACCESS
complexes.24,25 Cross-referencing the BioGrid database, we

found that ZBTB7A shared 15 interactors with KDM5A and/or

KDM5B, 7 within the SWI/SNF, NuRD, and core HDAC chro-

matin complexes (Figure S3A).26,27 The STRING database of

protein-protein interaction networks also predicted functional

interactions with chromatin-repressive complexes, in which

KDM5A associates with SIN3B and ZBTB7A with NuRD and nu-

clear co-repressor NCOR1 (Figure S3B).28 Guides targeting the

MTA2 and MBD2 subunits of NuRD were significantly depleted

upon C70 treatment in SUM149 and SUM149CR CRISPR

screens, respectively (Figures 2A and 2B). Therefore, perturba-

tion of the NuRD complex may also sensitize SUM149 cells to

KDM5i.13,29,30

To delineate these protein interaction complexes we per-

formed qPLEX-RIME (quantitative multiplexed rapid immuno-

precipitation mass spectrometry)31 for KDM5B in luminal

ER+ (MCF-7 and T47D) and TNBC (SUM149 and SUM159)

cell lines (Table S4). Components of the NuRD, SWI/SNF,

and other chromatin complexes were detected in both the

luminal and the basal cell lines (Figure S3C). Immunoprecipita-

tion of KDM5B revealed association with many of the core

NuRD subunits, MTA1, MTA2, MBD2, MBD3, CHD3, and

CHD4, while ZBTB7A pull-downs showed only weak bands

for CHD4 and MTA1 (Figure S3D). These data imply that

ZBTB7A may sensitize to C70 treatment by modulating the

interaction of KDM5A and KDM5B with repressive chromatin

complexes.

The STRING database also predicted functional interactions

between KDM5A/KDM5B and members of the mitochondrial

ATP synthase complex V based on co-expression (Figure S3E)

corresponding to C70-resistant cells having higher expression

of genes related to oxidative phosphorylation, many of which

are subunits of the mitochondrial respiratory chain complexes

I–IV or enzymes within the tricarboxylic acid cycle (TCA) cycle

(Figures 1B and S3E) and imply that KDM5A/B may regulate

mitochondrial activity.

ZBTB7A and KDM5A/B interact and co-localize on
chromatin with high H3K4me3 levels
In our previous KDM5B ChIP-seq data ZBTB7A was among the

most enriched DNA binding motifs.7 To test if ZBTB7A and

KDM5A/B are in the same protein complexes, we performed

immunoprecipitation followed by immunoblot using H3K4me3

and CCND1 as positive and negative controls, respectively.

We detected ZBTB7A in both KDM5A and KDM5B immunopre-

cipitants, and both KDM5 family members were present in

ZBTB7A pull-downs (Figure 3A). Furthermore, both KDM5A

and KDM5B were detected in ZBTB7A immunoprecipitants in

both SUM149 and SUM149CR cells regardless of C70 treatment
(G) Venn diagrams showing overlap between KDM5A down and H3K4me3 up pe

H3K4me3 up peaks in KDM5A KO cells.

(H–J) Overlap of the top 500 predicted target genes of KDM5A down/unchanged

(I) consensus target genes for transcription factors present in ENCODE and Ch

promoters. The top 500 target genes were identified via the regulatory potential

(K) Overlap of the entire set of KDM5A down/unchanged peaks in the ZBTB7A KO

transcription factors are shown ranked by GIGGLE score (�log10(p) * odds ratio

See also Figure S3.
(Figure S3F), indicating that C70 does not disrupt these protein

complexes.

To assess if ZBTB7A and KDM5A/B co-localize at the same

chromatin regions, we performed ChIP-seq for each protein.

We found a significant overlap between ZBTB7A, KDM5A,

and KDM5B peaks, especially at sites with high levels of

H3K4me3 (Figures 3B–3D and S3G; Table S4). We clustered

the peaks based on overlap and found that 47% of all high-con-

fidence peaks (i.e., peaks called across replicates) are co-

occupied by ZBTB7A, KDM5A, and KDM5B and coincide with

high levels of H3K4me3 (12,504 of 26,332) (Figures 3B, 3C,

and S3G). Interestingly, KDM5A primarily bound promoter re-

gions with high H3K4me3 signal, while ZBTB7A and KDM5B

were found at both promoter and non-promoter regions

(Figures 3E and S3H). This suggests that KDM5A and KDM5B

may have distinct preference for genomic loci and thus func-

tions, although differences due to antibodies used for ChIP

cannot be excluded.

To determine correlations of each peak cluster with other

chromatin binding factors, we explored overlap with public

ChIP-seq data using Cistrome DB’s toolkit33 and compared

the top 10 factors identified for each cluster based on the

maximum GIGGLE score (�log10(padj) * odds ratio from

Fisher’s exact test)34 (Figure S3I). ZBTB7A binding in non-pro-

moter regions (clusters 3 and 4) had specific overlap for SWI/

SNF (SMARCC1 and SMARCA4) and NuRD (MBD3) chromatin

complexes. It was also enriched for STAT3, which regulates the

NF-kB signaling pathway.35 The KDM5B-specific cluster 7

overlapped with factors related to the cohesin/CTCF complex

(STAG1, SMC3, SMC1A, RAD21, ESCO2, and CTCF), in line

with our prior data demonstrating that KDM5B physically inter-

acts and co-localizes with CTCF.7 Factors enriched across

KDM5A-containing clusters were mostly associated with active

promoters (e.g., H3K4me3, H3K9ac, and POLR2A), in agree-

ment with KDM5A being mainly restricted to promoter regions.

Enrichment analysis of the ZBTB7A consensus sequence

(GACCC)36 showed significant enrichment only in overall

ZBTB7A peaks and in clusters where ZBTB7A and KDM5A

peaks overlapped (Figure S3J), strengthening the importance

of the ZBTB7A/KDM5A interactions.

To gain functional insights into each cluster, we assessed

overlap of their predicted target genes with Hallmark gene signa-

tures (Figure S3K) using the top 500 predicted target genes

based on regulatory potential scores (Table S5).32 Cluster 1

(co-bound by KDM5A, KDM5B, and ZBTB7A) was significantly

enriched for Hedgehog signaling, G2M checkpoint, glycolysis,

and hypoxia. Clusters 3 and 4 (mostly intergenic regions bound

by ZBTB7A) showed enrichment for apical junction and coagula-

tion. Finally, cluster 7 (mostly intergenic KDM5B peaks) was
aks in ZBTB7A KO cells. The intersect of these peaks is then compared with

peaks in the ZBTB7A KO with the described gene sets. (H) Hallmark pathways,

EA, (J) position weight matrices from TRANSFAC and JASPAR at the gene

score from BETA.32

with public ChIP-seq tracks available on CISTROME.33 The top 10–11 enriched

).34
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Figure 4. Gene expression changes induced by ZBTB7A-KO and its associations with ZBTB7A and KDM5A/B peak sets

(A) Heatmap of RNA-seq in SUM149 cells expressing the indicated gRNAs treated with DMSO or 10 mMC70 for 7 days. Rows and columns are ordered based on

hierarchical clustering. Values are row-normalized Z scores.

(B) Number of DEGs for KOs in SUM149 cells compared to the ROSA26-g1 control.

(C) Volcano plot of RNA-seq in the SUM149 KDM5A KO compared to the ROSA26-g1 control. Dashed gray lines indicate adjusted p value (padj) and fold change

(FC) cutoff used for (B).

(D) Output from BETA testing for association between the indicated peak sets and the up-/downregulated genes upon ZBTB7A KO.32 For promoter-enriched

peaks, the distance from the transcription start site (TSS) for within which peaks were considered to contribute to the gene regulatory potential score was set to 3

kb. For non-promoter-enriched peak sets, the default parameter of 100 kb was used.

(legend continued on next page)
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significantly enriched for downregulated genes in response to

UV. There is little overlap between the top 500 target genes of

each cluster (Figure S3L), implying both shared and unique func-

tions for each of the three proteins.

ZBTB7A KO reduces chromatin-bound KDM5A
To test if the co-localization of ZBTB7A, KDM5A, and KDM5B is

due to direct recruitment mechanisms, we performed ChIP-seq

in SUM149 ROSA26g control and in each of the three individual

KO cells. ZBTB7A binding was not affected by deletion of

KDM5A and KDM5B or by C70 treatment (Figure 3F). However,

deletion of ZBTB7A led to decreased KDM5A signal in 43% of

KDM5A peakswith no effect on KDM5B binding (Figure 3F). Since

total KDM5A protein levels were not reduced in the ZBTB7A KO

(Figure S2L), ZBTB7A may help recruit and/or stabilize KDM5A

but not KDM5B at specific loci. KDM5A peaks were also

decreased in the KDM5B KO, and conversely, we observed

diminished KDM5B peak intensities in the KDM5A KO, implying

mutual stabilization of KDM5A and KDM5B at a subset of binding

sites (Figures 3F and S4A). However, potential cross-reactivity of

the KDM5A and KDM5B antibodies used for ChIP cannot be

excluded.

Next, we assessed whether KDM5A peaks that were

decreased in ZBTB7A KO cells were associated with changes

in H3K4me3.We found that 53%of these peakswere associated

with an increase in H3K4me3 (Figures 3G and S4B). To deter-

mine whether the increase in H3K4me3 signal at these loci is a

consequence of diminished KDM5A binding, we analyzed

H3K4me3 at these loci in KDM5A KO cells and found that 95%

of these peaks also had increased H3K4me3 upon KDM5A KO

(Figures 3G and S4B). Therefore, loss of ZBTB7A likely leads

to a decrease in KDM5A chromatin binding and a subsequent in-

crease in H3K4me3.

To identify differences between changed and unchanged

KDM5A peaks in ZBTB7A KO cells, we first identified the top

500 predicted gene targets based on regulatory potential scores

(Table S5) and quantified overlap with Hallmark gene sets. Genes

associated with diminished KDM5A peaks had stronger enrich-

ment for mTORC1 signaling and glycolysis, whereas those asso-

ciated with unchanged KDM5A peaks had stronger enrichment

with myogenesis (Figure 3H). Second, overlap with consensus

transcription factor targets from ENCODE/ChEA and promoter

motifs from TRANSFAC/JASPAR identified nuclear respiratory

factor 1 (NRF1) transcription factor as consistently enriched

among KDM5A down-target genes (Figures 3I and 3J). NRF1 is

a regulator of nuclear genes encoding mitochondrial respiratory

complex subunits and the transcription and replication of mito-

chondrial DNA.37 We also saw enrichment for ZBTB7A among

the KDM5A down-target genes (Figure 3I), supporting that these

are ZBTB7A-specific peaks. Finally, we assessed the entire

KDM5A decreased and unchanged peak sets for overlap with
(E) Volcano plot comparing DEGs and decreased KDM5A peak enrichment in

log2(FC)| > 1). The p values are based on BETA, indicating if the differential peak se

each peak are annotated.

(F and G) Overlap of the predicted target genes for each peak set with (F) CISTRO

Hallmark gene sets. Genes with a rank product score <0.001 from the BETA out

See also Figure S4.
public ChIP-seq data in CISTROME.38 Again, NRF1 was signifi-

cantly enriched among the KDM5A peaks diminished in the

ZBTB7A KO cells, implicating its importance as a putative down-

stream target of ZBTB7A and KDM5A in basal breast cancer (Fig-

ure 3K). To test if the enrichment in NRF1 binding sites in KDM5A

peaks lost in ZBTB7A KO cells is due to differences in NRF1

expression or nuclear localization, we performed immunoblot

analysis for NRF1 in fractionated cell lysates from wild-type (WT)

and KDM5A or ZBTB7A KO cell lines but found no differences

(Figure S4C). Thus, the enrichment for NRF1 targets might indi-

cate overlap between the downstream targets of NRF1 and the

KDM5A-ZBTB7A complex rather than its direct activation.

ZBTB7A activation/repressive regulatory function
depends on the chromatin context
We next investigated gene expression changes induced by

KDM5A, KDM5B, or ZBTB7A KO. Overall, KDM5A and KDM5B

KOs had minimal impact on gene expression compared to

the ZBTB7A KO at the high stringency we used as cut off

(padj < 0.05 and |log2(FC)| > 1) (Figures 4A and 4B; Table S1).

A possible explanation is the redundancy of KDM5A and

KDM5B, and the deletion of only one is not sufficient to cause

major transcriptomic changes. Supporting this idea is the obser-

vation that C70 treatment that inhibits all KDM5s led to signifi-

cant changes in gene expression in both WT and KO cells (Fig-

ure 4A; Table S1). It is also possible that the acute deletion of

the gene has an effect, but this is diminished by the time the cells

are expanded due to compensatory mechanisms. However, we

do see significant changes in the expression ofmitochondria-en-

coded genes in the KDM5A KO cells; 11 of the 13 most downre-

gulated genes (padj < 0.001) in the KDM5A KO were mitochon-

drial encoded (Figure 4C; Table S1), which was not observed

in KDM5B KO cells (Figure S4D). This result is consistent with

our findings of ZBTB7A-dependent KDM5A peaks being en-

riched in targets of the mitochondrial biogenesis transcription

factor NRF1.

We next integrated RNA-seq from the ZBTB7A KO with our

ChIP-seq data to determine if ZBTB7A binding was significantly

associated with changes in gene expression. Based on binding

and expression target analysis (BETA),32 we found that

ZBTB7A peaks overlapping with KDM5A/B, which are enriched

at promoters, were associated with decreased gene expression

in the ZBTB7A KO (p = 2.16e�15 for BETA downregulated) (Fig-

ure 4D). Conversely, ZBTB7A-unique sites, which are enriched in

intronic/intergenic regions, were associated with increased gene

expression in the ZBTB7A KO cells (p = 3.48e�08 for BETA up-

regulated) (Figure 4D). Therefore, non-promoter ZBTB7Amay be

acting as a canonical repressor, whereas promoter-bound

ZBTB7A may be acting as a transcriptional activator.

We next investigated if changes in chromatin were associated

with differential gene expression. As expected, increased
the ZBTB7A KO cells. Only significant DEGs are shown (padj < 0.05 and |

t is significantly associatedwith up- or downregulated genes. Nearest genes to

ME LISA transcription factor motifs (top 5 motifs per cluster are shown) and (G)

put were used as predicted target genes for each peak set.
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Figure 5. Effects of ZBTB7A KO on transcriptional response to KDM5 inhibition

(A) GSEA on genes ranked by log2(FC) for ±10 mMC70 for 7 days. The analysis was performed in all three cell lines with wild-type (i.e., ROSA26-g1) or ZBTB7A KO.

(B) Oxygen consumption rate (OCR) in ROSA26-g1 and ZBTB7A KO SUM149 cells ± pre-treatment with 10 mM C70 for 6 days. Values are the mean ± standard

deviation. N = 5 for all conditions except ZBTB7A KO + C70, which had one outlier well removed (N = 4).

(C) Ridge plot depicting flow cytometry for total ROS detection with the Total Reactive Oxygen Species (ROS) Assay Kit and for mitochondrial cardiolipins with

nonyl acridine orange (NAO). SUM149 cells were treated with or without 10 mMC70 for 5 days. One millimolar H2O2 (7 h for ROS and 2 h for NAO) was used as a

positive control.

(legend continued on next page)
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H3K4me3 signal was associatedwith increased gene expression

(p = 3.48e�07 for BETA upregulated) (Figure S4E). Surprisingly,

sites with increased H3K4me3 that coincide with decreased

KDM5A binding had no correlation with gene expression

(Figure S4E). In fact, diminished KDM5A signal intensity was

significantly associated with a decrease in gene expression

(Figures 4C and 4E, p = 4.45e�05 for BETA downregulated),

implying that theKDM5A-ZBTB7Acomplex is apositive regulator

of gene expression.

We next analyzed the predicted targets of the ZBTB7A and

KDM5A/B overlapping, ZBTB7A unique, and KDM5A down

peaks for enrichment of specific transcription factors or path-

ways. We defined direct targets as genes with a rank product

<0.001 from the BETA output in Figures 4D and 4E.32

The ZBTB7A transcription factor motif was evenly enriched

between ZBTB7A unique and ZBTB7A and KDM5A/B over-

lapping peaks (Figure 4F). However, several transcription

factors showed a bias toward one peak set. For example,

NFKB1 was more significantly enriched among the ZBTB7A

unique peak target genes, whereas HIF1A and E2F1::TFDP2

were more significantly enriched among the ZBTB7A and

KDM5A/B overlapping target genes (Figure 4F). These obser-

vations support our analysis of the Hallmark gene set

pathways (Figure 4G), in which HIF1A (e.g., hypoxia) and

E2F-driven (e.g., E2F targets, G2M checkpoint, and mitotic

spindle) pathways were specifically enriched among the

ZBTB7A and KDM5A/B overlapping and KDM5A down gene

targets, whereas immune pathways (e.g., allograft rejection,

coagulation, and complement) were specifically enriched in

the ZBTB7A unique peaks.

We also created ZBTB7A KOs in additional breast cancer cell

lines (Figure S4F). MDA-MB-436 is another BRCA1-mutant

TNBC cell line, like SUM149, with similar sensitivity to C70

(Figures S2A and S2B), and MCF7 is an ER+, luminal breast can-

cer cell line. Similar to SUM149, deletion of ZBTB7A predomi-

nantly increased transcription in both MDA-MB-436 and MCF7

cells (Figure S4G). DEGs between parental and ZBTB7AKOcells

in the SUM149 line showed similar trends in both MDA-MB-436

and MCF7 cell lines (Figures S4H and S4I). Upregulated DEGs

from the SUM149 ZBTB7A KO cells were significantly enriched

in both MDA-MB-436 (padj = 2.7e�19, GSEA) and MCF7

(padj = 7.8e�13, GSEA) ZBTB7A KOs (Figure S4J). However,

downregulated DEGs from SUM149 cells were enriched only in

the MDA-MB-436 ZBTB7A KO cells (padj = 5.3e�3, GSEA)

(Figure S4J).
(D) Heatmap of DEGs upon C70 treatment in either SUM149 ROSA26-g1 or ZBTB

samples are ordered based on hierarchical clustering.

(E) RNA Z scores of cluster 3 and 5 genes from (D). Box plots represent mean, fi

(F and G) Overrepresentation analysis for (F) MSigDB transcription factor targets

(H) Plot of NF-kB target genes associated with KDM5 + ZBTB7A peaks, ZBTB7A

were defined by the union of MSigDB transcription factor target gene sets (

NFKB_Q6_01, and NFKB_Q6). The p value was determined by the t test. Box pl

(I) Immunoblot for phospho-NF-kB p65 (Ser536) in SUM149 ROSA26-g1 and ZB

5 min were used as positive control. Image is the left side part of a larger blot wi

(J) Immunoblot for NF-kB targetsMMP9,MIA, and IL-27-RA in SUM149 ROSA26-

control.

(K) Diagram of proposed interaction between ZBTB7A and KDM5 inhibition on N

See also Figures S4 and S5.
To determine if ZBTB7A KO alters TNBC subtype-specific

transcriptional states, we performed GSEA on the TNBC sub-

types we previously described.39 Mesenchymal and basal-spe-

cific genes were upregulated in the luminal MCF7 line, while the

MDA-MB-436 mesenchymal-TNBC line showed upregulation of

genes repressed in mesenchymal cells and downregulation of

mesenchymal genes (Figure S4K). Finally, the basal-TNBC line

SUM149 reactivated genes repressed in the basal state and

turned on genes specific to mesenchymal and luminal-like

TNBC (Figure S4K). Therefore, ZBTB7A may be an important

regulator of cell state fidelity in breast cancer. Last, the most

significantly upregulated pathways by C70 in the TNBC lines

were related to immunity (e.g., allograft rejection, complement,

inflammatory response), myogenesis, epithelial-to-mesen-

chymal transition, and IL-6/JAK/STAT3 in SUM149 cells and

interferon-a response in the MDA-MB-436 cell line (Figure S4L).

These data show that ZBTB7A is an important regulator of

epithelial cell differentiation-related processes and that some

of its function is via modulation of KDM5A chromatin binding.

ZBTB7A and KDM5i co-regulate oxidative
phosphorylation and NF-kB targets
To explore how loss of ZBTB7A alters the transcriptional

response to KDM5i, we performed RNA-seq in WT and ZBTB7A

KO cells ± 10 mM C70 for 7 days. We first observed that C70

treatment upregulates more DEGs (padj < 0.05, |log2(FC)| > 1)

in theZBTB7AKOcells compared toWT controls across all three

cell lines (SUM149, MDA-MB-436, and MCF7) (Figure S5A;

Table S1). In addition, ZBTB7A KO did not change the gene tar-

gets of C70, since there was pronounced overlap in the DEGs

induced in both WT and KO cells, at least in the two TNBC lines

with a more limited overlap in MCF7 ER+ luminal cells (Fig-

ure S5A). Therefore, loss of ZBTB7A may amplify response to

C70 without completely rewiring its target genes in TNBC.

We next examined if C70 treatment modulated different path-

ways in the ZBTB7A KO cells (Figure 5A). GSEA in both SUM149

and MDA-MB-436 cells upon C70 treatment identified a reduc-

tion in oxidative phosphorylation specifically in the ZBTB7A KO

and not in the WT cells (Figure 5A). Analysis of mitochondrial

respiration in SUM149 WT and ZBTB7A KO cells ± 10 mM C70

showed that ZBTB7A KO and C70 diminished basal and

maximum respiratory potential, and this decrease was saturated

with C70 treatment and not further augmented by ZBTB7A KO

(Figure 5B). Since dysfunctional mitochondria can be a source

of ROS, we assessed total ROS levels and mitochondrial
7A-g1 (padj < 0.05). Genes are ordered based on k-means clustering (k = 5) and

rst and third quantile, and min and max values.

and (G) MSigDB Hallmark pathways within each gene cluster specified by (D).

unique peaks, or both (KDM5 + ZBTB7A and ZBTB7A unique). Target genes

GGGNNTTTCC_NFKB_Q6_01, NFKAPPAB_01, NFKAPPAB65_01, NFKB_C,

ots represent mean, first and third quantile, and min and max values.

TB7A KO cells ± 10 mM C70 for 7 days. Cells treated with 20 ng/mL TNF-a for

th additional lanes.

g1 orZBTB7AKO cell lines ± 10 mMC70 for 6 days. Tubulin was used as loading

F-kB signaling.
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cardiolipins. We found higher ROS levels in both WT and

ZBTB7A KO C70-treated cells compared to vehicle controls.

However, ROS levels were higher within the ZBTB7A KO cells

treated with C70 compared to WT (Figure 5C). In addition, nonyl

acridine orange (NAO) staining to measure the abundance and

redox status of mitochondrial cardiolipins showed no effect of

C70 treatment in the WT cells but a decrease signal in the

ZBTB7A KO cells, implying an increase in oxidized cardiolipins

(Figure 5C).

To more globally analyze how ZBTB7A KO alters transcrip-

tional response to C70, we re-clustered all DEGs upon C70 treat-

ment in WT or ZBTB7A KO cells (padj < 0.05) (Figure 5D). We

then categorized the genes into five clusters, each with unique

responses to ZBTB7A and/or C70 (Figures 5D, 5E, and S5B).

Cluster 1 genes had a muted upregulation following C70 treat-

ment in ZBTB7A KO cells compared to WT (Figure 5D), and

they showed enrichment in mitochondrion-encoded genes

(Figures S5C and S5D). We also assessed if upregulated genes

are clustered to particular genomic regions potentially reflecting

co-regulation due to shared enhancer activity. Only one

cluster, cluster 2, displayed cytogenetic enrichment to a specific

genomic region, 1q32 (Figure S5C). Among all clusters detected,

cluster 3 was particularly prominent because it was enriched in

genes differentially expressed due to either C70 treatment or

ZBTB7A deletion (Figure 5D). These genes increased upon

loss of ZBTB7A and had a further increase with C70 treatment

(Figure 5E). When we analyzed each cluster for overlap with

MSigDB transcription factor targets, cluster 3 was significantly

enriched for NF-kB target genes (Figure 5F), which was also

the transcription factor motif enriched among the predicted tar-

gets of ZBTB7A unique peaks (Figure 4F). To explore this in more

detail, we analyzed changes in the expression of NF-kB targets

in ZBTB7A KO cells compared to WT and found significantly

higher expression of NF-kB targets associated with ZBTB7A

unique compared to ZBTB7A and KDM5 overlapping peaks

(Figure 5G).

When comparing each cluster to Hallmark gene sets, we found

significant enrichment of TNF-a signaling via NF-kB, apoptosis,

and IL-6/JAK/STAT3 signaling in both clusters 2 and 3, both of

which show highest gene expression levels in the C70-treated

ZBTB7A KO cells (Figures 5E, 5H, and S5B). Cluster 2 showed

the most significant enrichment for TNF-a signaling via NF-kB

even though the NF-kB transcription factor targets were specif-

ically enriched in cluster 3 (Figures 5F and 5H).

To examine NF-kB activation after KDM5i and ZBTB7A KO,

we assessed phospho(S536)-p65 and nuclear p65 levels and

the activity of an NF-kB-driven GFP reporter. C70 increased

phospho(S536)-p65 as well as marginally increasing nuclear

p65 levels, with ZBTB7A KO having no observable effect

(Figures 5I and S5E). Similarly, C70 induced GFP expression

driven by a minimal NF-kB promoter, with no additive effect

observed for the ZBTB7A KO (Figure S5F). However, immuno-

blot analysis of NF-kB targets selected from the overlapping

topmost enriched genes in cluster 3 (Figure 5E) and NF-kB tar-

gets (Figure 5F) revealed that the expression of several proteins,

including MMP9, MIA, and IL-27-RA, was significantly higher in

ZBTB7A KO cells and upregulated by C70 (Figure 5J). Taken

together, our data imply that KDM5i acts upstream and leads
12 Cell Reports 43, 114991, December 24, 2024
to the activation and nuclear localization of NF-kB. ZBTB7A,

however, acts at the DNA level, in which ZBTB7A unique peaks

repress a subset of NF-kB direct-target genes (Figure 5K).

In contrast to cluster 3 genes that were the most upregulated

by C70 in ZBTB7A KO, cluster 5 genes had the largest decrease

in expression in C70-treated ZBTB7A KO cells (Figures 5D and

5E). This cluster was specifically enriched for proliferative path-

ways, such as E2F targets, mitotic spindle, and G2M checkpoint

(Figure 5G), which were the same pathways specifically enriched

among KDM5A sites with diminished binding in the ZBTB7A KO

(Figure 4G). Since these peaks were associated with activator

function (Figure 4E), we hypothesize that ZBTB7A and KDM5A

co-bound sites function as transcriptional activators of pro-pro-

liferation pathways and that combined ZBTB7A KO and KDM5i

leads to a stronger downregulation of these target genes.

Last, we reanalyzed our RNA-seq data for differential expres-

sion of endogenous retroelements with ERVmap because

KDM5B was previously reported to derepress retroelements.40

We found that KDM5i led to increased expression of endoge-

nous retroelements (mostly LINEs [long interspersed nuclear el-

ements] and SINEs [short interspersed nuclear elements]) in both

the ROSA26-g1 control cells and all three KO derivates (Fig-

ure S5G; Table S6).41 However, while 4,732 endogenous retro-

elements were significantly differentially expressed between

DMSO- and C70-treated parental SUM149 cells (mostly upregu-

lated), this number was much higher (12,097) in ZBTB7A KO and

lower in KDM5A and KDM5B KO lines (4,072 and 2,474, respec-

tively). In addition, we also noted that, in contrast to the limited

changes seen in the expression of protein-coding genes in

KDM5A KO cells, the expression of 2,143 endogenous retroele-

ments was significantly different between KO and WT cells,

whereas this was not seen in KDM5B KO (Table S6). Thus,

some of the phenotypic consequences of C70 treatment and

deletion of KDM5 genes might be via their regulation of endoge-

nous retroelement expression.

ZBTB7A expression alters KDM5-associated
phenotypes in patient samples
We next tested if ZBTB7A expression altered KDM5-associated

phenotypes in patient samples using the TCGA and METABRIC

cohorts. Corroborating our findings in cell-line models, KDM5A/

B expression was significantly positively correlated with prolifer-

ation (E2F targets, G2M checkpoint, and mitotic spindle) and

negatively correlated with NF-kB and other inflammation-related

pathways (Figure 6A). In addition, these correlations were stron-

ger among samples with low ZBTB7A expression. Analysis of

TNBC samples from the METABRIC cohort also demonstrated

that KDM5A/B expression is more strongly associated with

many of the select pathways in ZBTB7A-low samples, but the

differences were less prominent (Figure 6B).

Due to the significant inverse association between KDM5A/B

expression and inflammation-related pathways, we also as-

sessed the correlation between KDM5A, KDM5B, or ZBTB7A

expression with estimated immune infiltration scores among

basal breast cancer samples in the TCGA cohort. We found

that ZBTB7Awas significantly positively correlated with immune

infiltration, KDM5B was negatively correlated, and KDM5A had

no association (Figure 6C).



Figure 6. Associations between ZBTB7A and KDM5 expression and tumor features in patient samples

(A and B) Correlation between KDM5A/B expression and select pathways across basal tumors from TCGA (A) and TNBC samples from METABRIC (B). Cor-

relation coefficients and �log10(p) are plotted. The samples were subset into high and low ZBTB7A expression based on upper and lower tertiles.

(C) Correlation between KDM5A, KDM5B, and ZBTB7A expressionwith estimated immune infiltration scores from bulk RNA-seq data. Data are from basal tumors in

TCGA. Immune scores were calculated from bulk RNA-seq via ‘‘Estimation of Stromal and Immune cells in Malignant Tumors Using Expression Data’’ (ESTIMATE).

(D) Boxplots depicting the expression of ZBTB7A in TNBC from patients with pCR or no pCR from the indicated cohorts. Box plots represent mean, first and third

quantile, and min and max values. Mann-Whitney U test was used.

(E) Boxplots depicting the expression of ZBTB7A in breast tumors from patients with pCR or no pCR from the indicated cohorts and divided based on the

expression levels of KDM5A or KDM5B. Box plots represent mean, first and third quantile, and min and max values. Mann-Whitney U test was used.
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Finally, we wanted to determine if ZBTB7A expression modi-

fied response to neoadjuvant chemotherapy by itself or associ-

ated with KDM5 expression. We found that the expression of

ZBTB7A in TNBCwas significantly higher in tumors frompatients

who did not achieve pathologic complete response (pCR) in

three independent cohorts (Figure 6D).42–44 The association of

higher ZBTB7A expression with lack of pCR was significant

only in tumors with lower expression of KDM5B, whereas for

KDM5A this was less consistent (Figure 6E).
These analyses of clinical samples validate our findings in the

cell-line models and confirm the role for ZBTB7A as a transcrip-

tional modulator of NF-kB and inflammation-related pathways.

DISCUSSION

Through CRISPR KO viability screens ± C70 KDM5 inhibitor, we

identified several factors that modulate sensitivity to KDM5i in

basal breast cancer, including ZBTB7A. We demonstrated that
Cell Reports 43, 114991, December 24, 2024 13
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ZBTB7A interacts and co-localizes with KDM5A/B at genomic

regions with high H3K4me3 levels and that a subset of KDM5A

binding might be ZBTB7A dependent.

Functional differences between the KDM5 paralogs have

beendescribedpreviously, but theunderlyingmechanism remains

unresolved.45 For example, KDM5A and not KDM5Bwas found to

promoteMYC-driven transcription inmultiplemyeloma by altering

RNA polymerase II (RNAPII) promoter-proximal pausing,22 while

KDM5B was specifically found to suppress endogenous retroele-

ment expression inmelanomaby recruiting theH3K9methyltrans-

ferase SETDB1.40 Our work provides some mechanistic insight

into these distinctions, in which we found significant differences

in genomic binding between KDM5A and KDM5B. Specifically,

KDM5A was primarily restricted to promoters, whereas KDM5B

exhibited extensive binding across both promoter and non-pro-

moter regions. This indicates that KDM5A could be a promoter-

specific regulator of transcription in agreement with prior findings

that KDM5A is a key modulator of RNAPII pausing at MYC-driven

promoters.22 In addition, the intergenic binding of KDM5B could

explain why this paralog was found to regulate endogenous retro-

element expression in melanoma,40 supporting our data in

SUM149 cells. Further investigation into the intergenic KDM5B

peaks in our study unveiled an association with the cohesin/

CTCF complex, indicating a potential role of KDM5B in the regula-

tion of chromatin topology. This finding is particularly intriguing in

thecontext ofprevious research fromour lab,whichdemonstrated

that KDM5Bphysically associateswithCTCF.7 Overall, our results

indicate that distinct genomic binding patterns may contribute, at

least in part, to paralog-specific KDM5 activity, but further work is

needed to elucidate the underlying mechanisms.

ZBTB7A has previously been described as a key regulator of

metabolism in leukemias, where loss of ZBTB7A increased

glycolysis and sensitized to glycolytic inhibition.46–48 Here, we

identified ZBTB7A as a regulator of oxidative phosphorylation

in TNBC and propose that this may contribute to increased

KDM5 inhibitor sensitivity upon loss of ZBTB7A. Initially, we

found that peaks with decreased KDM5A binding in the ZBTB7A

KO were significantly enriched for downstream targets of the

NRF1 transcription factor, a regulator of nuclear genes essential

for both respiration and mitochondrial DNA transcription.37

Several observations support the hypothesis that reduced mito-

chondrial respiration can sensitize cells to KDM5i. First, our C70-

resistant derivative cell line significantly upregulated oxidative

phosphorylation genes, especially members of the electron

transport chain. Second, prior studies found that melanoma cells

with high KDM5B expression had an increased reliance on mito-

chondrial respiration.49 Inhibition of ATP synthase decreased the

emergence of cells with high KDM5B expression after treatment

with a panel of anti-cancer drugs, and KDM5B overexpression

led to increased oxygen consumption and mitochondrial ATP

production.49 This potential link between mitochondrial activity

and KDM5 inhibitor sensitivity is interesting given that a-ketoglu-

tarate, a key product of the TCA cycle, is a required co-factor for

KDM5demethylase activity. In addition, since the KDM5 inhibitor

C70 is an a-ketoglutarate competitor,16 altering a-ketoglutarate

levels could alter the effective concentration of C70.

Mitochondrial dysfunction can also contribute to ROS and

oxidative stress. We found that C70 treatment induced ROS pro-
14 Cell Reports 43, 114991, December 24, 2024
duction in both WT and ZBTB7A KO cells. However, ROS levels

were higher within the ZBTB7A KO treated with C70. This is in

line with previous observations in which ZBTB7A was found

to protect against oxidative stress to promote cell survival during

viral infection.50 It also agrees with previous work where KDM5A

was found to mitigate the accumulation of ROS and protect

against defects in mitochondrial membrane potential in

response to cisplatin treatment.51 Interestingly, regulation of

mitochondrial activity via KDM5s may be evolutionarily

conserved, in that Drosophila KDM5/Lid was identified as a

direct activator of genes required for mitochondrial structure/

function, and mutant KDM5/Lid led to elevated ROS produc-

tion.52 Taken together, these results indicate that both ZBTB7A

and KDM5 activity may protect against oxidative damage and

that loss of both could have a compounding effect on cell

viability.

Last, we found that both KDM5i and loss of ZBTB7A led to an

induction of NF-kB target genes and that the NF-kB pathway

was depleted in the C70-resistant SUM149CR cell line. We

hypothesize that KDM5 activity and ZBTB7A may influence

NF-kB signaling through distinct mechanisms. First, KDM5i

may act upstream, since C70 increased phosphorylated p65

(Ser536), led to slightly elevated levels of p65 in the nucleus,

and induced GFP expression driven by a minimal NF-kB binding

motif. It is unclear how inhibition of KDM5 activity activates NF-

kB, but previous research implicates the DNA-sensing cGAS-

STING pathway, an upstream activator of NF-kB signaling.40,53

KDM5B, but not KDM5A KO, was found to derepress STING

expression and induce interferon signaling in breast cancer cell

lines with high cytosolic DNA levels.53 Similarly, KDM5B KO

was found to increase tumor immunogenicity through the

derepression of retroelements and subsequent activation of

cGAS-STING.40 Aligned with these findings, our RNA-seq data

revealed a significant increase in retroelement expression after

C70 treatment. In contrast, we hypothesize that ZBTB7A regu-

lates NF-kB at the DNA level, whereby ZBTB7A binding re-

presses nearby NF-kB target genes. Supporting this hypothesis,

we found that the targets of ZBTB7A unique binding sites were

significantly enriched for the NFKB1 transcription factor motif.

Given that NF-kB is generally a pro-survival pathway that ac-

tivates anti-apoptotic factors and cell-cycle-promoting genes,

it was unexpected to see this pathway diminished and less

responsive to C70 in the SUM149CR C70-resistant cell line.

However, there are several reports indicating that NF-kB could

both inhibit and promote cell death depending on the context

and type of stressor placed on the cell.54,55 Most relevantly,

NF-kB signaling enhanced oxidative-stress-induced killing with

H2O2.
54 Therefore, increased NF-kB activity could render the

cells more sensitive to increased ROS observed with ZBTB7A

KO andC70 treatment. Cells adapt to long-term ROS by upregu-

lating antioxidant defensemechanisms.56 Thus, the upregulation

of MMP9, an NF-kB target that has been shown to protect from

ROS in some cellular contexts,57 in ZBTB7A KO cells could

reflect such a coping mechanism.

Limitations of the study
Our study was performed in human breast cancer cell lines with

validation of findings in clinical samples. However, we do not
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know to what degree cell lines and cell culture reflect the phys-

iological conditions in human breast cancer, which is especially

a concern for changes in metabolic pathways. A limitation of the

experiments using KO cell lines is that the consequences of

short-term and long-term deletion of a gene can be different,

as we have seen previously for KDM5B.10 Thus, while KDM5A

deletion in the CRISPR screen (relatively short-term assay and

assessing more acute loss of KMD5A) may have decreased

response to C70, this effect is lost in the stable KDM5A KO cell

line used for validation.

The KDM5 inhibitor we used blocks the activity of all KDM5

family members. Further studies would be required to assess

the effects of the specific inhibition of KDM5A or KDM5B in hu-

man breast tumors.
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Rabbit polyclonal anti-H3K4me3 Diagenode Cat# C15410003-50

Anti-Histone H3 (tri methyl K4) antibody -

ChIP Grade (ab8580)

Abcam Cat# ab8580; RRID:AB_306649

Mouse monoclonal anti-H3 Active Motif Cat# 39763; RRID:AB_265052

RhoA (67B9) Rabbit mAb #2117 Cell Signaling Technology Cat# 2117: RRID:AB_10693922

Anti-PKN2 antibody (ab87812) Abcam Cat# ab87812; RRID:AB_2042690

Rabbit monoclonal anti-MTA1 (D17G10) Cell Signaling Technology Cat# 5647; RRID:AB_10705601

Rabbit polyclonal anti-MTA2 Cell Signaling Technology Cat# 15793

Rabbit monoclonal anti-MBD2 (EPR18361) Abcam Cat# ab188474

Rabbit monoclonal anti-MBD3 (N87) Cell Signaling Technology Cat# 14540; RRID:AB_2798504

Rabbit polyclonal anti-CHD3 Cell Signaling Technology Cat# 4241; RRID:AB_10557102

Rabbit monoclonal anti-CHD4 (D8B12) Cell Signaling Technology Cat# 11912; RRID:AB_2751014

Phospho-NF-kB p65 (Ser536) (93H1)

Rabbit mAb #3033

Cell Signaling Technology Cat# 3033; RRID:AB_331284

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Recombinant Anti-NF-kB p65 antibody

[E379] (ab32536)

Abcam Cat# ab32536; RRID:AB_776751

Phospho-NFkB p50 (Ser337) Polyclonal

Antibody

Life Technologies Cat# PA5-37658; RRID:AB_2554266

NFkB p50 Monoclonal Antibody (5D10D11) Life Technologies C# MA5-15870; RRID:AB_11153885

Bacterial and virus strains

Endura ElectroCompetent Cells Lucigen Cat# 60242-2

One Shot Stbl3 Chemically Competent E. coli Life Technologies Cat# C737303

Chemicals, peptides, and recombinant proteins

KDM5 inhibitor C70 This paper; Johansson et al.16;

Tumber et al.58; Hinohara et al.10
N/A

Nonyl Acridine Orange (Acridine Orange

10-Nonyl Bromide)

Life Technologies Cat# A1372

Recombinant Human TNF-alpha Protein R&D Systems Cat# 210-TA

Critical commercial assays

Thermo Scientific Active Rho Pull-Down and

Detection Kit

Cat# 16116

Thermo Scientific Active Rac1 Pull-Down and

Detection Kit

Cat# 16118

Seahorse XF Cell Mito Stress Test Kit Agilent Cat# 103015-100

Seahorse FluxPaks Agilent Cat# 102340-100

Seahorse XF DMEM assay medium pack, pH 7.4 Agilent Cat# 103680-100

Total Reactive Oxygen Species (ROS)

Assay Kit 520 nm

Invitrogen Cat# 88-5930

Deposited data

All raw genomic data GEO GSE259252

Processed CRISPR screen data This paper Table S2

Processed mass spectrometry data (qPLEX-RIME) This paper Table S3

Raw histone mass spectrometry data MassIVE MSV000094452

Experimental models: Cell lines

SUM149 cell line Steve Ethier (University

of Michigan)

N/A

SUM149 cell line, ROSA26-g1 This paper N/A

SUM149 cell line, ROSA26-g2 This paper N/A

SUM149 cell line, ZBTB7A-g1 This paper N/A

SUM149 cell line, ZBTB7A-g2 This paper N/A

SUM149 cell line, KDM5A-g1 This paper N/A

SUM149 cell line, KDM5A-g2 This paper N/A

SUM149 cell line, KDM5B-g1 This paper N/A

SUM149 cell line, KDM5B-g2 This paper N/A

SUM149 cell line, RHOA-g1 This paper N/A

SUM149 cell line,RHOA-g2 This paper N/A

SUM149 cell line,PKN2-g1 This paper N/A

SUM149 cell line, PKN2-g2 This paper N/A

MDA-MB-436 cell line ATCC HTB-130; RRID:CVCL_0623

MDA-MB-436 cell line, ROSA26-g1 This paper N/A

MDA-MB-436 cell line, ZBTB7A-g2 This paper N/A

MCF7 cell line Marc Lippman (University

of Michigan)

N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

MCF7 cell line, ROSA26-g1 This paper N/A

MCF7 cell line, ZBTB7A-g1 This paper N/A

SUM159 cell line Steve Ethier (University

of Michigan)

FCIBC02 cell line Massimo Christofanelli

(Fox Chase

Cancer Center)

T-47D cell line ATCC HTB-133; RRID:CVCL_0553

BT-474 cell line ATCC HTB-20

MDA-MB-361 cell line ATCC HTB-27; RRID:CVCL_0620

HCC1419 cell line ATCC CRL-2326; RRID:CVCL_1251

SKBR3 cell line ATCC HTB-30; RRID:CVCL_0033

Oligonucleotides

ROSA26-g1: GGTGATCTAGTATTTCTTG This paper N/A

ROSA26-g2: TGCGGTCAGGTCACGCCGC This paper N/A

NonTargeting-g1: ACCGGAACGATCTCGCGTA This paper N/A

ZBTB7A-g1: CCGTCAGCACAGCCAACGT This paper N/A

ZBTB7A-g2: TTGAAGTACTGGCTGCAGG This paper N/A

KDM5A-g1: TCCAGAATGCTTAGATGTG This paper N/A

KDM5A-g2: TGTCCTAAATGTGTCGCCG This paper N/A

KDM5B-g1: CACCTTCGCCTAGTCACAC This paper N/A

KDM5B-g2: GACTGGCATCTGTAAGGTG This paper N/A

RHOA-g1: AAACACATCAGTATAACAT This paper N/A

RHOA-g2: CCACTCACCTAAACTATCA This paper N/A

PKN2-g1: TAATGGAATATGCTGCCGG This paper N/A

PKN2-g2: TAGATATCATACTTTGACG This paper N/A

CRISPR PCR round 1 Forward:

AATGGACTATCATATGCTTACCGTAA

CTTGAAAGTATTTCG

This paper N/A

CRISPR PCR round 1 Reverse: TCTAC

TATTCTTTCCCCTGCACTGTGACTGT

GGGCGATGTGCGCTCTG

This paper N/A

CRISPR PCR round 2 Staggered 1 Forward:

AATGATACGGCGACCACCGAGATCTACACT

CTTTCCCTACACGACGCTCTTCCGATCTt

CAAGGTCAtcttgtggaaaggacgaaacaccg

This paper N/A

CRISPR PCR round 2 Staggered 1 Reverse:

CAAGCAGAAGACGGCATACGAGATCAAGG

TCAGTGACTGGAGTTCAGACGTGTGCT

CTTCCGATCTacgatcgatTCTACTATTCT

TTCCCCTGCACTGT

This paper N/A

CRISPR PCR round 2 Staggered 2 Forward:

AATGATACGGCGACCACCGAGATCTACACT

CTTTCCCTACACGACGCTCTTCCGATCTat

GCATAACTtcttgtggaaaggacgaaacaccg

This paper N/A

CRISPR PCR round 2 Staggered 2 Reverse:

CAAGCAGAAGACGGCATACGAGATGCATAA

CTGTGACTGGAGTTCAGACGTGTGCTCTTCC

GATCTcgatcgatTCTACTATTCTTTCC

CCTGCACTGT

This paper N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

CRISPR PCR round 2 Staggered 3 Forward:

AATGATACGGCGACCACCGAGATCTACAC

TCTTTCCCTACACGACGCTCTTCCGATCT

gatCTCTGATTtcttgtggaaaggacgaaacaccg

This paper N/A

CRISPR PCR round 2 Staggered 3 Reverse:

CAAGCAGAAGACGGCATACGAGATCTCTG

ATTGTGACTGGAGTTCAGACGTGTGCTCTT

CCGATCTgatcgatTCTACTATTCTTTC

CCCTGCACTGT

This paper N/A

CRISPR PCR round 3 Forward:

AATGATACGGCGACCACCGA

This paper N/A

CRISPR PCR round 3 Reverse:

CAAGCAGAAGACGGCATACGA

This paper N/A

Recombinant DNA

Human CRISPR Knockout Library (H3) Addgene Cat# 133914

lentiCRISPR v2 Addgene Cat# #52961

pLV-5xNFkBminiP-d1EGFP This paper Vector builder

Software and algorithms

Visualization Pipeline for RNA-seq analysis (VIPER) Bitbucket; Cornwell et al. (2018)59 https://bitbucket.org/cfce/viper/src/master/

Containerized Bioinformatics workflow for

Reproducible ChIP/ATAC-seq Analysis (CoBRA)

Bitbucket; Qiu et al. 60 https://bitbucket.org/cfce/cobra/src/master/

Model-based Analysis of Genome-wide CRISPR-

Cas9 Knockout (MAGeCK) (version: 0.5.9)

SourceForge; Li et al. 61 https://sourceforge.net/p/mageck/wiki/Home/

MAGeCKFlute (version 1.14.0) Bioconductor; Wang et al.62 https://www.bioconductor.org/packages/

release/bioc/html/MAGeCKFlute.html

Cell Ranger (version: 5.0.1) 10X Genomics https://www.10xgenomics.com/support/

software/cell-ranger/latest

Seurat (version 4.3.0) CRAN https://cran.r-project.org/web/

packages/Seurat/index.html

ERVmap (version 1.1) Github; Tokuyama

et al. (2018)41
https://github.com/mtokuyama/ERVmap

ClusterProfiler (version: 4.2.2) Bioconductor;

Wu et al.; Yu et al.63,64
https://bioconductor.org/packages/

release/bioc/html/clusterProfiler.html

Enrichr Ma’ayan Lab (Icahn School of

Medicine, Mount Sinai)65–67
https://maayanlab.cloud/Enrichr/

Molecular Signatures Database (MSigDB)

Compute Overlaps Function

Broad Institute, Inc., Massachusetts

Institute of Technology, and Regents

of the University of California68,69

https://www.gsea-msigdb.org/

gsea/msigdb/index.jsp

RStudio (version: 4.2.0) Posit https://posit.co

Affinity Designer (version: 1.10.4) Affinity https://affinity.serif.com/en-us/

GraphPadPrism (version: 9) GraphPad Software Inc. https://www.graphpad.com/updates/

prism-900-release-notes

FlowJo (version: 10.8.2) FlowJo, LLC https://www.flowjo.com/
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Breast cancer cohort data
TCGA data was downloaded from cBioPortal (https://www.cbioportal.org/) for the Breast Invasive Carcinoma (TCGA, PanCancer

Atlas) dataset (ID = brca_tcga_pan_can_atlas_2018).

Breast cancer cell lines and derivation of the C70-resistant model
Breast cancer cell lines were obtained fromATCC, or generously provided byDr. Steve Ethier (U.Michigan) and cultured following the

provider’s recommendations. The identity of the cell lines was confirmed based on STR and exome-seq analyses. Cells were
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regularly tested for mycoplasma. SUM149 and SUM159 were cultured in DMEM/F12 supplemented with 5% FBS, 5 mg/mL insulin,

and 1 mg/mL hydrocortisone. MCF7 was cultured in DMEM/F12 supplemented with 10% FBS, and 10 mg/mL insulin. FCIBC02 was

cultured in DMEM/F12 supplemented with 10% FBS. MDA-MB-436 was cultured in McCoy’s supplemented with 10% FBS, and

10 mg/mL insulin. SKBR3 was cultured in McCoy’s supplemented with 10% FBS. MDA-MB-361 was cultured in McCoy’s supple-

mented with 20% FBS. T-47D was cultured in RPMI supplemented with 10% FBS and 10 mg/mL insulin. BT-474 and HCC1419

were cultured in RPMI supplemented with 10% FBS. All cell lines were supplemented with 100 U/mL penicillin and 100 mg/mL strep-

tomycin. All cells were cultured at 37oC with 5% CO2. C70 resistant SUM149CR cells were derived by growing the cells in the pres-

ence of 10 mMC70 and retested IC50 in every 5th passage. It took�45 days to achieve resistance determined based on a significant

shift in IC50. Subsequently the cells were maintained in 10 mM C70-containing culture media.

CRISPR libraries
Human CRISPR knockout library (H3) was generated by Drs. Xiaole Shirley Liu and Myles Brown (Addgene #133914).

METHOD DETAILS

Cellular viability and growth assays
Viability and growth assays were performed in 96-well plates (N = 6well per condition). Cells were treated with inhibitors and cultured

at 37 oCwith 5%CO2. Themediumwas replacedwith freshmedium (with or without inhibitors) every 2-3 days. Plates were fixed in an

ice-cold 3:1 mixture of methanol and glacial acetic acid for at least 10 minutes. Fixed cells were washed twice with 1X PBS and

stained with 1 mg/mL DAPI at 37 oC for 20 minutes. The cells were washed twice with 1X PBS and the number of DAPI stained cells

were acquired using the automated Celigo Image Cytometer from Nexcelom.

CRISPR screen and data analyses
HumanCRISPR knockout library (H3) was generated byDrs. Xiaole Shirley Liu andMyles Brown (Addgene #133914).We followed the

screen protocol for adherent cells provided by Addgene (Addgene #133914). Briefly, 200 million SUM149 or SUM149CR cells were

infected with the pooled lentiviral CRISPR knock-out H3 library at a multiplicity of infection of 0.3 to ensure most cells received only

one viral construct. This resulted in �60 million infected cells and 500X library coverage. After 5 days of puromycin selection, more

than 60 million cells were pelleted and stored as the day 0 control. The remaining cells were split and cultured for 10 doublings with

0.01% DMSO or 10 mM C70. To limit changes in gRNA distribution due to sampling, 60 million cells per condition (500X library

coverage) were seeded each passage or pelleted at the treatment endpoint. Genomic DNA was isolated from the pelleted samples

via phenol/chloroform extraction and PCR was performed to construct each sequencing library (see key resources table for primer

information). The libraries were sequenced at 30-40 million reads per sample to ensure at least 300X library coverage. The libraries

were sequenced on an Illumina NS500 Single End 75bp with a 10% PhiX spike in.

Generation of single CRISPR/Cas9 knock-out cells
Construction of lenti-CRISPR/Cas9 vectors targeting ZBTB7A, KDM5A, KDM5B, RHOA, and PKN2was performed following the pro-

tocol associated with the backbone vector lentiCRISPR V2 (Addgene #52961)70 The sgRNA sequences used are listed in key re-

sources table. Knockouts were verified by western blot analysis after puromycin selection.

Generation of NFkB reporter cells
A lentiviral vector containing the NF-kB reporter (pLV-5xNFkBminiP-d1EGFP) was designed based on the backbone of the HypoxCR

vector (Addgene #59946) and obtained via fee service from VectorBuilder (https://en.vectorbuilder.com/). The vector contained DNA

sequences encoding d1EGFP and mCherry downstream of the 5xNF-kB response element-minimal promoter and CMV promoter,

respectively. Cells were transduced with the vector and selected for with Blasticidin.

ChIP-seq
SUM149 expressing ROSA26-g1 -/+ 10 mM C70 for 7 days, ZBTB7A-g1 (ZBTB7A-KO), KDM5A-g1 (KDM5A-KO), and KDM5B-

g1(KDM5B-KO) from the lentiCRISPR v2 backbone (see key resources table) were cultured in biological duplicates in 15 cm dishes

to about 80% confluence. For ChIP-seq of histone modifications (H3K4me3), each dish was washed once with PBS then crosslinked

in fixing buffer (50 mMHEPES-NaOH pH 7.5, 100mMNaCl, 1 mMEDTA) containing 1%PFA (Electron Microscopy Sciences, 15714)

for 10 minutes at room temperature. For ChIP-seq of chromatin binding proteins (KDM5A, KDM5B, ZBTB7A), each dish was washed

once with PBS then crosslinked in PBS containing 2mMDSG (Fisher Scientific 20593) for 30minutes at room temperature. DSGwas

then removed, and the samples were further crosslinked with fixing buffer (50 mMHEPES-NaOH pH 7.5, 100 mMNaCl, 1 mM EDTA)

containing 1% PFA for 10 minutes at 37 oC. After PFA fixation, all samples were quenched with glycine at a final concentration of

0.125 M for 5 minutes at room temperature. Cells were washed and harvested in ice cold PBS. Nuclei were extracted by first resus-

pending the cells in lysis buffer (1 mL per 5 million cells) for 10 minutes at 4C (50 mMHEPES-NaOH pH 8, 140mMNaCl, 1 mMEDTA,

10%Glycerol, 0.5% IGEPAL CA-630, 0.25%Triton X-100). Nuclei were pelleted andwashed once in wash buffer (10mMTris-HCl pH

8, 200 mM NaCl, 1 mM EDTA), 1 mL of wash buffer per 10 million cells (histone modification ChIP) or 25 million cells (chromatin
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modification ChIP). The nuclei were then pelleted and resuspended in 1 mL of shearing buffer (10 mM Tris-HCl pH 8, 1 mM EDTA,

0.1% SDS), containing 10 million (histone modification ChIP) or 25 million cells (chromatin modification ChIP). Samples were trans-

ferred to 1mL AFA Fiber tubes (Covaris 520130), and sonicated in a Covaris E220 sonicator with the following settings: Peak Incident

Power 150, Duty Cycles 5%, cycles per Burst 200. Histone modification ChIP samples were sonicated for 900 seconds. Chromatin

binding protein ChIP samples were sonicated for 1,200 seconds. After sonication, Triton X-100 and NaCl were added to a final con-

centration of 1% Triton X-100 and 150 mMNaCl. The samples were then pre-cleared with 50 mL of Dynabeads Protein G (Fisher Sci-

entific, 10004D) for 1 hour at 4 oC. For histone modification ChIP, primary antibodies were added to 1 mL of pre-cleared chromatin

from�10 million cells (H3K4me3 = Diagenode C154100003 at 5 mg/mL) and incubated at 4 oC overnight. For chromatin binding pro-

tein ChIP, pre-cleared samples were aliquoted, and volumes adjusted using shearing buffer containing 1% Triton X-100 and 150mM

NaCl before adding the appropriate primary antibodies for overnight incubation at 4oC. Chromatin binding protein ChIP samples con-

tained 500 mL of pre-cleared chromatin from�5million cells (ZBTB7A = SantaCruz sc-33683X at 5 mg/mL, KDM5A =Abcam ab70892

at 4 mg/mL, KDM5B = Novus/sdix 22260002 at 5 mg/mL). After overnight immunoprecipitation, crosslinked complexes were precip-

itated with Dynabeads G (Fisher Scientific, 10004D) for 2 hours at 4oC. The beads were then washed once with low salt wash buffer

(20 mM Tris-HCl pH 8, 150 mMNaCl, 0.1% SDS, 1% Triton-X 100, 2 mM EDTA) for 5 minutes at 4oC, once with high salt wash buffer

(20 mM Tris-HCl pH 8, 500 mM Nacl, 0.1% SDS, 1% Triton-X 100, 2 mM EDTA) for 5 minutes at 4 oC, once with wash buffer (10 mM

Tris-HCl pH 8, 250 mM LiCl, 1% IGEPAL CA-630, 1% Sodium Deoxycholate, 1 mM EDTA) for 5 minutes at 4 oC, and once with TE

buffer (10mMTris-HCl pH8, 1mMEDTA) quickly at room temperature. DNAwas eluted from the beads in 1%SDS, 100mMNaHCO3

for 30 minutes at room temperature. Crosslinks were reversed at 65�C overnight. RNA and protein were digested with 0.2 mg/mL

RNase A for 30 minutes at 37oC followed by 0.2 mg/mL Proteinase K for 1 hour at 55 oC. DNA was purified with phenol chloroform

extraction and ethanol precipitation. Libraries were prepared and sequenced at the Molecular Biology Core Facilities (MBCF) at the

Dana-Farber Cancer Institute (DFCI). Libraries were prepared with the automated Swift 2S ligation chemistry and sequenced to 40M

50 bp reads pairs.

RNA-seq
SUM149 and SUM149CRwere incubated in biological triplicates for 2 and 7 days in 0.01%DMSO or 10 mM. SUM149 KOs (ROSA26-

g1, KDM5A-g1, KDM5B-g1, and ZBTB7A-g1), MCF7 KOs (ROSA26-g1 and ZBTB7A-g1), and MDA-MB-436 KOs (ROSA26-g1 and

ZBTB7A-g2) were incubated in biological duplicates for 7 days in 0.01% DMSO or 10 mM C70. Cells were cultured to �80% conflu-

ence in 10 cm dishes and RNA was collected using the RNeasy Mini Kit (Qiagen 74104 or 74106) and submitted to the Molecular

Biology Core Facilities (MBCF) at the Dana-Farber Cancer Institute for library prep and sequencing. RNA underwent polyA enrich-

ment before library prep andwas sequenced on an Illumina NovaSeq to generate 40M 150bp read pairs (80M reads total) per sample.

qPLEX-RIME
SUM149, SUM159, MCF7, and T-47D were cultured to�80% confluence in 4-5 biological replicates in 15 cm dishes. Samples were

washed once with PBS then crosslinked in PBS containing 2 mM DSG (Fisher Scientific 20593) for 30 minutes at room temperature.

DSG was then removed, and the samples were further crosslinked with fixing buffer (50 mM HEPES-NaOH pH 7.5, 100 mM NaCl,

1 mM EDTA) containing 1% PFA for 10 minutes at 37ºC. After PFA fixation, all samples were quenched with glycine at a final con-

centration of 0.125 M for 5 minutes at room temperature. Cells were washed and harvested in ice cold PBS, pelleted, and snap

frozen.

The nuclear fraction was extracted by first resuspending the pellet in 10ml of LB1 buffer (50 mM Hepes–KOH, pH 7.5; 140 mM

NaCl; 1 mM EDTA;10% Glycerol; 0.5% NP-40 or Igepal CA-630; 0.25% Triton X-100) for 10 min at 4oC. Cells were pelleted, resus-

pended in 10 ml of LB2 buffer (10 mM Tris–HCL, pH8.0; 200 mM NaCl; 1 mM EDTA; 0.5 mM EGTA) and mixed at 4oC for 5 minutes.

Cells were pelleted and resuspended in 300 ul of LB3 buffer (10 mM Tris–HCl, pH 8; 100 mMNaCl; 1 mM EDTA; 0.5 mM EGTA; 0.1%

Na–Deoxycholate; 0.5%N-lauroylsarcosine) and sonicated in awaterbath sonicator (Diagenode bioruptor). 30ml of 10%Triton-Xwas

added and the lysate centrifuged for 10 minutes at 20,000 rcf to separate debris. Samples were incubated with primary antibody at

4 oC overnight [anti-KDM5B (Novus Biologics 22260002)]. Samples were then precipitated with Dynabeads Protein G for 2 hr. The

beads were washed 10 times in 1ml of RIPA buffer and twice in 100mM ammonium hydrogen carbonate (AMBIC) solution. For the

second AMBIC wash, the beads were transferred to new tubes.

Samples were digested and purified with the Ultra-Micro C18 Spin Columns (Harvard Apparatus) as previously described31 After

purification, each sample was dried and reconstituted in 100ul 0.1M TEAB (triethylammonium bicarbonate) and labelled with the

TMT-10plex reagents (Thermo Fisher). The peptide mixture was fractionated with Reversed-Phase spin columns at high pH (Pierce,

#84868) and each fraction was analyzed on a Dionex Ultimate 3000 UHPLC system coupled with the LTQOrbitrap Velos mass spec-

trometer (ThermoScientific). Mobile phase Awas composed of 2%acetonitrile, 0.1% formic acid, 5%dimethyl sulfoxide (DMSO) and

mobile phase B was composed of 80% acetonitrile, 0.1% formic acid, 5% DMSO. The precursor scans were performed in the Orbi-

trap in the range of 380-1500m/z at 60K resolution. TheMS2 scans were performed in the ion trap with CID collision energy 30% and

in the Orbitrap with HCD collision energy 40% back-to-back for each precursor. The raw data were processed on Proteome Discov-

erer 2.1 using the SequestHT search engine. The node for SequestHT included the following settings: Precursor Mass Tolerance

20ppm, FragmentMass Tolerance 0.5Da for the CID spectra and 0.05Da for the HCD spectra, DynamicModifications wereOxidation

of M (+15.995Da), Deamidation of N/Q (+0.984Da) and Static Modifications were TMT6plex at any N-Terminus/K (+229.163Da).
24 Cell Reports 43, 114991, December 24, 2024



Article
ll

OPEN ACCESS
Antibodies and inhibitors
Full list with catalog numbers available in key resources table. Antibodies used for Immunoblotting were anti-beta-Actin (Sigma,

A2228), anti-alpha Tubulin (Sigma, T5168), anti-ZBTB7A (Invitrogen, 14-3309-82), anti-KDM5A (Abcam, ab70892), anti-KDM5B

(Sigma, HPA027179), anti-KDM5C (Abcam, ab34718), anti-H3K4me3 (Abcam, ab8580), anti-H3 (Active Motif, 39763), anti-RHOA

(Cell Signaling Technology, 2117), anti-PKN2 (Abcam, ab87812), anti-MTA1 (Cell Signaling Technology, 5647), anti-MTA2 (Cell

Signaling Technology, 15793), anti-MBD2 (Abcam, ab188474), anti-MBD3 (Cell Signaling Technology, 14540), anti-CHD3 (Cell

Signaling Technology, 4241), anti-CHD4 (Cell Signaling Technology, 11912), anti-phospho-p65 (Ser536) (Cell Signaling Technology,

3033), anti-p65 (Abcam, ab32536), anti-phospho-p50 (Ser337) (Invitrogen, PA5-37658), anti-p50 (Invitrogen, MA5-15870), Goat anti-

Mouse IgG Secondary HRP (Invitrogen, 62-6520), Goat anti-Rabbit IgG Secondary HRP (Invitrogen, 65-6120), and Goat anti-Arme-

nian Hamster IgGSecondary HRP (Invitrogen, PA1-32045). Antibodies used for Immunoprecipitation during Co-IPwere anti-ZBTB7A

(SantaCruz, sc-33683X), anti-ZBTB7A C-terminus (Abcam, ab175918), anti-KDM5A (Active Motif, 91211), and anti-KDM5B (Cell

Signaling Technology, 15327). Additionally, isotype controls used were Rabbit IgG (Invitrogen, 31887), Mouse IgG (Invitrogen,

10400C), and Armenian Hamster IgG (Invitrogen, 14-4888-81). Antibodies used for Immunoprecipitation during ChIP-seq were

anti-ZBTB7A (SantaCruz, sc-33683X), anti-KDM5A (Abcam, ab70892), anti-KDM5B (Novus Biologicals, 22260002), and anti-

H3K4me3 (Diagenode, C15410003-50). Antibodies used for qPLEX-RIME were anti-KDM5B (Novus Biologicals, 22260002). The

KDM5-C70 inhibitor was provided by the National Center for Advancing Translational Sciences (NCATS) (NCGC ID =

NCGC00371443). Previous reports on the synthesis of KDM5-C70 are described in Tumber et al. (2017)58 and Hinohara et al.

(2018)10.

Immunoblotting and immunoprecipitation experiments
For whole-cell lysates, cells were lysed in RIPA buffer (50mMTris-HCl pH 7.4, 150mMNaCl, 1%NP-40, 0.5% sodium deoxycholate,

0.1% SDS, and 5 mM EDTA). To determine the levels of GTP-bound RhoA and Rac1, we used the Active Rho Pull-Down and Active

Rac1 Pull-Down and detection kits from Thermo Scientific (Thermo Scientific, 16116 and 16118). SUM149 cells were treated with

0.01%DMSO or 10 mMC70 for 3 days before processing with the pull-down kits. The samples were collected at two different conflu-

ence levels to assess the effect of confluence on active GTPase levels: 50% and 100% confluence. For the Active Rho Pull-Down kit,

an anti-RhoA specific antibody from Cell Signaling Technology (Cell Signaling Technology, 2117) was used for immunoblotting

instead of the pan-RhO (RhoA, RhoB, RhoC) antibody provided in the kit. For cell fractionation experiments, cells were first incubated

in hypotonic buffer (10 mM HEPES pH 7.4, 10 mM KCl, 1.5 mM MgCl2, 0.5% NP-40, and 0.2 mM EDTA) for 10 minutes at 4oC. The

samples were then centrifuged at 1,800xg for 5 minutes and the supernatant stored as the cytoplasmic fraction. The pelleted nuclei

were resuspended in nuclear extraction buffer (20 mM HEPES pH 7.4, 420 mM NaCl, 1.5 mM MgCl2, 0.5% NP-40, 0.2 mM EDTA),

incubated for 10minutes at 4oC, and sonicated in a cup horn sonicator (QsonicaQ500, 5minutes net sonication time, 75%amplitude,

20 seconds On/10 seconds Off cycle). The lysate was then centrifuged at 13,000 rpm for 10 minutes and the supernatant stored as

the nuclear fraction. For NRF1, cellular fractionation was performedwith theCell Fractionation Kit (CST, #9038) according to theman-

ufacturers protocol. Briefly, different fractions were isolated from cell suspensions via specific isolation buffer and separately

collected after centrifugation. For experiments only cytoplasmic fraction and cytoskeletal/nuclear fraction was used. For co-immu-

noprecipitation experiments, cells were incubated in hypotonic buffer (1 mL per 10 million cells) (10 mM HEPES pH 7.4, 10 mM KCl,

1.5mMMgCl2, 0.5%NP-40) for 10minutes at 4oC, then centrifuged at 1,800xg for 5minutes and supernatant discarded. The nuclear

pellet was then resuspended in nuclear extraction buffer (300 ml per 10 million cells) (20 mM HEPES pH 7.4, 300 mM NaCl, 1.5 mM

MgCl2, 0.5%NP-40, 0.2mMEDTA), incubated for 10minutes at 4 oC and sonicated in a cup horn sonicator (Qsonica Q500, 5minutes

net sonication time, 75% amplitude, 20 seconds On/10 seconds Off cycle). The nuclear lysate was then cleared via centrifugation at

13,000 rpm for 10 minutes. Part of the nuclear lysate was stored as input, and to the rest 1 volume of CoIP dilution buffer was added

(20 mM Tris-HCl pH 8.0, 4.5 mMMgCl2, 1.0 mM CaCl2, 0.5% NP-40, 0.2 mM EDTA). Then 1 mg of diluted nuclear lysate was moved

to a 1.5 ml tube (Eppendorf LoBind Microcentrifuge Tubes: Protein, Cat# 13-698-794) and volume adjusted to 1 ml. The sample was

pre-cleared with 25 ml of Protein A/GMagnetic Beads blockedwith 0.5%BSA (Thermo Scientific, 8803) for 1 hour at 4oC. Pre-cleared

samples were then incubated with primary antibodies or IgG controls (4 mg/ml) overnight at 4oC. After overnight incubation, protein

complexes were precipitated with 25 ml of Protein A/G beads blockedwith 0.5%BSA for 2 hours at 4oC. The protein-bead complexes

were washed twice with 1 mL of wash buffer (20 mM Tris-HCl pH 8.0, 150 mMNaCl, 1.5 mMMgCl2, 0.5%NP-40, 0.2 mM EDTA) and

once with LoTE (10 mM Tris-HCl pH 8.0, 0.1 mM EDTA). Protein complexes were then eluted with 100 mL of sample buffer containing

1X NuPAGE sample reducing agent (Invitrogen NP0009) and 1X NuPAGE LDS Sample Buffer (Invitrogen NP0007) in nuclear extrac-

tion buffer for 10 minutes at room temperature. 20 mL of the eluted sample was used for western blotting. For all immunoblots, pro-

teins were denatured with heating at 95oC for 10minutes in 1X NuPAGE sample reducing agent (Invitrogen NP0009) and 1X NuPAGE

LDS Sample Buffer (Invitrogen NP0007). The proteins were then resolved on a 4-12% Bis-Tris polyacrylamide gel (Invitrogen

WG1402BOX) in MOPS SDS running buffer and transferred to PVDF membranes using a wet NuPAGE transfer buffer system. The

membranes were blocked with 2.5% milk powder in 0.1% Tween20 in TBS (TBS-T) for 1 hour at room temperature followed by in-

cubation with primary antibodies in 2.5%milk TBS-T overnight. Themembranes were washed and incubated for 1 hour at room tem-

perature with the appropriate secondary antibodies, then washed and developed with Clarity Western ECL substrate (Bio-Rad

1705061) or Clarity Max Western ECL substrate (Bio-Rad 1705062).
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Mass spectrometry analysis of histone modifications
Cells were treated for 48 hours with 0.01%DMSO or 10 mMC70 for 48 hours. They were then collected via scraping in PBS, pelleted,

and snap-frozen in liquid nitrogen. Histones were isolated from cell nuclei using acid extraction, biochemically prepared, and

analyzed by mass spectrometry against a reference of stable isotope-labeled synthetic peptide standards exactly as described

(Creech et al., 2015).71

scRNA-seq library prep
SUM149 and SUM149CR were seeded in 10 cm dishes and treated with 0.01% DMSO or 10 mMC70 for 7 days. The cells were then

trypsinized and counted. One million cells were pelleted, washed 1 time, and resuspended in 1 mL of ice cold 0.04% BSA in PBS.

Library construction was performed using the 10X Genomics 3’ v3.1 library kit as described and sequenced on an Illumina NovaSeq.

Flow cytometry experiments
SUM149 cells expressing ROSA26-g1 or ZBTB7A-g1 from the lentiCRISPR v2 vector (see key resources table) were grown in 0.01%

DMSO or 10 mMC70 for 5 days. Cells were passaged once during treatment and seeded to be 50% confluent by the 5-day endpoint.

For detecting reactive oxygen species, 7 hours of 1 mM H2O2 treatment was used as a positive control. Cells were trypsinized,

counted, and resuspended in 100 mL per million cells with 1X ROS assay reagent in assay buffer from the Total Reactive Oxygen

Species (ROS) Assay Kit 520 nm (Thermo Fisher, 88-5930). The samples were then incubated for 1 hour at 37 oC, centrifuged at

200xg for 5 minutes, and resuspended in 500 mL of ice cold FACS buffer (1% BSA and 2 mM EDTA in PBS). For detecting mitochon-

drial cardiolipins, 2 hours of 1 mMH2O2 treatment was used as a positive control. Cells were trypsinized, counted, and resuspended

in 1mL per million cells with 0.4 mMNonyl Acridine Orange (NAO) (Fisher Scientific, A1372) in PBS. The samples were then incubated

for 20minutes at 37 oC, centrifuged at 200xg for 5minutes, and resuspended in 500 mL of ice cold FACS buffer. All samples were kept

on ice, and fluorescence intensities were acquired on an LSRFortessa cytometer (BD Biosciences) through the FITC channel and

analyzed via FlowJo.

Mito-Stress Test
To measure the effect of ZBTB7A-KO and C70 treatment on mitochondrial respiration, we used Agilent’s Seahorse XF Cell Mito

Stress Test Kit (Agilent, 103015-100). SUM149 cells expressing ROSA26-g1 or ZBTB7A-g1 from the lentiCRISPR v2 vector (see

key resources table) were pre-treated with 0.01% DMSO or 10 mM C70 for a total of 6 days. The cells were first seeded in 10 cm

dishes and treated with -/+ 10 mM C70 for 4 days. Afterwards, cells were trypsinized and re-seeded in Agilent Seahorse XF24 cell

culture microplates (100777-004) for an additional 2 days of pre-treatment: 40,000 cells per well in 100 mL of media -/+ 10 mM

C70. Cells were seeded such that they form a 100% confluent monolayer by the time of the assay. We then followed the protocol

as described for the Seahorse XF Cell Mito Stress Test Kit (Agilent, 103015-100). The following final compound concentrations

were used during the assay: 1.5 mM Oligomycin, 0.75 mM FCCP, and 0.5 mM Rotenone/Antimycin A.

QUANTIFICATION AND STATISTICAL ANALYSIS

Software used in this study
See key resources table. Visualization Pipeline for RNA-seq analysis (VIPER), Containerized Bioinformatics workflow for Reproduc-

ible ChIP/ATAC-seq Analysis (CoBRA), Model-based Analysis of Genome-wide CRISPR-Cas9 Knockout (MAGeCK) (v 0.5.9), Cell

Ranger (v5.0.1), Seurat (v4.3.0), ERVmap (v1.1), deepTools2.0, RStudio (v 4.2.0), MAGeCKFlute (v1.14.0), ClusterProfiler (v4.2.2),

ChIPseeker (v1.30.3), GenomicRanges (v1.46.1), Affinity Designer (v 1.10.4), GraphPadPrism (v 9), FlowJo (v 10.8.2).

ChIP-seq data analysis
Peak calling and data analysis

All samples were processed through the computational pipeline developed at the Dana-Farber Cancer Institute Center for Functional

Cancer Epigenetics (CFCE) using primarily open-source programs.60,72 Samples were analyzed in duplicates, and each sample was

normalized to a 1% input. Sequence tags were aligned with Burrows-Wheeler Aligner (BWA)73 to build hg19 and uniquely mapped,

non-redundant reads were retained. These reads were used to generate binding sites with Model-Based Analysis of ChIP-Seq 2

(MACS v2.1.1.20160309), with a q-value (FDR) threshold of 0.01.74 We evaluated multiple quality control criteria based on alignment

information and peak quality: (i) sequence quality score; (ii) uniquely mappable reads (reads that can only map to one location in the

genome); (iii) uniquely mappable locations (locations that can only be mapped by at least one read); (iv) peak overlap with Velcro re-

gions, a comprehensive set of locations – also called consensus signal artifact regions – in the genome that have anomalous, unstruc-

tured high signal or read counts in next-generation sequencing experiments independent of cell line and of type of experiment;

(v) number of total peaks (the minimum required was 10,000); (vi) high-confidence peaks (the number of peaks that are tenfold en-

riched over background); (vii) percentage overlap with known DHS sites derived from the ENCODE Project (the minimum required to

meet the threshold was 80%); and (viii) peak conservation (a measure of sequence similarity across species based on the hypothesis

that conserved sequences are more likely to be functional).
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Peak cluster definitions

In Figures 3B and S3G, peak clusters were defined based on whether there was overlap in peak calls for ZBTB7A, KDM5A, and/or

KDM5B in the untreated ROSA26-g1 samples. Peaks were considered present for a given factor if they were called in both replicates

and absent if there was no peak call in either replicate. Heatmaps were created with deepTools2.0 using the computeMatrix and plo-

tHeatmap functions on the Glaxy server (https://usegalaxy.org/) using bigwig files from CoBRA60 and self-defined peak regions as

input. Feature annotations and nearest genes for each peak were obtained with the annotatePeak function fromChIPseeker (v1.30.3)

in R (v4.1.3).

Differential binding analyses

Peaks from all samples were merged to create a union set of sites for each transcription factor and histone mark using bedops.75

Sample-sample correlation and differential peaks analysis were performed by the CoBRA pipeline.60 Read densities were calculated

for each peak for each sample and used for the comparison of cistromes across samples. Sample similarity was determined by hi-

erarchical clustering using the spearman correlation between samples. Differential peaks were identified by DEseq2 with adjusted

P% 0.05. A total number of reads in each sample was applied to the size factor in Deseq2, which can normalize the sequencing depth

between samples. KDM5A unchanged peaks (Figure 3) were defined as regions with KDM5A peak calls across all untreated

ROSA26-g1 replicates and padj > 0.05 for deseq between ZBTB7A-KO and ROSA26-g1.

Target gene identification, GSEA, and motif analysis: To identify target genes using only peak information, we used Cistrome-GO

(http://go.cistrome.org/), which calculates regulatory potential scores for each gene based on both the number and proximity of

peaks.32 In Figures 3H–3J andS3J, we used the top 500 predicted target genes based on regulatory potential score to look for enrich-

ment of certain pathways.

Overlapwith Hallmark pathways was calculated using the compute overlap function fromMSigDB (https://www.gsea-msigdb.org/

gsea/msigdb/). Overlap with consensus transcription factor target genes from ENCODE/ChEA and overlap with transcription factor

motifs from TRANSFAC/JASPAR were calculated using enrichr (https://maayanlab.cloud/Enrichr/). To assess similarity of our peak

sets with published ChIP-seq tracks, we used the Cistrome DB toolkit (http://dbtoolkit.cistrome.org/) ‘‘What factors have significant

overlap with your peak set?’’ with peak number to use set to ‘‘All peaks in each sample’’. The Giggle scores from this analysis (-log1

(padj)*odds ratio from Fisher’s Exact Test, see Layer et al. 2018 for more information) are plotted in Figures 3K and S3I.33,34 In Fig-

ure S3I, only themaximumGiggle scores identified for each factor are plotted. To determine the regulatory potential of each peak set,

we performed binding and expression target analysis (BETA), in which we integrated the peak information with RNA-seq comparing

the ZBTB7A KO and wild-type SUM149 cells.32 For promoter-enriched peak sets (e.g., KDM5A down and ZBTB7A+KDM5A/B), we

used a window of 3 kb from each gene’s TSS to select peaks, and for non-promoter enriched peak sets (i.e., ZBTB7A unique), we

used the default parameter of 100 kb. To annotate the genes in the volcano plots with their nearest peaks, we used the output from

the annotatePeak function in the ChIPseeker (v1.30.3) package. The p values in these graphs are from the previously described BETA

analyses. Finally, for enrichment analyses, we selected high probability target genes for each peak set based on a rank product score

of less than 0.001 from the BETA output. Enrichment of transcription factor motifs from published ChIP-seq across Cistrome was

calculated using the epigenetic Landscape In Silico deletion Analysis (Lisa) tool (http://lisa.cistrome.org/). Overlap with Hallmark

pathways was calculated using the compute overlap function from MSigDB (https://www.gsea-msigdb.org/gsea/msigdb/). Motif

enrichment scores were calculated using simple enrichment analysis from MEME-suite (https://meme-suite.org/meme/doc/sea.

html) for ZBTB7A consensus sequence GACCC. Default shuffled input sequences were used as control.

RNA-seq data analysis
RNA-seq data was analyzed using the Visualization Pipeline for RNA-seq analysis (VIPER) and aligned to version hg19 of the human

genome59 The following config.yaml parameters were adjusted: RPKM_threshold = 1.0 and min_num_samples_expressing_at_

threshold = 2. Samples were analyzed in duplicates. GSEA was performed by ranking genes based on log2(FC) and using the

GSEA function from the ClusterProfiler (v4.2.2) package in R. Public gene sets tested in the manuscript include MSigDB’s Hallmark

(H1) and positional gene sets (C1), KEGG, and Reactome. TNBC subtypes used for GSEA in Figure S4K were from our prior publi-

cation.39 The heatmaps in Figures S2D and 4A are the default output of VIPER, which used the top 1,000 variable genes for plotting.

PCA plots were computed using log2 transformed count data of all genes within each sample with the prcomp function form the stats

(v4.1.3) package in R. The heatmap in Figure 5Dwas created using all C70-responsive DEGs, whichwere defined as padj < 0.05when

comparing -/+ C70 in either SUM149 ROSA26-g1 or SUM149 ZBTB7A-g1. The heatmap was generated using row normalized

Z-scores of FPKM values with the ComplexHeatmap (v2.10.0) function in R. Rows were clustered via k-means with k = 5. Enrichment

of gene sets within the heatmap clusters was determined using the enricher function from the clusterProfiler (v4.2.2) package in R.

Transcription factor target gene sets were taken from ‘‘TFT: transcription factor targets’’ in MSigDB.

TCGA and METABRIC data analyses: Because these cohorts are bulk RNA-seq, we used the ISOpure algorithm to estimate gene

expression levels specifically coming from the tumor fraction and used these deconvoluted matrices76 for the analyses. First, we as-

sessed if KDM5 activity correlated with select Hallmark pathwayswe found to be influenced by KDM5 inhibition in our study.We used

average expression of KDM5A and KDM5B as a surrogate for KDM5 activity and tested for correlation with pathway enrichment

scores (gene set variation analysis, GSVA) across basal TCGA samples.77 Immune scores were calculated from bulk RNA-seq via

‘‘Estimation of STromal and Immune cells in MAlignant Tumours using Expression data’’ (ESTIMATE).78
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Endogenous retroelement expression analysis
Differential expression of endogenous retroelements was assessed from bulk RNA-seq data using the ERVmap pipeline (v1.1).41

CRISPR screen data analysis
CRISPR data were analyzed by MAGeCK (v0.5.9) essentially as described79–81 Briefly, read counts for each sgRNA were obtained

from fastq files with mageck count.61 To obtain significantly enriched and depleted sgRNAs in the C70 treated versus untreated sam-

ples, we used the MAGeCK TEST algorithm, in which read counts were normalized to a set of 3,842 control guides targeting the

AAVS1 (3,540), CCR5 (99), and ROSA26 (203) loci. Genes with p value less than 0.001 were defined as candidate hits and colored

in the rank plots in Figure 2. The MageckFlute package (v1.14.0)61 was used to visualize the data.

scRNA-seq data analysis
Raw bcl2 files from the NovaSeq run were converted to fastq using cellranger mkfastq (Cell Ranger v5.0.1). Count information was

obtained using cellranger count and aligned to the GRCh38 reference transcriptome provided by 10X: refdata-gex-GRCh38-2020-

A.tar.gz. The filtered h5 files output from cellranger count were then loaded and analyzed with Seurat (v4.3.0). To remove poor quality

cells, cells with less than 1,000 total RNA counts or percent mitochondrial counts greater than 3 absolute deviations from the median

were filtered out. To remove doublets, cells with total RNA greater than 3 absolute deviations from the median were also filtered out.

The filtered data was then normalized with Seurat’s NormalizeData function, which normalized the gene expression for each cell by

total expression, and then multiplied by a scaling factor of 10,000 and log-transformed the results. We identified the top 2,000 most

variable features using FindVariableFeatures with selection.method = ‘‘vst’’. The data was then scaled using ScaleData, whichmakes

themean expression across cells 0 and variance 1. The scaled data was then used for clustering and visualization via UMAP using the

first 30 PC dimensions. Hexagonal plots were created as we previously described.10,82 Code to generate the plots was generated by

Dr. Hua-Jun Wu and can be found on Bitbucket (https://bitbucket.org/mthjwu/hexplot/src/master/). To create the hexagonal plots,

we first defined cell identity signatures for SUM149, C70 (i.e., SUM149 + 10 mMC70 for 7 days), and SUM149CR. For each cell type,

we compared its bulk RNA-seq (3 replicates) with the other two cell types combined (3 replicates each) and obtained DEGs via deseq.

We chose the top 66 up- and down-regulated genes based on padj values as the up- and down-signatures of each cell type. The top

66 genes were chosen since this was the smallest number of DEGs (padj<0.05) identified for a given cell type, and we sought to use

the same number of genes to define each gene signature. Using these gene signatures, we then calculated cell identity scores for

each cell within our filtered and scaled scRNA-seq data set. The cell identity score was the average scaled expression of the up-

gene signature minus the average scaled expression of the down- gene signature. We randomly selected 1,000 sets of up and

down signatures, each matching the size of the original true signatures, which allowed us to generate a bootstrap distribution for

the cell identity score. From this distribution, we calculated the bootstrap p-value. Single cells were then classified based on this

p-value, using a cutoff of 5%. Cells that didn’t meet the threshold for any signature were labeled as unclassified. Hexagonal plots

were utilized to visually represent the bootstrap classification of single cells within SUM149 andSUM149CR -/+C70. Cells that clearly

exhibited identity (i.e., passed the 5% threshold for only 1 of the 3 identities) were positioned along the edge of the plot. Cell-to-cell

distance were calculated in each group using ‘‘Embeddings’’ function of the Seurat package with PCA dimension reduction. Gini in-

dexes of all the genes within each group were calculated using ‘‘ineq’’ package.

qPLEX RIME data analysis
Peptide intensities were normalized using median scaling and protein level quantification was obtained by the summation of the

normalized peptide intensities. A statistical analysis of differentially-regulated proteins was carried out using qPLEXanalyzer a Bio-

conductor R-package.31, which internally uses limma R-package from Bioconductor.83 Multiple testing correction of p-values was

applied using the Benjamini-Hochberg method.84 to control the false discovery rate.
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