Amazon-Andes; biodiversity magnitude; canopy; eukaryotes; Johansson zones; microclimate; taxonomy; terrestrial laser scanning; Forestry; Global and Planetary Change; Ecology; Environmental Science (miscellaneous); Nature and Landscape Conservation
Abstract :
[en] Large tropical trees are rightly perceived as supporting a plethora of organisms. However, baseline data about the variety of taxa coexisting on single large tropical trees are lacking and prevent a full understanding of both the magnitude of biodiversity and the complexity of interactions among organisms in tropical rainforests. The two main aims of the research program “Life on Trees” (LOT) are (1) to establish baseline knowledge on the number of eukaryote species supported/hosted by the above-ground part of a single tropical tree and (2) to understand how these communities of organisms are assembled and distributed on or inside the tree. To achieve the first goal, we integrated a set of 36 methods for comprehensively sampling eukaryotes (plants, fungi, animals, protists) present on a tropical tree. The resulting LOT protocol was conceived and implemented during projects in the Andean Amazon region and is proposed here as a guideline for future projects of a similar nature. To address the second objective, we evaluated the microclimatic differences between tree zones and tested state-of-the-art terrestrial laser scanning (TLS) and positioning technologies incorporating satellite and fixed base station signals (dGNSS). A marked variation in temperature and relative humidity was detected along a 6-zones Johansson scheme, a tree structure subdivision system commonly used to study the stratification of epiphytic plants. Samples were collected from these six zones, including three along the trunk and three in the canopy. To better understand how different tree components (e.g., bark, leaves, fruits, flowers, dead wood) contribute to overall tree biodiversity, we categorized observations into communities based on Johansson zones and microhabitats. TLS was an essential aid in understanding the complex tree architecture. By contrast, the accuracy of positioning samples in the tree with dGNSS was low. Comprehensively sampling the biota of individual trees offers an alternative to assessing the biodiversity of fewer groups of organisms at the forest scale. Large old tropical trees provide a wealth of microhabitats that encompass a wide range of ecological conditions, thereby capturing a broad spectrum of biodiversity.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Leponce, Maurice; Biodiversity Monitoring and Assessment, Royal Belgian Institute of Natural Sciences, Brussels, Belgium ; Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Belgium
Basset, Yves; Smithsonian Tropical Research Institute, Panama City, Panama
Aristizábal-Botero, Ángela; Biodiversity Monitoring and Assessment, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
Baïben, Noui; Accès Cimes, Lyon, France
Barbut, Jérôme; Direction Générale Déléguée Aux Collections, Muséum National d'Histoire Naturelle, Paris, France
Buyck, Bart; Institut de Systématique, Évolution, Biodiversité, Muséum National d’Histoire Naturelle, CNRS, EPHE-PSL, Sorbonne Université, Université des Antilles, Paris, France
Butterill, Philip; Biology Centre, Czech Academy of Sciences, Czech Republic
Calders, Kim; Q-ForestLab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
Cárdenas, Glenda; Biodiversity Unit, University of Turku, Turku, Finland
Carrias, Jean-François; Laboratoire Microorganismes: Génome et Environnement (LMGE), CNRS, Université Clermont-Auvergne, Clermont-Ferrand, France
Catchpole, Damien; Independent Biodiversity Consultant, Lima, Peru
D’hont, Barbara; Q-ForestLab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
Delabie, Jacques; Departamento de Ciências Agrárias e Ambientais, Centro de Pesquisas do Cacau – CEPEC/CEPLAC, Universidade Estadual Santa Cruz, Ilhéus, Brazil ; Departamento de Ciências Agrárias e Ambientais, Universidade Estadual Santa Cruz, Ilhéus, Brazil
Drescher, Jochen; J. F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
Ertz, Damien; Department Research, Meise Botanic Garden, Meise, Belgium ; Service Général de l’Enseignement Supérieur et de la Recherche Scientifique, Fédération Wallonie-Bruxelles, Brussels, Belgium
Heughebaert, André; Belgian Biodiversity Platform, Belgian Science Policy, Brussels, Belgium
Leroy, Céline; AMAP (Univ. Montpellier, CIRAD, CNRS, INRAE, IRD), Montpellier, France ; EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, France
Melki, Frédéric; Fonds de Dotation Biotope Pour La Nature, Remire Montjoly, French Guiana
Michaux, Johan ; Université de Liège - ULiège > Integrative Biological Sciences (InBioS)
Neita-Moreno, Jhon César; Invertebrate and Entomology Collection, Collections, and Species Management Center, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
Poirier, Eddy; Independent Entomologist, Cayenne, French Guiana
Rougerie, Rodolphe; Institut de Systématique, Évolution, Biodiversité, Muséum National d’Histoire Naturelle, CNRS, EPHE-PSL, Sorbonne Université, Université des Antilles, Paris, France
Rouhan, Germinal; Institut de Systématique, Évolution, Biodiversité, Muséum National d’Histoire Naturelle, CNRS, EPHE-PSL, Sorbonne Université, Université des Antilles, Paris, France
Rufray, Vincent; Fondation Biotope, Remire Montjoly, French Guiana
Scheu, Stefan; J. F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany ; Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany
Schmidl, Jürgen; Department of Biology, Developmental Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
Vanderpoorten, Alain ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Biologie de l'évolution et de la conservation - Unité aCREA-Ulg (Conseils et Recherches en Ecologie Appliquée)
Villemant, Claire; Institut de Systématique, Évolution, Biodiversité, Muséum National d’Histoire Naturelle, CNRS, EPHE-PSL, Sorbonne Université, Université des Antilles, Paris, France
Youdjou, Nabil; Scientific Websites and Application Team, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
Pascal, Olivier; Fonds de Dotation Biotope Pour La Nature, Remire Montjoly, French Guiana
Adis J. Basset Y. Floren A. Hammond P. M. Linsenmair K. E. (1998). Canopy fogging of an overstory tree-recommendations for standardization. Ecotropica 4, 93–97.
Andújar C. Arribas P. Yu D. W. Vogler A. P. Emerson B. C. (2018). Why the COI barcode should be the community DNA metabarcode for the metazoa. Mol. Ecol. 27, 3968–3975. doi: 10.1111/mec.14844, PMID: 30129071
Aptroot A. (1997). Lichen biodiversity in Papua New Guinea, with the report of 173 species on one tree. Biblioth. Lichenol. 68, 203–213.
Araújo K. S. Brito V. N. Veloso T. G. de Leite T. S. Alves J. L. da Hora Junior B. T. et al. (2020). Diversity and distribution of endophytic fungi in different tissues of Hevea brasiliensis native to the Brazilian Amazon forest. Mycol. Prog. 19, 1057–1068. doi: 10.1007/s11557-020-01613-4
Arias-Aguilar A. Hintze F. Aguiar L. M. Rufray V. Bernard E. Pereira M. J. R. (2018). Who’s calling? Acoustic identification of Brazilian bats. Mammal Res. 63, 231–253. doi: 10.1007/s13364-018-0367-z
Aristizábal-Botero Á. Snoeks J. M. Realpe E. Vanschoenwinkel B. (2023). Conductivity and water level modulate developmental plasticity and explain distribution patterns in a diverse neotropical Odonata assemblage. Freshw. Biol. 68, 1558–1571. doi: 10.1111/fwb.14151
Asta J. Erhardt W. Ferretti M. Fornasier F. Kirschbaum U. Nimis P. L. et al. (2002). “Mapping lichen diversity as an indicator of environmental quality” in Monitoring with lichens – monitoring lichens, Nato Science Series. IV. Earth and Environmental Sciences. eds. Nimis P. L. Scheidegger C. Wolseley P. A. (Dordrecht, The Netherlands: Kluwer Academic Publishers), 273–279.
Barataud M. Giosa S. Leblanc F. Rufray V. Disca T. Tillon L. et al. (2013). Identification et écologie acoustique des chiroptères de Guyane française. Le Rhinolophe 19, 103–145.
Basham E. W. Baecher J. A. Klinges D. H. Scheffers B. R. (2023). Vertical stratification patterns of tropical forest vertebrates: a meta-analysis. Biol. Rev. Camb. Philos. Soc. 98, 99–114. doi: 10.1111/brv.12896, PMID: 36073113
Basham E. W. Gonzalez-Pinzon M. Romero-Marcucci A. Carl N. Baecher J. A. Scheffers B. R. (2022). Large, old trees define the vertical, horizontal, and seasonal distributions of a poison frog. Oecologia 199, 257–269. doi: 10.1007/s00442-022-05108-9, PMID: 35112173
Basset Y. (1988). A composite interception trap for sampling arthropods in tree canopies. Aust. J. Entomol. 27, 213–219. doi: 10.1111/j.1440-6055.1988.tb01527.x
Basset Y. Cizek L. Cuenoud P. Didham R. K. Guilhaumon F. Missa O. et al. (2012). Arthropod diversity in a tropical forest. Science 338, 1481–1484. doi: 10.1126/science.1226727, PMID: 23239740
Basset Y. Cizek L. Cuenoud P. Didham R. K. Novotny V. Odegaard F. et al. (2015). Arthropod distribution in a tropical rainforest: tackling a four dimensional puzzle. PLoS One 10:e0144110. doi: 10.1371/journal.pone.0144110, PMID: 26633187
Beck J. Linsenmair K. E. (2006). Feasibility of light-trapping in community research on moths: attraction radius of light, completeness of samples, nightly flight times and seasonality of southeast-Asian hawkmoths (Lepidoptera: Sphingidae). J. Res. Lepid. 39, 18–36. doi: 10.5962/p.266537
Bhunjun C. S. Phukhamsakda C. Jayawardena R. S. Jeewon R. Promputtha I. Hyde K. D. (2021). Investigating species boundaries in Colletotrichum. Fungal Divers. 107, 107–127. doi: 10.1007/s13225-021-00471-z
Bibby C. J. Burgess N. D. Hill D. A. Mustoe S. H. (2000). Bird census techniques. Second Edn. U.K.: Elsevier.
Boch S. Müller J. Prati D. Blaser S. Fischer M. (2013). Up in the tree – the overlooked richness of bryophytes and lichens in tree crowns. PLoS One 8:e84913. doi: 10.1371/journal.pone.0084913, PMID: 24358373
Brach M. Stereńczak K. Bolibok L. Kwaśny Ł. Krok G. Laszkowski M. (2019). Impacts of forest spatial structure on variation of the multipath phenomenon of navigation satellite signals. Folia For. Pol. 61, 3–21. doi: 10.2478/ffp-2019-0001
Brehm G. Niermann J. Jaimes Nino L. M. Enseling D. Jüstel T. Axmacher J. C. et al. (2021). Moths are strongly attracted to ultraviolet and blue radiation. Insect Conserv. Diver. 14, 188–198. doi: 10.1111/icad.12476
Buffington M. L. Garretson A. Kula R. R. Gates M. W. Carpenter R. Smith D. R. et al. (2021). Pan trap color preference across Hymenoptera in a forest clearing. Entomol. Exp. Appl. 169, 298–311. doi: 10.1111/eea.13008
Burki F. Sandin M. M. Jamy M. (2021). Diversity and ecology of protists revealed by metabarcoding. Curr. Biol. 31, R1267–R1280. doi: 10.1016/j.cub.2021.07.066, PMID: 34637739
Bütler R. Lachat T. Larrieu L. Paillet Y. (2013). “Habitat trees: key elements for forest biodiversity” in Integrative approaches as an opportunity for the conservation of Forest biodiversity. eds. Kraus D. Krumm F. (Freiburg, Germany: In Focus – Managing Forest in Europe, European Forest Institute), 84–91.
Buyck B. Laessoe T. Meyer M. Hofstetter V. (2010). Chapter 12. Collecting the neglected kingdom: Guidelines for the field mycologist with emphasis on the larger fungi. In Manual on field recording techniques and protocols for all taxa biodiversity inventories, vol 8, eds. Eymann J. Degreef J. Häuser C. Monje J.C. Samyn Y. VandenSpiegel D. (Brussels, Belgium: ABC Taxa), 18–48.
Calders K. Adams J. Armston J. Bartholomeus H. Bauwens S. Bentley L. P. et al. (2020). Terrestrial laser scanning in forest ecology: expanding the horizon. Remote Sens. Environ. 251:112102. doi: 10.1016/j.rse.2020.112102
Callaghan D. A. During H. J. Forrest L. L. Wilkinson K. (2020). Neglected and at risk: bryophyte diaspore banks of coastal dune systems. J. Bryol. 42, 223–234. doi: 10.1080/03736687.2020.1743561
Camacho C. Coulouris G. Avagyan V. Ma N. Papadopoulos J. Bealer K. et al. (2009). BLAST+: architecture and applications. BMC Bioinf. 10:421. doi: 10.1186/1471-2105-10-421, PMID: 20003500
Cannon C. H. Borchetta C. Anderson D. L. Arellano G. Barker M. Charron G. et al. (2021). Extending our scientific reach in arboreal ecosystems for research and management. Front. For. Global Change 4. doi: 10.3389/ffgc.2021.712165
Carrias J. F. Brouard O. Leroy C. Céréghino R. Pelozuelo L. Dejean A. et al. (2012). An ant–plant mutualism induces shifts in the protist community structure of a tank-bromeliad. Basic Appl. Ecol. 13, 698–705. doi: 10.1016/j.baae.2012.10.002
Catchpole D. (2004). The ecology of vascular epiphytes on a Ficus L. host (Moraceae) in a Peruvian cloud forest. [Honorus degree thesis]. [Tasmania (AU)]: University of Tasmania.
Catchpole D. (2012). Orographic gradients in climate and forest cover at the cordillera Yanachaga, Peru. [PhD dissertation]. [Tasmania (AU)]: University of Tasmania.
Catchpole D. J. Kirkpatrick J. B. (2010). “The outstandingly speciose epiphytic flora of a single stranger fig (Ficus crassiuscula) in a Peruvian montane cloud forest” in Tropical montane cloud forests. eds. Bruijnzeel L. A. Scatena F. N. Hamilton L. S. (New York: Cambridge University Press), 142–146.
Chambers J. Q. Higuchi N. Schimel J. P. (1998). Ancient trees in Amazonia. Nature 391, 135–136. doi: 10.1038/34325
Córdova-Chávez O. Castillo-Campos G. Pérez-Pérez R. E. García-Franco J. G. Cáceres M. E. S. (2016). Alpha diversity of lichens associated with Quercus laurina in a mountain cloud forest at Cofre de Perote eastern slope (La Cortadura), Veracruz, Mexico. Cryptogam. Mycol. 37, 193–204. doi: 10.7872/crym/v37.iss2.2016.193
Cornelissen J. H. C. ter Steege H. T. (1989). Distribution and ecology of epiphytic bryophytes and lichens in dry evergreen forest of Guyana. J. Trop. Ecol. 5, 131–150. doi: 10.1017/S0266467400003400
Dantas T. S. Valente D. V. Carvalho-Silva M. Câmara P. E. A. S. (2018). Bryophyte phylogeny and DNA barcoding: tools for assessing Brazilian diversity. Rev. Bras. Bot. 41, 497–505. doi: 10.1007/s40415-018-0473-9
DaRocha W. D. Ribeiro S. P. Neves F. S. Fernandes G. W. Leponce M. Delabie J. H. C. (2015). How does bromeliad distribution structure the arboreal ant assemblage (Hymenoptera: Formicidae) on a single tree in a Brazilian Atlantic forest agroecosystem? Myrmecol. News 21, 83–92. doi: 10.25849/myrmecol.news_021:083
De Basanta D. W. Estrada-Torres A. (2017). Chapter 10 “Techniques for recording and isolating Myxomycetes,” in Myxomycetes, eds. Stephenson S.L. Rojas C. (Cambridge, Massachusetts, USA: Academic Press), 333–363
de Oliveira Amaral A. E Ferreira A. F. T. A. F. Da Silva Bentes J. L. (2022). Fungal endophytic community associated with Hevea spp.: diversity, enzymatic activity, and biocontrol potential. Braz. J. Microbiol. 53, 857–872. doi: 10.1007/s42770-022-00709-1, PMID: 35247168
Díaz M. M. Solari S. Gregorin R. Aguirre L. F. Barquez R. M. (2021). Clave de identificación de los murciélagos Neotropicales/Chave de indentifição dos morcegos Neotropicais. Argentina: Publicación Especial PCMA 4, 211.
Dos Reis J. B. A. Lorenzi A. S. do Vale H. M. M. (2022). Methods used for the study of endophytic fungi: A review on methodologies and challenges, and associated tips. Arch. Microbiol. 204:675. doi: 10.1007/s00203-022-03283-0, PMID: 36264513
Doughty C. E. Keany J. M. Wiebe B. C. Rey-Sanchez C. Carter K. R. Middleby K. B. et al. (2023). Tropical forests are approaching critical temperature thresholds. Nature 621, 105–111. doi: 10.1038/s41586-023-06391-z, PMID: 37612501
Erwin T. L. Scott J. C. (1980). Seasonal and size patterns, trophic structure, and richness of Coleoptera in the tropical arboreal ecosystem: the fauna of the tree Luehea seemanii Triana and planch in the canal zone of Panama. Coleopt. Bull. 34, 305–322.
Eskov A. K. Kolomeitseva G. L. (2022). Vascular epiphytes: plants that have broken ties with the ground. Biol. Bull. Rev. 12, 304–333. doi: 10.1134/s2079086422030033
Floren A. (2010). “Sampling arthropods from the canopy by insecticidal knockdown,” in Manual on field recording techniques and protocols for all taxa biodiversity inventories, part 1, vol. 8, eds. Eymann J. Degreef J. Häuser C. Monje J.C. Samyn Y. and VandenSpiegel D. (Brussels, Belgium: ABC Taxa), 158–172.
Fontaine B. Perrard A. Bouchet P. (2012). 21 years of shelf life between discovery and description of new species. Curr. Biol. 22, R943–R944. doi: 10.1016/j.cub.2012.10.029, PMID: 23174292
Gamboa M. A. Bayman P. (2001). Communities of endophytic fungi in leaves of a tropical timber tree (Guarea guidonia: Meliaceae). Biotropica 33, 352–360. doi: 10.1111/j.1744-7429.2001.tb00187.x
Gaudeul M. Rouhan G. (2013). A plea for modern botanical collections to include DNA-friendly material. Trends Plant Sci. 18, 184–185. doi: 10.1016/j.tplants.2012.12.006, PMID: 23312146
Gradstein R. S. (1992). “The vanishing tropical rainforest as an environment for bryophytes and lichens” in Bryophytes and lichens in a changing environment. eds. Bates J. W. Farmer A. M. (Oxford: Oxford University Press), 232–256.
Hebert P. D. Cywinska A. Ball S. L. DeWaard J. R. (2003). Biological identifications through DNA barcodes. Proc. Biol. Sci. 270, 313–321. doi: 10.1098/rspb.2002.2218
Hofstetter V. Buyck B. Eyssartier G. Schnee S. Gindro K. (2019). The unbearable lightness of sequenced-based identification. Fungal Divers. 96, 243–284. doi: 10.1007/s13225-019-00428-3
CBOL Plant Working GroupHollingsworth P. M. Forrest L. L. Spouge J. L. Hajibabaei M. Ratnasingham S. et al. (2009). A DNA barcode for land plants. Proc. Natl. Acad. Sci. U. S. A. 106, 12794–12797. doi: 10.1073/pnas.0905845106, PMID: 19666622
Ibrahim M. Oyebanji E. Fowora M. Aiyeolemi A. Orabuchi C. Akinnawo B. et al. (2021). Extracts of endophytic fungi from leaves of selected Nigerian ethnomedicinal plants exhibited antioxidant activity. BMC Complement Med. Ther. 21:98. doi: 10.1186/s12906-021-03269-3
International Plant Names Index (IPNI) (2024). The Royal Botanic Gardens, Kew, Harvard University Herbaria and Libraries and Australian National Herbarium. Available at: http://www.ipni.org (Accessed March 11, 2024).
Jarman S. J. Kantvilas G. (1995). Epiphytes on an old Huon pine tree (Lagarostrobos franklinii) in Tasmanian rainforest. N. Z. J. Bot. 33, 65–78. doi: 10.1080/0028825X.1995.10412944
Jauss R.-T. Walden S. Fiore-Donno A. M. Dumack K. Schaffer S. Wolf R. et al. (2020). From Forest soil to the canopy: increased habitat diversity does not increase species richness of Cercozoa and Oomycota in tree canopies. Front. Microbiol. 11:592189. doi: 10.3389/fmicb.2020.592189, PMID: 33414768
Johansson D. (1974). Ecology of vascular epiphytes in west African rain forest. Acta Phytogeogr. Suec. 59, 1–136.
Komposch H. Hafellner J. (2000). Diversity and vertical distribution of lichens in a Venezuelan tropical lowland rain forest. Selbyana 21, 11–24. doi: 10.2307/41760048
Kress W. J. (2017). Plant DNA barcodes: applications today and in the future. J. Syst. Evol. 55, 291–307. doi: 10.1111/jse.12254
Krömer T. Kessler M. Gradstein S. R. (2006). Vertical stratification of vascular epiphytes in submontane and montane forest of the Bolivian Andes: the importance of the understory. Plant Ecol. 189, 261–278. doi: 10.1007/s11258-006-9182-8
Kuo L. Y. Li F. W. Chiou W. L. Wang C. N. (2011). First insights into fern matK phylogeny. Mol. Phylogenet. Evol. 59, 556–566. doi: 10.1016/j.ympev.2011.03.010
Lamarre G. P. A. Mendoza I. Rougerie R. Decaëns T. Hérault B. Beneluz F. (2015). Stay out (almost) all night: contrasting responses in flight activity among tropical moth assemblages. Neotrop. Entomol. 44, 109–115. doi: 10.1007/s13744-014-0264-3, PMID: 26013127
Lawton J. H. Bignell D. E. Bolton B. Bloemers G. F. Eggleton P. Hammond P. M. et al. (1998). Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature 391, 72–76. doi: 10.1038/34166
Leponce M. Corbara B. Delabie J. H. C. Orivel J. Aberlenc H.-P. Bail J. et al. (2021a). Spatial and functional structure of an entire ant assemblage in a lowland Panamanian rainforest. Basic Appl. Ecol. 56, 32–44. doi: 10.1016/j.baae.2021.06.007
Leponce M. Dejean A. Mottl O. Klimes P. (2021b). Rapid assessment of the three-dimensional distribution of dominant arboreal ants in tropical forests. Insect Conserv. Diversity 14, 426–438. doi: 10.1111/icad.12486
Leponce M. Meyer C. Hauser C. Bouchet P. Delabie J. H. C. Weigt L. et al. (2010). “Challenges and solutions for planning and implementing large-scale biotic inventories” in Manual on field recording techniques and protocols for all taxa biodiversity inventories. eds. Eymann J. Degreeg J. Hauser Ch. Monje J. C. Van den Spiegel D. (ABC taxa), 8, 19–49.
Lindenmayer D. B. Blanchard W. McBurney L. Blair D. Banks S. Likens G. E. et al. (2012). Interacting factors driving a major loss of large trees with cavities in a forest ecosystem. PLoS One 7:e41864. doi: 10.1371/journal.pone.0041864, PMID: 23071486
Lindenmayer D. B. Laurance W. F. (2017). The ecology, distribution, conservation and management of large old trees. Biol. Rev. Camb. Philos. Soc. 92, 1434–1458. doi: 10.1111/brv.12290, PMID: 27383287
Lindo Z. Winchester N. (2008). Scale dependent diversity patterns in arboreal and terrestrial oribatid mite (Acari: Oribatida) communities. Ecography 31, 53–60. doi: 10.1111/j.2007.0906-7590.05320.x
Li X. Yang Y. Henry R. J. Rossetto M. Wang Y. Chen S. (2015). Plant DNA barcoding: from gene to genome. Biol. Rev. Camb. Philos. Soc. 90, 157–166. doi: 10.1111/brv.12104
Lopez-Baucells A. Rocha R. Bobrowiec P. E. D. Palmeirim J. M. Meyer C. F. J. (2016). Field guide to Amazonian bats. Manaus: INPA, 174.
Lücking R. Aime M. C. Robbertse B. Miller A. N. Aoki T. Ariyawansa H. A. et al. (2021). Fungal taxonomy and sequence-based nomenclature. Nat. Microbiol. 6, 540–548. doi: 10.1038/s41564-021-00888-x, PMID: 33903746
Lutz J. A. Furniss T. J. Johnson D. J. Davies S. J. Allen D. Alonso A. et al. (2018). Global importance of large-diameter trees. Glob. Ecol. Biogeogr. 27, 849–864. doi: 10.1111/geb.12747
Luz F. A. Mendonça Jr D. S. M. (2019). Guilds in insect galls: who is who. Fla. Entomol. 102, 207–210. doi: 10.1653/024.102.0133
Martin R. Gazis R. Skaltsas D. Chaverri P. Hibbett D. (2015). Unexpected diversity of basidiomycetous endophytes in sapwood and leaves of Hevea. Mycologia 107, 284–297. doi: 10.3852/14-206, PMID: 25572095
Mavrodiev E. V. Dervinis C. Whitten W. M. Gitzendanner M. A. Kirst M. Kim S. et al. (2021). A new, simple, highly scalable, and efficient protocol for genomic DNA extraction from diverse plant taxa. Appl. Plant Sci. 9:e11413. doi: 10.1002/aps3.11413, PMID: 33854847
Meierotto S. Sharkey M. J. Janzen D. H. Hallwachs W. Hebert P. D. N. Chapman E. G. et al. (2019). A revolutionary protocol to describe understudied hyperdiverse taxa and overcome the taxonomic impediment. Dtsch. Entomol. Z. 66, 119–145. doi: 10.3897/dez.66.34683
Méndez-Castro F. E. Bader M. Y. Mendieta-Leiva G. Rao D. (2018). Islands in the trees: A biogeographic exploration of epiphyte-dwelling spiders. J. Biogeogr. 45, 2262–2271. doi: 10.1111/jbi.13422
Montfoort D. Ek R. C. (1990). Vertical distribution and ecology of epiphytic bryophytes and lichens in a lowland rain forest in French Guiana. Utrecht: Institute of Systematic Botany.
Nitta J. H. Chambers S. M. (2022). Identifying cryptic fern gametophytes using DNA barcoding: A review. Appl. Plant Sci. 10:e11465. doi: 10.1002/aps3.11465, PMID: 35495195
Normann F. Weigelt P. Gehrig-Downie C. Gradstein S. R. Sipman H. J. M. Obregon A. et al. (2010). Diversity and vertical distribution of epiphytic macrolichens in lowland rain forest and lowland cloud forest of French Guiana. Ecol. Indic. 10, 1111–1118. doi: 10.1016/j.ecolind.2010.03.008
North G. B. Lynch F. H. Maharaj F. D. Phillips C. A. Woodside W. T. (2013). Leaf hydraulic conductance for a tank bromeliad: axial and radial pathways for moving and conserving water. Front. Plant Sci. 4:78. doi: 10.3389/fpls.2013.00078, PMID: 23596446
Pezzini F. F. Ferrari G. Forrest L. L. Hart M. L. Nishii K. Kidner C. A. (2023). Target capture and genome skimming for plant diversity studies. Appl. Plant Sci. 11:e11537. doi: 10.1002/aps3.11537, PMID: 37601316
Pietro-Souza W. Mello I. S. Vendruscullo S. J. Silva G. F. D. Cunha C. N. D. White J. F. et al. (2017). Endophytic fungal communities of Polygonum acuminatum and Aeschynomene fluminensis are influenced by soil mercury contamination. PLoS One 12:e0182017. doi: 10.1371/journal.pone.0182017, PMID: 28742846
Portal-Cahuana L. A. Fontana C. Assis-Pereira G. Groenendijk P. Roig F. A. Tomazello-Filho M. (2023). Thirty-four years of dendrochronological studies in Perú: A review of advances and challenges. Dendrochronologia 78:126058. doi: 10.1016/j.dendro.2023.126058
Ranatunga M. Kellar C. Pettigrove V. (2023). Toxicological impacts of synthetic pyrethroids on non-target aquatic organisms: A review. Environ. Adv. 12:100388. doi: 10.1016/j.envadv.2023.100388
Remm J. Lõhmus A. (2011). Tree cavities in forests – the broad distribution pattern of a keystone structure for biodiversity. For. Ecol. Manag. 262, 579–585. doi: 10.1016/j.foreco.2011.04.028
RIEGL (n.d.), Laser measurement systems GmbH, Horn, Austria. Available at: www.riegl.com, version 2.15.
Romanski J. (2007). Epiphytic bryophytes and habitat microclimate variation in lower montane rainforest, Peru. [PhD dissertation]. [Tasmania (AU)]: University of Tasmania.
Rouhan G. Gaudeul M. (2021). Plant taxonomy: A historical perspective, current challenges, and perspectives. Methods Mol. Biol. 2222, 1–37. doi: 10.1007/978-1-0716-0997-2_1, PMID: 33301085
Sahu P. K. Tilgam J. Mishra S. Hamid S. Gupta A. Verma S. K. et al. (2022). Surface sterilization for isolation of endophytes: Ensuring what (not) to grow. J. Basic Microbiol. 62, 647–668. doi: 10.1002/jobm.202100462
Sanford W. W. (1967). Distribution of epiphytic orchids in semi-deciduous tropical forest in southern Nigeria. J. Ecol. 56, 697–705. doi: 10.2307/2258101
Sanver D. Hawkins B. A. (2000). Galls as habitats: the inquiline communities of insect galls. Basic Appl. Ecol. 1, 3–11. doi: 10.1078/1439-1791-00001
Scheffers B. R. Phillips B. L. Laurance W. F. Sodhi N. S. Diesmos A. Williams S. E. (2013). Increasing arboreality with altitude: a novel biogeographic dimension. Proc. Biol. Sci. 280:20131581. doi: 10.1098/rspb.2013.1581, PMID: 24026817
Schoch C. L. Seifert K. A. Huhndorf S. Robert V. Spouge J. L. Levesque C. A. et al. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. 109, 6241–6246. doi: 10.1073/pnas.1117018109, PMID: 22454494
Schuettpelz E. Trapnell D. W. (2006). Exceptional epiphyte diversity on a single tree in Costa Rica. Selbyana 27, 65–71.
Sillett S. C. Gradstein S. R. Griffin D. (1995). Bryophyte diversity of Ficus tree crowns from cloud forest and pasture in Costa Rica. Bryologist 98, 251–260. doi: 10.2307/3243312
Skvarla M. J. Larson J. L. Fisher J. R. Dowling A. P. (2021). A review of terrestrial and canopy malaise traps. Ann. Entomol. Soc. Am. 114, 27–47. doi: 10.1093/aesa/saaa044
Song L. W. Y. Liu W. Y. Ma W. Z. Tan Z. H. (2011). Bole epiphytic bryophytes on Lithocarpus xylocarpus (Kurz) Markgr. in the Ailao Mountains, SW China. Ecol. Res. 26, 351–363. doi: 10.1007/s11284-010-0790-3
Souto-Vilarós D. Basset Y. Blažek P. Laird-Hopkins B. Segar S. T. Navarro-Valencia E. et al. (2024). Illuminating arthropod diversity in a tropical forest: assessing biodiversity by automatic light trapping and DNA metabarcoding. Environ. DNA 6:e540. doi: 10.1002/edn3.540
Stephenson S. L. Stempen H. (1994). Myxomycetes: A handbook of slime molds. USA: Timber Press Inc., University of Minnesota.
Terryn L. Calders K. Åkerblom M. Bartholomeus H. Disney M. Levick S. et al. (2023). Analysing individual 3D tree structure using the R package ITSMe. Methods Ecol. Evol. 14, 231–241. doi: 10.1111/2041-210X.14026
Terryn L. Calders K. Bartholomeus H. Bartolo R. E. Brede B. D'Hont B. et al. (2021). Quantifying tropical forest stand structure through terrestrial and UAV laser scanning fusion. Brussels, Belgium: 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 8281–8284. doi: 10.1109/IGARSS47720.2021.9553992
Terryn L. Calders K. Bartholomeus H. Bartolo R. E. Brede B. D'hont B. et al. (2022). Quantifying tropical forest structure through terrestrial and UAV laser scanning fusion in Australian rainforests. Remote Sens. Environ. 271:112912. doi: 10.1016/j.rse.2022.112912
Tews J. Brose U. Grimm V. Tielbörger K. Wichmann M. C. Schwager M. et al. (2004). Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structure. J. Biogeogr. 31, 79–92. doi: 10.1046/j.0305-0270.2003.00994.x
Thines M. Crous P. W. Aime M. C. Aoki T. Cai L. Hyde K. D. et al. (2018). Ten reasons why a sequence-based nomenclature is not useful for fungi anytime soon. IMA Fungus 9, 177–183. doi: 10.5598/imafungus.2018.09.01.11, PMID: 30018878
Thomas B. Audonneau N. C. Machouart M. Debourgogne A. (2019). Molecular identification of fusarium species complexes: which gene and which database to choose in clinical practice? J Mycol. Med. 29, 56–58. doi: 10.1016/j.mycmed.2019.01.003, PMID: 30704749
Truxa C. Fiedler K. (2012). Attraction to light – from how far do moths (Lepidoptera) return to weak artificial sources of light? Eur. J. Entomol. 109, 77–84. doi: 10.14411/eje.2012.010
Walden S. Jauss R.-T. Feng K. Fiore-Donno A. M. Dumack K. Schaffer S. et al. (2021). On the phenology of protists: recurrent patterns reveal seasonal variation of protistan (Rhizaria: Cercozoa and Endomyxa) communities in tree canopies. FEMS Microbiol. Ecol. 97:fiab081. doi: 10.1093/femsec/fiab081, PMID: 34117748
Wilkening A. J. Foltz J. L. Atkinson T. H. Connor M. D. (1981). An omnidirectional flight trap for ascending and descending insects. Can. Entomol. 113, 453–455. doi: 10.4039/Ent113453-5
Wilson E. O. (1994). Naturalist. Washington: Island Press, 380.
Yanoviak S. P. Nadkarni N. M. Gering J. C. (2003). Arthropods in epiphytes: a diversity component that is not effectively sampled by canopy fogging. Biodivers. Conserv. 12, 731–741. doi: 10.1023/A:1022472912747
Yao H. Sun X. He C. Maitra P. Li X. C. Guo L. D. (2019). Phyllosphere epiphytic and endophytic fungal community and network structures differ in a tropical mangrove ecosystem. Microbiome 7:57. doi: 10.1186/s40168-019-0671-0
Zamani A. Dal Pos D. Fric Z. F. Orfinger A. B. Scherz M. D. Bartoňová A. S. et al. (2022). The future of zoological taxonomy is integrative, not minimalist. Syst. Biodivers. 20, 1–14. doi: 10.1080/14772000.2022.2063964
Zheng J. Wang Y. Nihan N. L. (2005). “Quantitative evaluation of GPS performance under forest canopies,” Proceedings. 2005 IEEE Networking, Sensing and Control, 2005. Tucson, AZ, USA, 777–782. doi: 10.1109/ICNSC.2005.1461289
Zotz G. (2007). Johansson revisited: The spatial structure of epiphyte assemblages. J. Veg. Sci. 18, 123–130.