Akram, Muhammad, Rashid, Ahmed, Shakir, Imran, Ibrahim, Wan Aini Wan, Hussain, Rafaqat, Extracting hydroxyapatite and its precursors from natural resources. J. Mater. Sci. 49:4 (2014), 1461–1475, 10.1007/s10853-013-7864-x.
AlSharifi, Mariam, Hussein, Znad, Development of a lithium based chicken bone (Li-Cb) composite as an efficient catalyst for biodiesel production. Renew. Energy 136 (2019), 856–864, 10.1016/j.renene.2019.01.052.
Antoniac, Iulian Vasile, Handbook of bioceramics and biocomposites. Handbook of Bioceramics and Biocomposites, 2016, 10.1007/978-3-319-12460-5.
Arokiasamy, Pilomeena, Abdullah, Mohd Mustafa Al Bakri, Rahim, Shayfull Zamree Abd, Luhar, Salmabanu, Sandu, Andrei Victor, Jamil, Noorina Hidayu, Nabiałek, Marcin, Synthesis methods of hydroxyapatite from natural sources: a review. Ceram. Int. 48:11 (2022), 14959–14979, 10.1016/j.ceramint.2022.03.064.
Bano, Nazia, Jikan, Suzi Salwah, Basri, Hatijah, Adzila, Sharifah, Zago, Dagaci Muhammad, XRD and FTIR study of A&B type carbonated hydroxyapatite extracted from bovine bone. AIP Conference Proceedings 2068 (February), 2019, 10.1063/1.5089399.
Barakat, Nasser A.M., Seob Khil, Myung, Omran, A.M., Sheikh, Faheem A., Kim, Hak Yong, Extraction of pure natural hydroxyapatite from the bovine bones Bio waste by three different methods. J. Mater. Process. Technol. 209:7 (2009), 3408–3415, 10.1016/j.jmatprotec.2008.07.040.
Bee, Soo-Ling, Abdul Hamid, Z.A., Hydroxyapatite derived from food industry bio-wastes: syntheses, properties and its potential multifunctional applications. Ceram. Int. 46:11 (2020), 17149–17175, 10.1016/j.ceramint.2020.04.103 Part A.
Bigi, A., Boanini, E., Gazzano, M., Ion substitution in biological and synthetic apatites. Biomineralization and Biomaterials: Fundamentals and Applications, 2016, Elsevier Ltd, 10.1016/B978-1-78242-338-6.00008-9.
Brzezińska-Miecznik, Jadwiga, Haberko, Krzysztof, Sitarz, Maciej, Bućko, Mirosław M., Macherzyńska, Beata, Hydroxyapatite from animal bones – extraction and properties. Ceram. Int. 41:3 (2015), 4841–4846, 10.1016/j.ceramint.2014.12.041 Part B.
Cacciotti, Ilaria, Cationic and anionic substitutions in hydroxyapatite. Antoniac, Iulian Vasile, (eds.) Handbook of Bioceramics and Biocomposites, 2016, Springer International Publishing, Cham, 145–211, 10.1007/978-3-319-12460-5_7.
Cheary, R.W., Coelho, A., A fundamental parameters Approach to X-ray line-profile fitting. J. Appl. Crystallogr. 25:2 (1992), 109–121, 10.1107/S0021889891010804.
Fabian, Heinz, Werner, Mäntele, Infrared spectroscopy of proteins. Handbook of Vibrational Spectroscopy, 2001, 10.1002/0470027320.s8201.
Fihri, Aziz, Len, Christophe, Varma, Rajender S., Solhy, Abderrahim, Hydroxyapatite: a review of syntheses, structure and applications in heterogeneous catalysis. Coord. Chem. Rev. 347 (2017), 48–76, 10.1016/j.ccr.2017.06.009.
Gecim, Gözde, Dönmez, Sinan, Erkoc, Ertugrul, Calcium deficient hydroxyapatite by precipitation: continuous process by vortex reactor and semi-batch synthesis. Ceram. Int. 47:2 (2021), 1917–1928, 10.1016/j.ceramint.2020.09.020.
Geuli, Ori, Metoki, Noah, Zada, Tal, Reches, Meital, Eliaz, Noam, Mandler, Daniel, Synthesis, coating, and drug-release of hydroxyapatite nanoparticles loaded with antibiotics. J. Mater. Chem. B 5:38 (2017), 7819–7830, 10.1039/c7tb02105d.
Hernández-Barreto, Diego F., Hernández-Cocoletzi, Heriberto, Moreno-Piraján, Juan Carlos, Biogenic hydroxyapatite obtained from bone wastes using CO2-assisted pyrolysis and its interaction with glyphosate: a computational and experimental study. ACS Omega 7:27 (2022), 23265–23275, 10.1021/acsomega.2c01379.
Horta, Marla Karolyne dos Santos, Westin, Cecília, Rocha, Daniel Navarro da, Campos, José Brant de, de Souza, Rodrigo Fernandes Magalhães, Aguilar, Marilza Sampaio, Moura, Francisco José, Hydroxyapatite from biowaste for biomedical applications: obtainment, characterization and in vitro assays. Mater. Res., 26, 2023, 10.1590/1980-5373-MR-2022-0466.
Ibrahim, Maya, Labaki, Madona, Giraudon, Jean-Marc, Lamonier, Jean-François, Hydroxyapatite, a multifunctional material for air, water and soil pollution control: a review. J. Hazard Mater., 383, 2020, 121139, 10.1016/j.jhazmat.2019.121139.
Ingole, Vijay H., Hussein, Kamal H., Kashale, Anil A., Gattu, Ketan P., Dhanayat, Swapnali S., Vinchurkar, Aruna, Chang, Jia-Yaw, Ghule, Anil V., Invitro bioactivity and osteogenic activity study of solid state synthesized nano-hydroxyapatite using recycled eggshell bio–waste. ChemistrySelect 1:13 (2016), 3901–3908, 10.1002/slct.201601092.
Ishikawa, Kunio, Garskaite, Edita, Kareiva, Aivaras, Sol–gel synthesis of calcium phosphate-based biomaterials—a review of environmentally benign, simple, and effective synthesis routes. J. Sol. Gel Sci. Technol. 94:3 (2020), 551–572, 10.1007/s10971-020-05245-8.
Istrate, Sinziana, Madalina, Laura, Piticescu, Roxana, Zurac, Sabina, Ciuluvica, Radu, Alexandrina, Burlacu, Tutuianu, Raluca, Valsan, Sorina, Motoc, Adrian, Voinea, Liliana, Repair of the orbital wall fractures in rabbit animal model using nanostructured hydroxyapatite-based implant. Nanomaterials, 6(January), 2016, 11, 10.3390/nano6010011.
Javaid, Rahat, Qazi, Umair Yaqub, Ikhlaq, Amir, Zahid, Muhammad, Alazmi, Amira, Subcritical and supercritical water oxidation for dye decomposition. J. Environ. Manag., 290, 2021, 112605, 10.1016/j.jenvman.2021.112605.
Jiang, Zhuohang, Li, Yanhui, Wang, Shuzhong, Cui, Chengchao, Yang, Chuang, Li, Jianna, Review on mechanisms and kinetics for supercritical water oxidation processes. Appl. Sci., 2020, 10.3390/app10144937.
Kuśnieruk, Sylwia, Wojnarowicz, Jacek, Chodara, Agnieszka, Chudoba, Tadeusz, Gierlotka, Stanislaw, Lojkowski, Witold, Influence of hydrothermal synthesis parameters on the properties of hydroxyapatite nanoparticles. Beilstein J. Nanotechnol. 7 (2016), 1586–1601, 10.3762/bjnano.7.153.
Lett, J. Anita, Sundareswari, M., Ravichandran, K., Bavani Latha, M., Sagadevan, Suresh, Johan, Mohd Rafie Bin, Tailoring the morphological features of sol-gel synthesized mesoporous hydroxyapatite using fatty acids as an organic modifier. RSC Adv. 9:11 (2019), 6228–6240, 10.1039/c9ra00051h.
Londoño-Restrepo, Sandra M., Ramirez-Gutierrez, Cristian F., Real, Alicia del, Rubio-Rosas, Efrain, Rodriguez-García, Mario E., Study of bovine hydroxyapatite obtained by calcination at low heating rates and cooled in furnace air. J. Mater. Sci. 51:9 (2016), 4431–4441, 10.1007/s10853-016-9755-4.
Minamisawa, Hirogo, Kojima, Yoshiyuki, Aizawa, Mamoru, Adsorption of inositol phosphate on hydroxyapatite powder with high specific surface area. Materials, 2022, 10.3390/ma15062176.
Mohd Pu'ad, N.A.S., Abdul Haq, R.H., Mohd Noh, H., Abdullah, H.Z., Idris, M.I., Lee, T.C., Synthesis method of hydroxyapatite: a review. Mater. Today: Proc. 29 (2019), 233–239, 10.1016/j.matpr.2020.05.536 November 2018.
Moradi, Ali, Pakizeh, Majid, Ghassemi, Toktam, A review on bovine hydroxyapatite; extraction and characterization. Biomedical Physics and Engineering Express, 8(1), 2022, 10.1088/2057–1976/ac414e.
Munir, Muhammad Usman, Salman, Sajal, Javed, Ibrahim, Bukhari, Syed Nasir Abbas, Ahmad, Naveed, Shad, Naveed Akhter, Aziz, Farooq, Nano-hydroxyapatite as a delivery system: overview and advancements. Artif. Cell Nanomed. Biotechnol. 49:1 (2021), 717–727, 10.1080/21691401.2021.2016785.
Mustafa, N., Ibrahim, Mohd Halim Irwan, Asmawi, Rosli, Amin, Azriszul Mohd, Hydroxyapatite extracted from waste fish bones and scales via calcination method. Appl. Mech. Mater. 773–774:November (2015), 287–290 10.4028/www.scientific.net/amm.773-774.287.
Odusote, Jamiu K., Danyuo, Y., Baruwa, Abdulazeez D., Azeez, Akeem A., Synthesis and characterization of hydroxyapatite from bovine bone for production of dental implants. J. Appl. Biomater. Funct. Mater. 17:2 (2019), 1–7, 10.1177/2280800019836829.
Paliwal, Aastha, Ashritha, J., Chanakya, H.N., Waste animal bones as catalysts for biodiesel production; A mini review. Biomethane through Resource Circularity, 2021, 97–108, 10.1201/9781003204435-10.
Park, Sung Hee, Jo, Yeon-Ji, Static hydrothermal processing and fractionation for production of a collagen peptide with anti-oxidative and anti-aging properties. Process Biochem. 83 (2019), 176–182, 10.1016/j.procbio.2019.05.015.
Pham, Minh, Doan, Introduction to hydroxyapatite‐based materials in heterogeneous catalysis. Design and Applications of Hydroxyapatite‐Based Catalysts, 2022, 1–18, 10.1002/9783527830190.ch1.
Pramanik, Sumit, Kumar Agarwal, Avinash, Rai, K.N., Garg, Ashish, Development of high strength hydroxyapatite by solid-state-sintering process. Ceram. Int. 33:3 (2007), 419–426, 10.1016/j.ceramint.2005.10.025.
Rauf, Foroutan, Jamaleddin, Peighambardoust Seyed, Hassan, Aghdasinia, Mohammadi, Reza, Bahman, Ramavandi, Modification of bio-hydroxyapatite generated from waste poultry bone with MgO for purifying methyl violet-laden liquids. Environ. Sci. Pollut. Control Ser. 27:35 (2020), 44218–44229, 10.1007/s11356-020-10330-0.
Shi, Dezhi, Tong, Haihang, Mengying, Lv, Luo, Dan, Wang, Pan, Xu, Xiaoyi, Han, Zhiyong, Optimization of hydrothermal synthesis of hydroxyapatite from chicken eggshell waste for effective adsorption of aqueous Pb(II). Environ. Sci. Pollut. Control Ser. 28:41 (2021), 58189–58205, 10.1007/s11356-021-14772-y.
Szałaj, Urszula, Chodara, Agnieszka, Gierlotka, Stanisław, Wojnarowicz, Jacek, Łojkowski, Witold, Enhanced release of calcium ions from hydroxyapatite nanoparticles with an increase in their specific surface area. Materials, 2023, 10.3390/ma16196397.
Tang, Keyong, Li, Weilin, Liu, Jie, Liu, Cheng Kung, Pan, Hongbo, Mechanism of collagen processed with urea determined by thermal degradation analysis. J. Am. Leather Chem. Assoc. 115:10 (2020), 380–389, 10.34314/jalca.v115i10.4172.
Tews, Iva J., Garcia-Perez, Manuel, Advanced oxidative techniques for the treatment of aqueous liquid effluents from biomass thermochemical conversion processes: a review. Energy Fuel. 36:1 (2022), 60–79, 10.1021/acs.energyfuels.1c03048.
Tite, Teddy, Popa, Adrian Claudiu, Marinela Balescu, Liliana, Bogdan, Iuliana Maria, Pasuk, Iuliana, Ferreira, José M.F., Stan, George E., Cationic substitutions in hydroxyapatite: current status of the derived biofunctional effects and their in vitro interrogation methods. Materials 11:11 (2018), 1–62, 10.3390/ma11112081.
Tran, Thi Nhung, Kim, Junho, Sung Park, Joo, Chung, Youngkun, Han, Jaemun, Oh, Seungjun, Kang, Seoktae, Novel hydroxyapatite beads for the adsorption of radionuclides from decommissioned nuclear power plant sites. Appl. Sci. 11:4 (2021), 1–13, 10.3390/app11041746.
Tri, Nguyen, Tran, N D Trang, Nguyen, H D Trinh, Lai, T Tung, Nguyen, T T Van, Nguyen, P Anh, Tan, Nguyen D., Nguyen, T H No, Ha, Huynh K.P., Hydrothermal and calcination regimes and characteristics of nanohydroxyapatite synthesized from salmon bones. J. Biochem. Technol. 11:2 (2020), 82–87.
Verwilghen, Cedric, Rio, Sebastien, Nzihou, Ange, Gauthier, Daniel, Flamant, Gilles, Sharrock, Patrick Joel, Preparation of high specific surface area hydroxyapatite for environmental applications. J. Mater. Sci. 42:15 (2007), 6062–6066, 10.1007/s10853-006-1160-y.
Wang, Chuanbin, Wang, Zhi, Wang, Xutong, Li, Ning, Tao, Junyu, Zheng, Wandong, Yan, Beibei, Cui, Xiaoqiang, Cheng, Zhanjun, Chen, Guanyi, A review on the hydrothermal treatment of food waste: processing and applications. Processes, 10(11), 2022, 10.3390/pr10112439.
Zhang, Yi, Kong, Fei, Wu, Dongze, Zhu, Jinjin, Yang, Shuhui, Kong, Xiangdong, Hydrothermal extraction and characterization of natural hydroxyapatite from waste bovine femur bone. Tissue Eng. C Methods 29:11 (2023), 535–544, 10.1089/ten.tec.2023.0132.
Zhang, Yongxun, Wet oxidation technology based on organic wastewater treatment. J. Phys. Conf., 1549(2), 2020, 10.1088/1742-6596/1549/2/022040.
Zhu, Hong, Song, Wei, Deng, Yu, Hydroxyapatite extracted by animal bone image analysis in ionic liquid choline chloride-glycerol. EURASIP Journal on Image and Video Processing, 2018(1), 2018, 56, 10.1186/s13640-018-0295-5.