Paper published in a journal (Scientific congresses and symposiums)
A Theoretical Justification for Asymmetric Actor-Critic Algorithms
Lambrechts, Gaspard; Ernst, Damien; Mahajan, Aditya
2025In Proceedings of Machine Learning Research
Peer Reviewed verified by ORBi
 

Files


Full Text
asymmetric-bound.pdf
Author postprint (414.99 kB)
Download
Annexes
asymmetric-bound.pdf
(636.95 kB) Creative Commons License - Attribution
Slides
Download
asymmetric-bound-poster.pdf
(131.79 kB) Creative Commons License - Attribution
Poster
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Asymmetric Learning; Privileged Information; Finite-Time Bound; Convergence Analysis; Natural Actor Critic; Aliasing; Partially Observable Environment; Privileged Critic; Asymmetric Actor-Critic; Agent-State Policy
Abstract :
[en] In reinforcement learning for partially observable environments, many successful algorithms have been developed within the asymmetric learning paradigm. This paradigm leverages additional state information available at training time for faster learning. Although the proposed learning objectives are usually theoretically sound, these methods still lack a precise theoretical justification for their potential benefits. We propose such a justification for asymmetric actor-critic algorithms with linear function approximators by adapting a finite-time convergence analysis to this setting. The resulting finite-time bound reveals that the asymmetric critic eliminates error terms arising from aliasing in the agent state.
Disciplines :
Computer science
Author, co-author :
Lambrechts, Gaspard ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Smart grids
Ernst, Damien  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Smart grids
Mahajan, Aditya;  McGill University > Department of Electrical and Computer Engineering
Language :
English
Title :
A Theoretical Justification for Asymmetric Actor-Critic Algorithms
Publication date :
July 2025
Event name :
International Conference on Machine Learning
Event place :
Vancouver, Canada
Event date :
July 15th, 2025
Audience :
International
Journal title :
Proceedings of Machine Learning Research
eISSN :
2640-3498
Publisher :
PMLR
Peer review/Selection committee :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fund for Scientific Research
Available on ORBi :
since 15 January 2025

Statistics


Number of views
741 (91 by ULiège)
Number of downloads
308 (18 by ULiège)

Bibliography


Similar publications



Contact ORBi