# A Theoretical Justification for Asymmetric Actor-Critic Algorithms

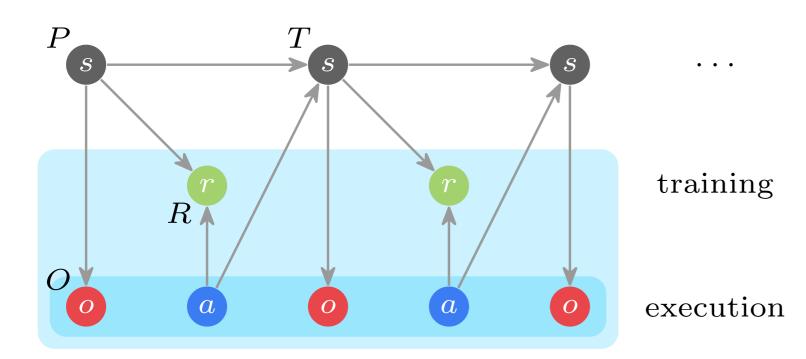
## Gaspard Lambrechts, Damien Ernst, Aditya Mahajan



## **Partial Observability**

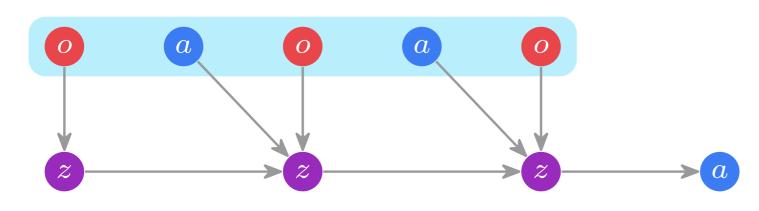
We consider a **POMDP**  $(\mathcal{S}, \mathcal{A}, \mathcal{O}, P, O, T, R, \gamma)$ :

- States  $s_t \in \mathcal{S}$ ,
- Actions  $a_t \in \mathcal{A}$ ,
- Observations  $o_t \in \mathcal{O}$ ,
- Initialization  $s_0 \sim P(\cdot)$ ,
- Perception  $o_t \sim O(\cdot | s_t)$ ,
- Transition  $s_{t+1} \sim T(\cdot | s_t, a_t)$ ,
- Reward  $r_t \sim R(\cdot | s_t, a_t)$ ,
- Discount  $\gamma \in [0, 1)$ .



## **Agent States and Partial Observability**

We consider an **agent state** z = f(h), recurrent in the sense that f(h') = u(f(h), a, o')with h' = (h, a, o') the history resulting from action a in history h. We want an optimal **agent-state policy**  $\pi^* \in \operatorname{argmax} J(\pi)$  with  $\Pi = \mathcal{Z} \to \Delta(\mathcal{A})$ .



## **Asymmetric Observability**

Partial observability is more realistic than full observability. But in some cases, the state may still be available during training.

| <b>Decision Process</b> | Execution      | Training |
|-------------------------|----------------|----------|
| MDP                     | s              | s        |
| POMDP                   | $\overline{z}$ |          |
| Privileged POMDP        | $\overline{z}$ | S + Z    |

**Asymmetric RL** leverages the state at training time to learn faster.

## **Agent States and Asymmetric Observability**

The fixed point  $\tilde{\mathcal{Q}}^{\pi}$  of the asymmetric Bellman operator,

$$\tilde{\mathcal{Q}}^\pi(s,z,a) = \mathbb{E} \big[ R_0 + \gamma \tilde{\mathcal{Q}}^\pi(S_1,Z_1,A_1) \mid S_0 = s, Z_0 = z, A_0 = a \big],$$

is the asymmetric Q-function  $\mathcal{Q}^{\pi}(s,z,a) = \mathbb{E}^{\pi} \left[ \sum_{t=0}^{\infty} \gamma^{t} R_{t} \mid S_{0} = s, Z_{0} = z, A_{0} = a \right].$ 

The fixed point  $ilde{Q}^{\pi}$  of the **symmetric Bellman operator** 

$$\tilde{Q}^{\pi}(z,a) = \mathbb{E}[R_0 + \gamma \tilde{Q}^{\pi}(Z_1, A_1) \mid Z_0 = z, A_0 = a].$$

is **not** the symmetric Q-function  $\mathcal{Q}^{\pi}(z,a) = \mathbb{E}^{\pi} \left[ \sum_{t=0}^{\infty} \gamma^{t} R_{t} \mid Z_{0} = z, A_{0} = a \right].$ 

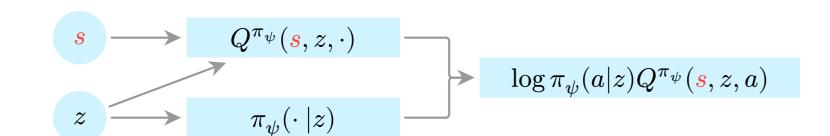
### **Lemma 1.** Bound on the aliasing bias in the symmetric case.

Let 
$$\varepsilon_{ ext{alias/inf}} \propto \mathbb{E}^{d^{\pi}} \left[ \left\| b(\cdot | h) - \hat{b}(\cdot | z) \right\| \right]$$
 with  $b(s|h) = \Pr(s|h)$  and  $\hat{b}(s|z) = \Pr(s|z)$ , 
$$\left\| Q^{\pi} - \tilde{Q}^{\pi} \right\|_{d^{\pi}} \leq \varepsilon_{ ext{alias/inf}} \tag{1}$$

## **Asymmetric Actor-Critic**

In actor-critic methods, the critic is not needed at execution.

 $\Rightarrow$  The critic can be **informed** with the state:  $Q^{\pi}(z,a) \rightarrow Q^{\pi}(s,z,a)$ .



## **Proposed Analysis**

While the asymmetric policy gradient is **unbiased** compared to the symmetric one [1], a theoretical justification for its benefits is still missing.

We provide a **theoretical justification** by adapting a **finite-time bound** for symmetric actor-critic [2] to the asymmetric setting.

- Linear finite-state critics:
  - $\bullet \ \hat{\mathcal{Q}}^\pi_\beta(s,z,a) = \langle \beta, \varphi(s,z,a) \rangle \ \text{and} \ \hat{Q}^\pi_\beta(z,a) = \langle \beta, \chi(z,a) \rangle.$
- Log-linear finite-state policy:
  - $\bullet$   $\pi_{\theta}(a|z) \propto \exp(\langle \theta, \psi(z, a) \rangle).$

#### Algorithm 1. (A) symmetric natural actor-critic.

- 1. Initialize policy parameters  $\psi_0$ .
- 2. For t = 1...T:
- 1. Estimate  $\hat{\mathcal{Q}}_{\varphi}^{\pi_{\psi}} pprox \mathcal{Q}^{\pi_{\psi}}$  or  $\hat{Q}_{\chi}^{\pi} pprox \mathcal{Q}^{\pi_{\psi}}$ .
  - ightharpoonup TD learning for K steps.
- 2. Estimate  $g_{t-1} pprox F^\dagger_{\pi_{\psi_{t-1}}} 
  abla_\psi J(\pi_{\psi_{t-1}})$  with  $\hat{\mathcal{Q}}^{\pi_\psi}_{\varphi}$  or  $\hat{Q}^{\pi_\psi}_{\chi}$ .
  - ▶ **NPG estimation** for *N* steps.
- 3. Update policy  $\psi_{t} = \psi_{t-1} + \eta g_{t-1}$ .
- 3. Return  $\pi_{\psi_T}$ .

### **Finite-Time Bounds**

**Theorem 1.** For any  $\pi \in \Pi$  and any  $m \in \mathbb{N}$ , these finite-time bounds hold for **TD learning** with  $\alpha = \frac{1}{\kappa}$ .

$$\sqrt{\mathbb{E}\left[\left\|Q^{\pi} - \overline{Q}^{\pi}\right\|_{d^{\pi}}^{2}\right]} \leq \varepsilon_{\text{td}} + \varepsilon_{\text{app}} + \varepsilon_{\text{shift}}$$

$$\sqrt{\mathbb{E}\left[\left\|Q^{\pi} - \overline{Q}^{\pi}\right\|_{d^{\pi}}^{2}\right]} \leq \varepsilon_{\text{td}} + \varepsilon_{\text{app}} + \varepsilon_{\text{shift}} + \varepsilon_{\text{alias}}$$
(2)

$$\begin{split} \varepsilon_{\mathrm{td}} &= \sqrt{\frac{4B^2 + \left(\frac{1}{1-\gamma} + 2B\right)^2}{2\sqrt{K}(1-\gamma^m)}} \\ \varepsilon_{\mathrm{app}} &= \frac{1+\gamma^m}{1-\gamma^m} \min_{f \in \mathcal{F}_{\varphi}^B} \left\| f - Q^{\pi} \right\|_{d^{\pi}} \\ \varepsilon_{\mathrm{shift}} &= \left(B + \frac{1}{1-\gamma}\right) \sqrt{\frac{2\gamma^m}{1-\gamma^m}} \sqrt{\left\|d_m^{\pi} \otimes \pi - d^{\pi} \otimes \pi\right\|_{\mathrm{TV}}} \\ \varepsilon_{\mathrm{alias}} &= \frac{2}{1-\gamma} \left\| \mathbb{E}^{\pi} \left[ \sum_{k=0}^{\infty} \gamma^{km} \left\| \hat{b}_{km} - b_{km} \right\|_{\mathrm{TV}} \right| Z_0 = \cdot, A_0 = \cdot \right] \right\|_{\mathrm{TV}} \end{split}$$

**Theorem 2.** For any  $f: \mathcal{H} \to \mathcal{Z}$ , this finite-time bound holds for **Algorithm 1** with  $\alpha = \frac{1}{K}$ ,  $\zeta = \frac{B\sqrt{1-\gamma}}{\sqrt{2N}}$  and  $\eta = \frac{1}{\sqrt{T}}$ .

$$(1 - \gamma) \min_{0 \le t < T} \mathbb{E}[J(\pi^*) - J(\pi_t)]$$

$$\le \varepsilon_{\text{nac}} + \varepsilon_{\text{actor}} + \varepsilon_{\text{grad}} + \varepsilon_{\text{inf}} + \frac{1}{T} \sum_{t=0}^{T-1} \varepsilon_{\text{critic}}^{\pi_t}$$
(3)

$$\begin{split} \varepsilon_{\text{nac}} &= \frac{B^2 + 2 \log |A|}{2 \sqrt{T}} \quad \varepsilon_{\text{actor}} = \overline{C}_{\infty} \sqrt{\frac{(2 - \gamma)B}{(1 - \gamma)\sqrt{N}}} \\ \varepsilon_{\text{grad}}^{\text{asym}} &= 2 \overline{C}_{\infty} \sup_{0 \leq t < T} \sqrt{\min_{w} \mathcal{L}_{t}(w)} \quad \varepsilon_{\text{grad}}^{\text{sym}} = 2 \overline{C}_{\infty} \sup_{0 \leq t < T} \sqrt{\min_{w} L_{t}(w)} \\ \varepsilon_{\text{inf}}^{\text{asym}} &= 0 \quad \varepsilon_{\text{inf}}^{\text{sym}} = 2 \mathbb{E}^{\pi^*} \left[ \sum_{k=0}^{\infty} \gamma^k \left\| \hat{b}_k - b_k \right\|_{\text{TV}} \right] \\ \varepsilon_{\text{critic}}^{\pi_t} &= 2 \overline{C}_{\infty} \sqrt{6} (\text{RHS of } (2)) \end{split}$$

### Conclusion

### Asymmetric learning is less sensitive to aliasing in the agent state.

### **Future works:**

- Consider learnable agent states or nonlinear approximators,
- Relax some assumptions (iid sampling and concentrability) [3],
- Generalize to non Markovian additional information.











[2] S. Cayci, N. He, and R. Srikant, "Finite-Time Analysis of Natural Actor-Critic for POMDPs," SIMODS, 2024.

[3] Y. Cai, X. Liu, A. Oikonomou, and K. Zhang, "Provable Partially Observable Reinforcement Learning with Privileged Information," NeurIPS, 2024.

