black lion tamarin; cortisol; diet; energetics; fecal glucocorticoid metabolites; physiological stress; Glucocorticoids; Animals; Primates; Animals, Wild; Ecosystem; Glucocorticoids/analysis; Leontopithecus; Ecology, Evolution, Behavior and Systematics; Animal Science and Zoology
Abstract :
[en] Identifying the factors swaying physiological stress levels in wild animals can help depict how they cope with environmental and social stressors, shedding light on their feeding ecology, behavioral plasticity, and adaptability. Here, we used noninvasive methods to explore the link between glucocorticoid levels and behavior in an endangered neotropical primate facing habitat fragmentation pressure, the black lion tamarin (Leontopithecus chrysopygus). We investigated monthly and day-to-day glucocorticoid variations independently to attempt to disentangle the complex nature of the adrenocortical activity. Between May 2019 to March 2020, we followed two groups of black lion tamarins in two different areas, a continuous forest and a small fragment, and gathered behavioral data (over 95 days in total; 8.6 ± 3.9 days/month) and fecal samples (Nsamples = 468; 4.93 ± 3.5 samples/day) simultaneously. Preliminary analyses enabled us to identify circadian variations linked to the biological rhythm, which were taken into account in subsequent models. Monthly analyses revealed that black lion tamarin fecal glucocorticoid metabolite levels vary according to changes in activity budget associated with the fruit consumption, movement, and resting time of the groups. At a day-to-day level, while intergroup encounters led to increases in fecal glucocorticoid metabolite concentrations, we found that changes in food intake or activity level did not trigger physiological stress responses. These findings suggest that diet and ranging patterns, driven by food availability and distribution, influence physiological stress at a seasonal scale, while acute stressors such as interspecific competition trigger short-term stress responses. Exploring fecal glucocorticoid metabolite variations over different timescales can help uncover the predictive and reactive facets of physiological stress in wild species. Moreover, having a comprehensive understanding of the physiological state of species is a valuable conservation tool for evaluating how they cope in changing environments.
Disciplines :
Environmental sciences & ecology Zoology
Author, co-author :
Kaisin, Olivier ; Université de Liège - ULiège > Sphères ; Laboratório de Primatologia, Departamento de Biodiversidade, Universidade Estadual Paulista (UNESP), Rio Claro, São Paulo, Brazil ; Departamento de Biodiversidade, Programa de Pós-Graduação em Ecologia, Evolução e Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro, São Paulo, Brazil
Bufalo, Felipe; Laboratório de Primatologia, Departamento de Biodiversidade, Universidade Estadual Paulista (UNESP), Rio Claro, São Paulo, Brazil ; Departamento de Biodiversidade, Programa de Pós-Graduação em Ecologia, Evolução e Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro, São Paulo, Brazil
Amaral, Rodrigo; Laboratório de Primatologia, Departamento de Biodiversidade, Universidade Estadual Paulista (UNESP), Rio Claro, São Paulo, Brazil ; Departamento de Biodiversidade, Programa de Pós-Graduação em Zoologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro, São Paulo, Brazil
Palme, Rupert; Department of Biomedical Sciences, Unit of Physiology, Pathophysiology and Experimental Endocrinology, University of Veterinary Medicine, Vienna, Austria
Poncin, Pascal ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Biologie du comportement - Ethologie et psychologie animale
Brotcorne, Fany ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Biologie du comportement - Ethologie et psychologie animale
Culot, Laurence ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Biologie du comportement - Ethologie et psychologie animale ; Laboratório de Primatologia, Departamento de Biodiversidade, Universidade Estadual Paulista (UNESP), Rio Claro, São Paulo, Brazil
Language :
English
Title :
Linking glucocorticoid variations to monthly and daily behavior in a wild endangered neotropical primate.
Conselho Nacional de Desenvolvimento Científico e Tecnológico Fundação de Amparo à Pesquisa do Estado de São Paulo Fonds De La Recherche Scientifique - FNRS Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Funding text :
This study was carried out thanks to the financial support of the University of Liège, the National Fund for Scientific Research (FRS‐ FNRS), the Erasmus + Program of the European Commission, and the São Paulo Research Foundation (FAPESP; Young Investigator grant given to LC (#2014/14739‐0 and #2021/06668‐0)). OK received a fellowship from the FRS‐FNRS, RGA from the Coordination for the Improvement of Higher Education Personnel (CAPES), FB from the Brazilian National Council for Scientific and Technological Development (CNPq: 443489/2020‐3), and LC receives a Research Productivity Fellowship from CNPq (#314964/2021‐5). We thank Sabine Macho‐Maschler and Edith Klobetz‐Rassam for their help with fGM analysis. We also thank Alain Hambuckers for his help with the statistical analysis.
Agritempo. (2022). Agrometeorological monitoring system. University of Campinas. https://www.agritempo.gov.br/
Aguilar-Cucurachi, M. A. S., Dias, P. A. D., Rangel-Negrín, A., Chavira, R., Boeck, L., & Canales-Espinosa, D. (2010). Preliminary evidence of accumulation of stress during translocation in mantled howlers. American Journal of Primatology, 72(9), 805–810. https://doi.org/10.1002/ajp.20841
Altmann, J. (1974). Observational study of behavior: Sampling methods. Behaviour, 49(3), 227–266. https://doi.org/10.1163/156853974X00534
Bales, K. L., French, J. A., Hostetler, C. M., & Dietz, J. M. (2005). Social and reproductive factors affecting cortisol levels in wild female golden lion tamarins (Leontopithecus rosalia). American Journal of Primatology, 67(1), 25–35. https://doi.org/10.1002/ajp.20167
Bales, K. L., French, J. A., McWilliams, J., Lake, R. A., & Dietz, J. M. (2006). Effects of social status, age, and season on androgen and cortisol levels in wild male golden lion tamarins (Leontopithecus rosalia). Hormones and Behavior, 49(1), 88–95. https://doi.org/10.1016/j.yhbeh.2005.05.006
Beehner, J. C., & Bergman, T. J. (2017). The next step for stress research in primates: To identify relationships between glucocorticoid secretion and fitness. Hormones and Behavior, 91, 68–83. https://doi.org/10.1016/j.yhbeh.2017.03.003
Beehner, J. C., & McCann, C. (2008). Seasonal and altitudinal effects on glucocorticoid metabolites in a wild primate (Theropithecus gelada). Physiology & Behavior, 95(3), 508–514. https://doi.org/10.1016/j.physbeh.2008.07.022
Behie, A. M., Pavelka, M. S., & Chapman, C. A. (2010). Sources of variation in fecal cortisol levels in howler monkeys in belize. American Journal of Primatology, 72(7), 600–606. https://doi.org/10.1002/ajp.20813
Behringer, V., & Deschner, T. (2017). Non-invasive monitoring of physiological markers in primates. Hormones and Behavior, 91, 3–18. https://doi.org/10.1016/j.yhbeh.2017.02.001
Van Belle, S., Porter, A. M., Fernandez-Duque, E., & Di Fiore, A. (2021). Ranging behavior and the potential for territoriality in pair-living titi monkeys (Plecturocebus discolor). American Journal of Primatology, 83(5), e23225. https://doi.org/10.1002/ajp.23225
Belle, S. V., Estrada, A., Ziegler, T. E., & Strier, K. B. (2009). Social and hormonal mechanisms underlying male reproductive strategies in black howler monkeys (Alouatta pigra). Hormones and Behavior, 56(4), 355–363. https://doi.org/10.1016/j.yhbeh.2009.08.006
Bertoli, P., Culot, L., Palme, R., & Mendonça-furtado, O. (2019). Measuring fecal glucocorticoid metabolites of an endangered neotropical primate: technical details of a physiological validation. Boletim Da Sociedade de Mastozoologia, 80(July), 1–6.
Burnham, K. P., & Anderson, D. R. (1998). Model selection and interference: A practical information-theoretical approach. Springer.
Chapman, C. A., Rothman, J. M., & Lambert, J. E. (2012). Primate foraging strategies and nutrition: Behavioral and evolutionary implications. In J. Mitani, J. Call, P. Kappeler, R. Palombit, & J. Silk (Eds.), The evolution of primate societies (Vol. 2014, pp. 149–168). https://www.researchgate.net/publication/258407007
Chapman, C. A., Saj, T. L., & Snaith, T. V. (2007). Temporal dynamics of nutrition, parasitism, and stress in colobus monkeys: Implications for population regulation and conservation. American Journal of Physical Anthropology, 134(2), 240–250. https://doi.org/10.1002/ajpa.20664
Chapman, C. A., Wasserman, M. D., Gillespie, T. R., Speirs, M. L., Lawes, M. J., Saj, T. L., & Ziegler, T. E. (2006). Do food availability, parasitism, and stress have synergistic effects on red colobus populations living in forest fragments? American Journal of Physical Anthropology, 131(4), 525–534. https://doi.org/10.1002/ajpa.20477
Chaves, Ó. M., Fernandes, F. A., Oliveira, G. T., & Bicca-Marques, J. C. (2019). Assessing the influence of biotic, abiotic, and social factors on the physiological stress of a large neotropical primate in Atlantic forest fragments. Science of the Total Environment, 690, 705–716. https://doi.org/10.1016/j.scitotenv.2019.07.033
Chowdhury, S., Brown, J. L., & Swedell, L. (2021). Costs of seasonality at a Southern latitude: Behavioral endocrinology of female baboons in the Cape Peninsula of South Africa. Hormones and Behavior, 134, 105020. https://doi.org/10.1016/j.yhbeh.2021.105020
Christensen, C., Bracken, A. M., Justin O'Riain, M., Heistermann, M., King, A. J., & Fürtbauer, I. (2022). Simultaneous investigation of urinary and faecal glucocorticoid metabolite concentrations reveals short- versus long-term drivers of HPA-axis activity in a wild primate (Papio ursinus). General and Comparative Endocrinology, 318(June 2021), 113985. https://doi.org/10.1016/j.ygcen.2022.113985
Cooksey, K., Sanz, C., Ebombi, T. F., Massamba, J. M., Teberd, P., Magema, E., Abea, G., Peralejo, J. S. O., Kienast, I., Stephens, C., & Morgan, D. (2020). Socioecological factors influencing intergroup encounters in Western lowland gorillas (Gorilla gorilla gorilla). International Journal of Primatology, 41(2), 181–202. https://doi.org/10.1007/s10764-020-00147-6
Cooper, M., Aureli, F., & Singh, M. (2004). Between-group encounters among bonnet macaques (Macaca radiata). Behavioral Ecology and Sociobiology, 56(3), 217–227. https://doi.org/10.1007/s00265-004-0779-4
Cristóbal-azkarate, J., Chavira, R., Boeck, L., Rodríguez-luna, E., & VEÀ, J. J. (2007). Glucocorticoid levels in free ranging resident mantled howlers: A study of coping strategies. American Journal of Primatology, 69(8), 866–876. https://doi.org/10.1002/ajp.20383
Culot, L., Griese, J., Knogge, C., Tonini, M., Mulato, M., Estevam, C. G., Lopes, B. P., Mantovani, B., Silva, B., Heliodora, B., Garcia, F. D. O., & Cristina, R. (2015). New records, reconfirmed sites and proposals for the conservation of black lion tamarin (Leontopithecus chrysopygus) in the middle and upper. Neotropical. Primates, 22(1), 32–39.
Dias, P. A. D., Coyohua-Fuentes, A., Canales-Espinosa, D., Chavira-Ramírez, R., & Rangel-Negrín, A. (2017). Hormonal correlates of energetic condition in mantled howler monkeys. Hormones and Behavior, 94, 13–20. https://doi.org/10.1016/j.yhbeh.2017.06.003
Dixson, A. F. (2012). Mating systems. In A. F. Dixson (Ed.), Primate sexuality (pp. 28–67). Oxford University Press. https://doi.org/10.1093/acprof:osobl/9780199544646.003.0003
Dunn, J. C., Asensio, N., Arroyo-Rodríguez, V., Schnitzer, S., & Cristóbal-Azkarate, J. (2012). The ranging costs of a fallback food: Liana consumption supplements diet but increases foraging effort in howler monkeys. Biotropica, 44(5), 705–714. https://doi.org/10.1111/j.1744-7429.2012.00856.x
Dunn, J. C., Cristóbal-Azkarate, J., Schulte-Herbrüggen, B., Chavira, R., & Veà, J. J. (2013). Travel time predicts fecal glucocorticoid levels in free-ranging howlers (Alouatta palliata). International Journal of Primatology, 34(2), 246–259. https://doi.org/10.1007/s10764-013-9657-0
Emery Thompson, M. (2017). Energetics of feeding, social behavior, and life history in non-human primates. Hormones and Behavior, 91, 84–96. https://doi.org/10.1016/j.yhbeh.2016.08.009
Emery Thompson, M., Muller, M. N., Kahlenberg, S. M., & Wrangham, R. W. (2010). Dynamics of social and energetic stress in wild female chimpanzees. Hormones and Behavior, 58(3), 440–449. https://doi.org/10.1016/j.yhbeh.2010.05.009
Engh, A. L., Beehner, J. C., Bergman, T. J., Whitten, P. L., Hoffmeier, R. R., Seyfarth, R. M., & Cheney, D. L. (2006). Behavioural and hormonal responses to predation in female chacma baboons (Papio hamadryas ursinus). Proceedings of the Royal Society B: Biological Sciences, 273(1587), 707–712. https://doi.org/10.1098/rspb.2005.3378
Fieberg, J. R., Vitense, K., & Johnson, D. H. (2020). Resampling-based methods for biologists. PeerJ, 8, e9089. https://doi.org/10.7717/peerj.9089
Foerster, S., Cords, M., & Monfort, S. L. (2012). Seasonal energetic stress in a tropical forest primate: Proximate causes and evolutionary implications. PLoS One, 7(11), e50108. https://doi.org/10.1371/journal.pone.0050108
Foerster, S., & Monfort, S. L. (2010). Fecal glucocorticoids as indicators of metabolic stress in female Sykes' monkeys (Cercopithecus mitis albogularis). Hormones and Behavior, 58(4), 685–697. https://doi.org/10.1016/j.yhbeh.2010.06.002
Fries, E., Dettenborn, L., & Kirschbaum, C. (2009). The cortisol awakening response (CAR): Facts and future directions. International Journal of Psychophysiology, 72(1), 67–73. https://doi.org/10.1016/j.ijpsycho.2008.03.014
García León, M. M., Martínez Izquierdo, L., Mello, F. N. A., Powers, J. S., & Schnitzer, S. A. (2018). Lianas reduce community-level canopy tree reproduction in a Panamanian forest. Journal of Ecology, 106(2), 737–745. https://doi.org/10.1111/1365-2745.12807
Gesquiere, L. R., Khan, M., Shek, L., Wango, T. L., Wango, E. O., Alberts, S. C., & Altmann, J. (2008). Coping with a challenging environment: Effects of seasonal variability and reproductive status on glucocorticoid concentrations of female baboons (Papio cynocephalus). Hormones and Behavior, 54(3), 410–416. https://doi.org/10.1016/j.yhbeh.2008.04.007
Guo, S. T., Hou, R., Garber, P. A., Raubenheimer, D., Righini, N., Ji, W. H., Jay, O., He, S. J., Wu, F., Li, F. F., & Li, B. G. (2018). Nutrient-specific compensation for seasonal cold stress in a free-ranging temperate colobine monkey. Functional Ecology, 32(9), 2170–2180. https://doi.org/10.1111/1365-2435.13134
Hall, K. R. L. (1962). Numerical data, maintenance activities and locomotion of the wild chacma baboon, Papio ursinus. Proceedings of the Zoological Society of London, 139(2), 181–220. https://doi.org/10.1111/j.1469-7998.1962.tb01827.x
Hämäläinen, A., Heistermann, M., Fenosoa, Z. S. E., & Kraus, C. (2014). Evaluating capture stress in wild gray mouse lemurs via repeated fecal sampling: Method validation and the influence of prior experience and handling protocols on stress responses. General and Comparative Endocrinology, 195, 68–79. https://doi.org/10.1016/j.ygcen.2013.10.017
Heistermann, M. (2010). Non-invasive monitoring of endocrine status in laboratory primates: Methods, guidelines and applications. Advances in Science and Research, 5(1), 1–9. https://doi.org/10.5194/asr-5-1-2010
Heistermann, M., Palme, R., & Ganswindt, A. (2006). Comparison of different enzymeimmunoassays for assessment of adrenocortical activity in primates based on fecal analysis. American Journal of Primatology, 68(3), 257–273. https://doi.org/10.1002/ajp.20222
Huck, M., Löttker, P., Heymann, E. W., & Heistermann, M. (2005). Characterization and social correlates of fecal testosterone and cortisol excretion in wild male Saguinus mystax. International Journal of Primatology, 26(1), 159–179. https://doi.org/10.1007/s10764-005-0728-8
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 103). Springer. https://doi.org/10.1007/978-1-4614-7138-7
Kaisin, O., Fuzessy, L., Poncin, P., Brotcorne, F., & Culot, L. (2021). A meta-analysis of anthropogenic impacts on physiological stress in wild primates. Conservation Biology, 35(1), 101–114. https://doi.org/10.1111/cobi.13656
Kamilar, J. M., & Beaudrot, L. (2018). Effects of environmental stress on primate populations. Annual Review of Anthropology, 47(1), 417–434. https://doi.org/10.1146/annurev-anthro-102317-045949
Keuroghlian, A., & Passos, F. C. (2001). Prey foraging behavior, seasonality and time-budgets in black lion tamarins, Leontopithecus chrysopygus (Mikan 1823) (Mammalia, Callitrichidae). Brazilian Journal of Biology, 61(3), 455–459. https://doi.org/10.1590/S1519-69842001000300015
Kleiman, D. G., & Rylands, A. B. (2002). Lion tamarins: Biology and conservation. Smithsonian Institute Press.
Koch, F., Signer, J., Kappeler, P. M., & Fichtel, C. (2016). Intergroup encounters in Verreaux's sifakas (Propithecus verreauxi): Who fights and why? Behavioral Ecology and Sociobiology, 70(5), 797–808. https://doi.org/10.1007/s00265-016-2105-3
Lambert, J. E., & Rothman, J. M. (2015). Fallback foods, optimal diets, and nutritional targets: Primate responses to varying food availability and quality. Annual Review of Anthropology, 44(1), 493–512. https://doi.org/10.1146/annurev-anthro-102313-025928
MacLarnon, A. M., Sommer, V., Goffe, A. S., Higham, J. P., Lodge, E., Tkaczynski, P., & Ross, C. (2015). Assessing adaptability and reactive scope: Introducing a new measure and illustrating its use through a case study of environmental stress in forest-living baboons. General and Comparative Endocrinology, 215, 10–24. https://doi.org/10.1016/j.ygcen.2014.09.022
Martínez-Mota, R., Righini, N., & Palme, R. (2016). Fluctuations in daily energy intake do not cause physiological stress in a neotropical primate living in a seasonal forest. Oecologia, 182(4), 973–984. https://doi.org/10.1007/s00442-016-3739-6
McFarland, R., Barrett, L., Boner, R., Freeman, N. J., & Henzi, S. P. (2014). Behavioral flexibility of vervet monkeys in response to climatic and social variability. American Journal of Physical Anthropology, 154(3), 357–364. https://doi.org/10.1002/ajpa.22518
Menard, S. (2002). Applied Logistic Regression Analysis. SAGE Publications Inc. https://doi.org/10.4135/9781412983433
Michael Romero, L. (2002). Seasonal changes in plasma glucocorticoid concentrations in free-living vertebrates. General and Comparative Endocrinology, 128(1), 1–24. https://doi.org/10.1016/S0016-6480(02)00064-3
Möstl, E., & Palme, R. (2002). Hormones as indicators of stress. Domestic Animal Endocrinology, 23(1–2), 67–74. https://doi.org/10.1016/S0739-7240(02)00146-7
Muller, M. N., & Wrangham, R. W. (2004). Dominance, cortisol and stress in wild chimpanzees (Pan troglodytes schweinfurthii). Behavioral Ecology and Sociobiology, 55(4), 332–340. https://doi.org/10.1007/s00265-003-0713-1
Ordóñez-Gómez, J. D., Cristóbal-Azkarate, J., Arroyo-Rodríguez, V., Santillán-Doherty, A. M., Valdez, R. A., & Romano, M. C. (2016). Proximal and distal predictors of the spider monkey's stress levels in fragmented landscapes. PLoS One, 11(2), e0149671. https://doi.org/10.1371/journal.pone.0149671
Palme, R. (2019). Non-invasive measurement of glucocorticoids: Advances and problems. Physiology & Behavior, 199, 229–243. https://doi.org/10.1016/j.physbeh.2018.11.021
Palme, R., Fischer, P., Schildorfer, H., & Ismail, M. N. (1996). Excretion of infused 14C-steroid hormones via faeces and urine in domestic livestock. Animal Reproduction Science, 43(1), 43–63. https://doi.org/10.1016/0378-4320(95)01458-6
Palme, R., & Möstl, E. (1997). Measurement of cortisol metabolites in faeces of sheep as a parameter of cortisol concentration in blood. Zeitschrift Fur Saugetierkunde, 62(suppl 2), 192–197.
Pinto, B. L. (2017). Influência da paisagem e das características locais na ocorrência do mico-leão- preto (Leontopithecus chrysopygus, Callitrichidae). Universidade Estadual Paulista.
Pride, R. E. (2005). Optimal group size and seasonal stress in ring-tailed lemurs (Lemur catta). Behavioral Ecology, 16(3), 550–560. https://doi.org/10.1093/beheco/ari025
Rangel-Negrín, A., Alfaro, J. L., Valdez, R. A., Romano, M. C., & Serio-Silva, J. C. (2009). Stress in Yucatan spider monkeys: Effects of environmental conditions on fecal cortisol levels in wild and captive populations. Animal Conservation, 12(5), 496–502. https://doi.org/10.1111/j.1469-1795.2009.00280.x
Rezende, G. C., Knogge, C., Passos, F., Ludwig, G., Oliveira, L. C., Jerusalinsky, L., & Mittermeier, R. A. (2020). Leontopithecus chrysopygus. The IUCN Red List of Threatened Species 2020, 8235, e.T11505A17935400.
Romero, L. M. (2004). Physiological stress in ecology: Lessons from biomedical research. Trends in Ecology & Evolution, 19(5), 249–255. https://doi.org/10.1016/j.tree.2004.03.008
Romero, L. M., Dickens, M. J., & Cyr, N. E. (2009). The reactive scope model—A new model integrating homeostasis, allostasis, and stress. Hormones and Behavior, 55(3), 375–389. https://doi.org/10.1016/j.yhbeh.2008.12.009
Ross, C. N., French, J. A., & Patera, K. J. (2004). Intensity of aggressive interactions modulates testosterone in male marmosets. Physiology & Behavior, 83(3), 437–445. https://doi.org/10.1016/j.physbeh.2004.08.036
Rothman, J. M., Chapman, C. A., & van Soest, P. J. (2012). Methods in primate nutritional ecology: A user's guide. International Journal of Primatology, 33(3), 542–566. https://doi.org/10.1007/s10764-011-9568-x
Sapolsky, R. M., Romero, L. M., & Munck, A. U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews, 21(1), 55–89. https://doi.org/10.1210/er.21.1.55
Schoof, V. A. M., & Jack, K. M. (2013). The association of intergroup encounters, dominance status, and fecal androgen and glucocorticoid profiles in wild male white-faced capuchins (Cebus capucinus). American Journal of Primatology, 75(2), 107–115. https://doi.org/10.1002/ajp.22089
Sheriff, M. J., Dantzer, B., Delehanty, B., Palme, R., & Boonstra, R. (2011). Measuring stress in wildlife: Techniques for quantifying glucocorticoids. Oecologia, 166(4), 869–887. https://doi.org/10.1007/s00442-011-1943-y
Staggemeier, V. G., Cazetta, E., & Morellato, L. P. C. (2017). Hyperdominance in fruit production in the Brazilian Atlantic rain forest: The functional role of plants in sustaining frugivores. Biotropica, 49(1), 71–82. https://doi.org/10.1111/btp.12358
Touitou, S., Heistermann, M., Schülke, O., & Ostner, J. (2021). Triiodothyronine and cortisol levels in the face of energetic challenges from reproduction, thermoregulation and food intake in female macaques. Hormones and Behavior, 131(April), 104968. https://doi.org/10.1016/j.yhbeh.2021.104968
Touma, C., Sachser, N., Möstl, E., & Palme, R. (2003). Effects of sex and time of day on metabolism and excretion of corticosterone in urine and feces of mice. General and Comparative Endocrinology, 130(3), 267–278. https://doi.org/10.1016/S0016-6480(02)00620-2
Valladares-Padua, C. B. (1993). The ecology, behavior and conservation of the black lion tamarins (Leontopithecus chrysipygus, Mikan, 1823). http://search.ebscohost.com/login.aspx?direct=true%26db=psyh%26AN=1995-95007-060%26site=ehost-live%26scope=site
Wasserman, M. D., Chapman, C. A., Milton, K., Goldberg, T. L., & Ziegler, T. E. (2013). Physiological and behavioral effects of capture darting on red colobus monkeys (Procolobus rufomitratus) with a comparison to chimpanzee (Pan troglodytes) predation. International Journal of Primatology, 34(5), 1020–1031. https://doi.org/10.1007/s10764-013-9711-y
Wingfield, J. C. (2005). The concept of allostasis: Coping with a capricious environment. Journal of Mammalogy, 86(2), 248–254. https://doi.org/10.1644/BHE-004.1
Wingfield, J. C. (2013). Ecological processes and the ecology of stress: The impacts of abiotic environmental factors. Functional Ecology, 27(1), 37–44. https://doi.org/10.1111/1365-2435.12039
Wingfield, J. C., Hunt, K., Breuner, C., Dunlap, K., Fowler, G., Freed, L., & Lepson, J. (1997). Environmental stress, field endocrinology, and conservation biology. In J. Clemmons, & R. Buchholz (Eds.), Behavioral approaches to conservation in the wild (pp. 95–131). Cambridge University Press.
Young, C., Majolo, B., Heistermann, M., Schülke, O., & Ostner, J. (2014). Responses to social and environmental stress are attenuated by strong male bonds in wild macaques. Proceedings of the National Academy of Sciences, 111(51), 18195–18200. https://doi.org/10.1073/pnas.1411450111