[en] OBJECTIVES: This study aimed to evaluate the potential clinical value of a new brain age prediction model as a single interpretable variable representing the condition of our brain. Among many clinical use cases, brain age could be a novel outcome measure to assess the preventive effect of life-style interventions.
METHODS: The REMEMBER study population (N = 742) consisted of cognitively healthy (HC,N = 91), subjective cognitive decline (SCD,N = 65), mild cognitive impairment (MCI,N = 319) and AD dementia (ADD,N = 267) subjects. Automated brain volumetry of global, cortical, and subcortical brain structures computed by the CE-labeled and FDA-cleared software icobrain dm (dementia) was retrospectively extracted from T1-weighted MRI sequences that were acquired during clinical routine at participating memory clinics from the Belgian Dementia Council. The volumetric features, along with sex, were combined into a weighted sum using a linear model, and were used to predict 'brain age' and 'brain predicted age difference' (BPAD = brain age-chronological age) for every subject.
RESULTS: MCI and ADD patients showed an increased brain age compared to their chronological age. Overall, brain age outperformed BPAD and chronological age in terms of classification accuracy across the AD spectrum. There was a weak-to-moderate correlation between total MMSE score and both brain age (r = -0.38,p < .001) and BPAD (r = -0.26,p < .001). Noticeable trends, but no significant correlations, were found between BPAD and incidence of conversion from MCI to ADD, nor between BPAD and conversion time from MCI to ADD. BPAD was increased in heavy alcohol drinkers compared to non-/sporadic (p = .014) and moderate (p = .040) drinkers.
CONCLUSIONS: Brain age and associated BPAD have the potential to serve as indicators for, and to evaluate the impact of lifestyle modifications or interventions on, brain health.
Disciplines :
Neurosciences & behavior
Author, co-author :
Wittens, Mandy M J; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium ; Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium ; Neuroprotection and Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije, Universiteit Brussel (VUB), Brussels, Belgium
Denissen, Stijn; icometrix, Leuven, Belgium ; AIMS lab, Center for Neurosciences (C4N), Vrije Universiteit Brussel, UZ Brussel, Brussels, Belgium
Sima, Diana M; Neuroprotection and Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije, Universiteit Brussel (VUB), Brussels, Belgium ; icometrix, Leuven, Belgium
Fransen, Erik; Centre of Medical Genetics, University of Antwerp, and Antwerp University Hospital - UZA, Edegem, Belgium
Niemantsverdriet, Ellis; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
Benoit, Florence; Geriatrics Department, Brugmann University Hospital, Universite Libre de Bruxelles, Brussels, Belgium
Bergmans, Bruno; Neurology Department, AZ St-Jan Brugge, Brugge, Belgium ; Ghent University Hospital, Ghent, Belgium
Bier, Jean-Christophe; Neurological department H. U. B. - Erasme Hospital - Vrije Universiteit Brussel (VUB), Brussels, Belgium
de Deyn, Peter Paul; Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, University of Antwerp, Antwerp, 2610, Belgium ; Memory Clinic, Ziekenhuisnetwerk, Antwerp, Belgium
Deryck, Olivier; Neurology Department, AZ St-Jan Brugge, Brugge, Belgium ; Ghent University Hospital, Ghent, Belgium
Hanseeuw, Bernard; Institute of Neuroscience, Université Catholique de Louvain, Brussels, 1200, Belgium ; Department of Neurology, Clinique Universitaires Saint-Luc, Brussels, 1200, Belgium ; WELBIO Department, WEL Research Institute, Wavre, 1300, Belgium
Ivanoiu, Adrian; Department of Neurology, Cliniques Universitaires St Luc, and Institute of Neuroscience, Université Catholique de Louvain, Woluwe-Saint-Lambert (Brussels), Belgium
Picard, Gaëtane; Department of Neurology, Clinique Saint-Pierre, Ottignies, Belgium
Ribbens, Annemie; icometrix, Leuven, Belgium
Salmon, Eric ; Université de Liège - ULiège > Département des sciences cliniques
Segers, Kurt; Memory Clinic - Neurology and Geriatrics Department, CHU Brugmann, Van Gehuchtenplein 4, Brussels, 1020, Belgium
Sieben, Anne; Neuropathology Lab, IBB-NeuroBiobank BB190113, Born Bunge Institute, Antwerp, Belgium ; Department of Pathology, Antwerp University Hospital - UZA, Antwerp, Belgium ; Laboratory of Neurology, Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
Struyfs, Hanne; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium ; Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium ; Johnson and Johnson Innovative Medicine, Beerse, Belgium
Thiery, Evert; Department of Neurology, University Hospital Ghent, Ghent University, Ghent, Belgium
Tournoy, Jos; Department of Chronic Diseases, Metabolism and Ageing, Geriatric Medicine and Memory Clinic, University Hospitals Leuven and KU Leuven, Louvain, Belgium
Versijpt, Jan; Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium ; Neuroprotection and Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije, Universiteit Brussel (VUB), Brussels, Belgium
Smeets, Dirk; Neuroprotection and Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije, Universiteit Brussel (VUB), Brussels, Belgium ; icometrix, Leuven, Belgium
Bjerke, Maria; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium ; Neuroprotection and Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije, Universiteit Brussel (VUB), Brussels, Belgium ; Department of Clinical Chemistry, Laboratory of Neurochemistry, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
Nagels, Guy; Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium ; St. Edmund Hall, University of Oxford, Oxford, UK ; AIMS lab, Center for Neurosciences (C4N), Vrije Universiteit Brussel, UZ Brussel, Brussels, Belgium
Engelborghs, Sebastiaan; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium. sebastiaan.engelborghs@uzbrussel.be ; Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium. sebastiaan.engelborghs@uzbrussel.be ; Neuroprotection and Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije, Universiteit Brussel (VUB), Brussels, Belgium. sebastiaan.engelborghs@uzbrussel.be
ERDF - European Regional Development Fund VLAIO - Flanders Innovation and Entrepreneurship FWO - Fonds Wetenschappelijk Onderzoek Vlaanderen
Funding text :
This research was in part supported by the agency of Flanders Innovation & Intrepreneurship (VLAIO), the Flemish Agency for Innovation by Science and Technology (IWT 140262), the Interreg V programme Flanders-The Netherlands of the European Regional Development Fund (ERDF) (Herinneringen/Memories project), the European Union\u2019s Horizon 2020 research and innovation programme under grant agreement numbers 666992 (EUROPOND) and 765148 (TRABIT). For the University of Li\u00E8ge center, this work was supported by a French Speaking Community Concerted Research Action (ARC-06/11\u2013340) and a Belgian InterUniversity Attraction Pole (P6/29). SD is funded by an industrial grant (Baekeland, HBC.2019.2579) from VLAIO. GN is a senior clinical research fellow of the Fonds Wetenschappelijk Onderzoek (FWO) Flanders (1805620N).
E. Fedele Anti-Amyloid Therapies for Alzheimer's Disease and the Amyloid Cascade Hypothesis Int J Mol Sci. 2023 24 19 14499 1:CAS:528:DC%2BB3sXitFOjtL3N 37833948 10578107 10.3390/ijms241914499
M. Kivipelto F. Mangialasche T. Ngandu Lifestyle interventions to prevent cognitive impairment, dementia and Alzheimer disease Nat Rev Neurol 2018 14 11 653 666 30291317 10.1038/s41582-018-0070-3
G. Livingston J. Huntley A. Sommerlad D. Ames C. Ballard S. Banerjee et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission Lancet 2020 396 10248 413 446 32738937 7392084 10.1016/S0140-6736(20)30367-6
M. Habes M.J. Grothe B. Tunc C. McMillan D.A. Wolk C. Davatzikos Disentangling Heterogeneity in Alzheimer's Disease and Related Dementias Using Data-Driven Methods Biol Psychiatry 2020 88 1 70 82 32201044 7305953 10.1016/j.biopsych.2020.01.016
R.A.I. Bethlehem J. Seidlitz S.R. White J.W. Vogel K.M. Anderson C. Adamson et al. Brain charts for the human lifespan Nature 2022 604 7906 525 533 1:CAS:528:DC%2BB38XptF2hsLY%3D 35388223 9021021 10.1038/s41586-022-04554-y
R.A.I. Bethlehem J. Seidlitz S.R. White J.W. Vogel K.M. Anderson C. Adamson et al. Publisher Correction: Brain charts for the human lifespan Nature 2022 610 7931 E6 1:CAS:528:DC%2BB38XisVyisrzE 36151472 9556297 10.1038/s41586-022-05300-0
C.E. Franz S.N. Hatton J.A. Elman T. Warren N.A. Gillespie N.A. Whitsel et al. Lifestyle and the aging brain: interactive effects of modifiable lifestyle behaviors and cognitive ability in men from midlife to old age Neurobiol Aging 2021 108 80 89 1:CAS:528:DC%2BB3MXitVOhtL3P 34547718 8862767 10.1016/j.neurobiolaging.2021.08.007
J.H. Cole K. Franke Predicting Age Using Neuroimaging: Innovative Brain Ageing Biomarkers Trends Neurosci 2017 40 12 681 690 1:CAS:528:DC%2BC2sXhs1Kntr%2FI 29074032 10.1016/j.tins.2017.10.001
A.G. de Lange M. Anaturk J. Rokicki L.K.M. Han K. Franke D. Alnaes et al. Mind the gap: Performance metric evaluation in brain-age prediction Hum Brain Mapp 2022 43 10 3113 3129 35312210 9188975 10.1002/hbm.25837
S. More G. Antonopoulos F. Hoffstaedter J. Caspers S.B. Eickhoff K.R. Patil et al. Brain-age prediction: A systematic comparison of machine learning workflows Neuroimage 2023 270 119947 36801372 10.1016/j.neuroimage.2023.119947
J.H. Cole R.E. Marioni S.E. Harris I.J. Deary Brain age and other bodily 'ages': implications for neuropsychiatry Mol Psychiatry 2019 24 2 266 281 29892055 10.1038/s41380-018-0098-1
M. Korbmacher T.P. Gurholt A.G. de Lange D. van der Meer D. Beck E. Eikefjord et al. Bio-psycho-social factors' associations with brain age: a large-scale UK Biobank diffusion study of 35,749 participants Front Psychol 2023 14 1117732 37359862 10288151 10.3389/fpsyg.2023.1117732
K. Franke C. Gaser Ten Years of BrainAGE as a Neuroimaging Biomarker of Brain Aging: What Insights Have We Gained? Front Neurol 2019 10 789 31474922 6702897 10.3389/fneur.2019.00789
I. Cumplido-Mayoral M. Garcia-Prat G. Operto C. Falcon M. Shekari R. Cacciaglia et al. Biological brain age prediction using machine learning on structural neuroimaging data: Multi-cohort validation against biomarkers of Alzheimer's disease and neurodegeneration stratified by sex Elife. 2023 12 e81067 1:CAS:528:DC%2BB2cXmtFagsb0%3D 37067031 10181824 10.7554/eLife.81067
W. Liu Q. Dong S. Sun J. Shen K. Qian B. Hu Risk Prediction of Alzheimer's Disease Conversion in Mild Cognitive Impaired Population Based on Brain Age Estimation IEEE Trans Neural Syst Rehabil Eng 2023 31 2468 2476 37027670 10.1109/TNSRE.2023.3247590
J. Wrigglesworth P. Ward I.H. Harding D. Nilaweera Z. Wu R.L. Woods et al. Factors associated with brain ageing - a systematic review BMC Neurol 2021 21 1 312 34384369 8359541 10.1186/s12883-021-02331-4
D. Charisse G. Erus R. Pomponio M. Gorges N. Schmidt C. Schneider et al. Brain age and Alzheimer's-like atrophy are domain-specific predictors of cognitive impairment in Parkinson's disease Neurobiol Aging 2022 109 31 42 34649002 10.1016/j.neurobiolaging.2021.08.020
N. Koutsouleris C. Davatzikos S. Borgwardt C. Gaser R. Bottlender T. Frodl et al. Accelerated brain aging in schizophrenia and beyond: a neuroanatomical marker of psychiatric disorders Schizophr Bull 2014 40 5 1140 1153 24126515 10.1093/schbul/sbt142
W.H. Lee M. Antoniades H.G. Schnack R.S. Kahn S. Frangou Brain age prediction in schizophrenia: Does the choice of machine learning algorithm matter? Psychiatry Res Neuroimaging 2021 310 111270 33714090 8056405 10.1016/j.pscychresns.2021.111270
J.D. Zhu Y.F. Wu S.J. Tsai C.P. Lin A.C. Yang Investigating brain aging trajectory deviations in different brain regions of individuals with schizophrenia using multimodal magnetic resonance imaging and brain-age prediction: a multicenter study Transl Psychiatry 2023 13 1 82 1:CAS:528:DC%2BB3sXlsFSisbY%3D 36882419 9992684 10.1038/s41398-023-02379-5
S. Denissen D.A. Engemann A. De Cock L. Costers J. Baijot J. Laton et al. Brain age as a surrogate marker for cognitive performance in multiple sclerosis Eur J Neurol 2022 29 10 3039 3049 35737867 9541923 10.1111/ene.15473
M.R. Brier Z. Li M. Ly H.T. Karim L. Liang W. Du et al. "Brain age" predicts disability accumulation in multiple sclerosis Ann Clin Transl Neurol 2023 10 6 990 1001 1:CAS:528:DC%2BB3sXptVKltbg%3D 37119507 10270248 10.1002/acn3.51782
J.H. Cole J. Raffel T. Friede A. Eshaghi W.J. Brownlee D. Chard et al. Longitudinal Assessment of Multiple Sclerosis with the Brain-Age Paradigm Ann Neurol 2020 88 1 93 105 32285956 10.1002/ana.25746
A.Z. Wagen W. Coath A. Keshavan S.N. James T.D. Parker C.A. Lane et al. Life course, genetic, and neuropathological associations with brain age in the 1946 British Birth Cohort: a population-based study Lancet Healthy Longev 2022 3 9 e607 e616 36102775 10499760 10.1016/S2666-7568(22)00167-2
Cole JH, Franke K, Cherbuin N. Quantification of the Biological Age of the Brain Using Neuroimaging. In: Moskalev, A. (eds) Biomarkers of Human Aging. Healthy Ageing and Longevity, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-24970-0_19.
E. Doering G. Antonopoulos M. Hoenig T. van Eimeren M. Daamen H. Boecker et al. MRI or (18)F-FDG PET for Brain Age Gap Estimation: Links to Cognition, Pathology, and Alzheimer Disease Progression J Nucl Med 2024 65 1 147 155 1:CAS:528:DC%2BB2cXhvFShurw%3D 38050112 10755522 10.2967/jnumed.123.265931
J. Lee B.J. Burkett H.K. Min M.L. Senjem E.S. Lundt H. Botha et al. Deep learning-based brain age prediction in normal aging and dementia Nat Aging 2022 2 5 412 424 37118071 10154042 10.1038/s43587-022-00219-7
A. Taylor F. Zhang X. Niu A. Heywood J. Stocks G. Feng et al. Investigating the temporal pattern of neuroimaging-based brain age estimation as a biomarker for Alzheimer's Disease related neurodegeneration Neuroimage 2022 263 119621 1:CAS:528:DC%2BB38XisFOls77N 36089183 10.1016/j.neuroimage.2022.119621
K. Franke G. Ziegler S. Kloppel C. Gaser Alzheimer's Disease Neuroimaging I Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters Neuroimage. 2010 50 3 883 92 20070949 10.1016/j.neuroimage.2010.01.005
K. Franke C. Gaser B. Manor V. Novak Advanced BrainAGE in older adults with type 2 diabetes mellitus Front Aging Neurosci 2013 5 90 24381557 3865444 10.3389/fnagi.2013.00090
C. Gaser K. Franke S. Kloppel N. Koutsouleris H. Sauer Alzheimer's Disease Neuroimaging I BrainAGE in Mild Cognitive Impaired Patients: Predicting the Conversion to Alzheimer's Disease PLoS One. 2013 8 6 e67346 1:CAS:528:DC%2BC3sXhtFaku7rP 23826273 3695013 10.1371/journal.pone.0067346
P.R. Millar B.A. Gordon J.K. Wisch S.A. Schultz T.L. Benzinger C. Cruchaga et al. Advanced structural brain aging in preclinical autosomal dominant Alzheimer disease Mol Neurodegener 2023 18 1 98 1:CAS:528:DC%2BB3sXis1Cnsr%2FE 38111006 10729487 10.1186/s13024-023-00688-3
H.T. Karim H.J. Aizenstein A. Mizuno M. Ly C. Andreescu M. Wu et al. Independent replication of advanced brain age in mild cognitive impairment and dementia: detection of future cognitive dysfunction Mol Psychiatry 2022 27 12 5235 5243 1:CAS:528:DC%2BB38XitlGmsLvE 35974140 9763106 10.1038/s41380-022-01728-y
F. Biondo A. Jewell M. Pritchard D. Aarsland C.J. Steves C. Mueller et al. Brain-age is associated with progression to dementia in memory clinic patients Neuroimage Clin 2022 36 103175 36087560 9467894 10.1016/j.nicl.2022.103175
K. Franke C. Gaser Longitudinal Changes in Individual BrainAGE in Healthy Aging, Mild Cognitive Impairment, and Alzheimer’s Disease GeroPsych 2012 25 4 235 245 10.1024/1662-9647/a000074
L.C. Lowe C. Gaser K. Franke Alzheimer's Disease Neuroimaging I The Effect of the APOE Genotype on Individual BrainAGE in Normal Aging, Mild Cognitive Impairment, and Alzheimer's Disease PLoS One. 2016 11 7 e0157514 27410431 4943637 10.1371/journal.pone.0157514
C. Davatzikos F. Xu Y. An Y. Fan S.M. Resnick Longitudinal progression of Alzheimer's-like patterns of atrophy in normal older adults: the SPARE-AD index Brain 2009 132 Pt 8 2026 2035 19416949 2714059 10.1093/brain/awp091
E. Niemantsverdriet A. Ribbens C. Bastin F. Benoit B. Bergmans J.C. Bier et al. A Retrospective Belgian Multi-Center MRI Biomarker Study in Alzheimer's Disease (REMEMBER) J Alzheimers Dis 2018 63 4 1509 1522 29782314 6004934 10.3233/JAD-171140
M.S. Albert S.T. DeKosky D. Dickson B. Dubois H.H. Feldman N.C. Fox et al. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease Alzheimers Dement 2011 7 3 270 279 21514249 10.1016/j.jalz.2011.03.008
B. Dubois H.H. Feldman C. Jacova H. Hampel J.L. Molinuevo K. Blennow et al. Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria Lancet Neurol 2014 13 6 614 629 24849862 10.1016/S1474-4422(14)70090-0
G.M. McKhann D.S. Knopman H. Chertkow B.T. Hyman C.R. Jack Jr C.H. Kawas et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease Alzheimers Dement 2011 7 3 263 269 21514250 10.1016/j.jalz.2011.03.005
R.A. Sperling P.S. Aisen L.A. Beckett D.A. Bennett S. Craft A.M. Fagan et al. Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease Alzheimers Dement 2011 7 3 280 292 21514248 10.1016/j.jalz.2011.03.003
F. Jessen R.E. Amariglio M. van Boxtel M. Breteler M. Ceccaldi G. Chetelat et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer's disease Alzheimers Dement 2014 10 6 844 852 24798886 10.1016/j.jalz.2014.01.001
F. Jessen Subjective and objective cognitive decline at the pre-dementia stage of Alzheimer's disease Eur Arch Psychiatry Clin Neurosci 2014 264 Suppl 1 S3 7 25238934 10.1007/s00406-014-0539-z
M.M.J. Wittens D.M. Sima R. Houbrechts A. Ribbens E. Niemantsverdriet E. Fransen et al. Diagnostic Performance of Automated MRI Volumetry by icobrain dm for Alzheimer's Disease in a Clinical Setting: A REMEMBER Study J Alzheimers Dis 2021 83 2 623 639 1:CAS:528:DC%2BB3MXitVWqtLvF 34334402 8543261 10.3233/JAD-210450
H. Struyfs D.M. Sima M. Wittens A. Ribbens N. de Barros Pedrosa T.V. Phan et al. Automated MRI volumetry as a diagnostic tool for Alzheimer's disease: Validation of icobrain dm Neuroimage Clin 2020 26 102243 32193172 7082216 10.1016/j.nicl.2020.102243
R Development Core Team R: A language and environment for statistical computing 2010 Vienna R foundation for statistical computing
Ethan Heinzen JS, Elizabeth Atkinson, Tina Gunderson and Gregory Dougherty. arsenal: An Arsenal of 'R' Functions for Large-Scale Statistical Summaries. R package version 3.6.3. 2021.
R Core Team R: A language and environment for statistical computing 2022 Vienna R Foundation for Statistical Computing
Torsten Hothorn FBaPW Simultaneous Inference in General Parametric Models Biom J 2008 50 3 346 363 10.1002/bimj.200810425
Frasco BHaM. Metrics: evaluation metrics for machine learning. 2018.
Kassambara A. ggpubr: 'ggplot2' Based Publication Ready Plots. R package version 0.4.0. 2023. https://CRAN.R-project.org/package=ggpubr.
Schloerke B, Cook D, Larmarange J, Briatte F, Marbach M, Thoen E, Elberg A, Crowley J. GGally: Extension to 'ggplot2'. R package version 2.1.2. 2023. https://CRAN.Rproject.org/package=GGally.
X. Robin N. Turck A. Hainard N. Tiberti F. Lisacek J.C. Sanchez et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves BMC Bioinformatics 2011 12 77 21414208 3068975 10.1186/1471-2105-12-77
W.J. Youden Index for rating diagnostic tests Cancer 1950 3 1 32 35 1:STN:280:DyaG3c%2FhsFeisw%3D%3D 15405679 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
E.R. DeLong D.M. DeLong D.L. Clarke-Pearson Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach Biometrics 1988 44 3 837 845 1:STN:280:DyaL1M%2Fns12ksQ%3D%3D 3203132 10.2307/2531595
M.G. Kenward J.H. Roger Small sample inference for fixed effects from restricted maximum likelihood Biometrics 1997 53 3 983 997 1:STN:280:DyaK2svntVGitw%3D%3D 9333350 10.2307/2533558
G.E. Dinse S.W. Lagakos Nonparametric estimation of lifetime and disease onset distributions from incomplete observations Biometrics 1982 38 4 921 932 1:STN:280:DyaL3s7nvFWmtQ%3D%3D 7168795 10.2307/2529872
J. Garcia Condado J.M. Cortes Alzheimer's Disease Neuroimaging I NeuropsychBrainAge: A biomarker for conversion from mild cognitive impairment to Alzheimer's disease Alzheimers Dement (Amst). 2023 15 4 e12493 37908437 10614125 10.1002/dad2.12493
S. Ameringer R.C. Serlin S. Ward Simpson's paradox and experimental research Nurs Res 2009 58 2 123 127 19289933 2880329 10.1097/NNR.0b013e318199b517
I. Beheshti N. Maikusa H. Matsuda The association between "Brain-Age Score" (BAS) and traditional neuropsychological screening tools in Alzheimer's disease Brain Behav 2018 8 8 e01020 29931756 6085898 10.1002/brb3.1020
M. Guggenmos K. Schmack M. Sekutowicz M. Garbusow M. Sebold C. Sommer et al. Quantitative neurobiological evidence for accelerated brain aging in alcohol dependence Transl Psychiatry 2017 7 12 1279 29225356 5802586 10.1038/s41398-017-0037-y
N. Bitterlich J. Schneider E. Lindner ROC curves–can differences in AUCs be significant? Int J Biol Markers 2003 18 3 227 229 1:STN:280:DC%2BD3svntlentg%3D%3D 14535595 10.1177/172460080301800312
P.R. Millar B.A. Gordon P.H. Luckett T.L.S. Benzinger C. Cruchaga A.M. Fagan et al. Multimodal brain age estimates relate to Alzheimer disease biomarkers and cognition in early stages: a cross-sectional observational study Elife. 2023 12 e81869 1:CAS:528:DC%2BB2cXjs1Kksro%3D 36607335 9988262 10.7554/eLife.81869
M.L. Elliott D.W. Belsky A.R. Knodt D. Ireland T.R. Melzer R. Poulton et al. Brain-age in midlife is associated with accelerated biological aging and cognitive decline in a longitudinal birth cohort Mol Psychiatry 2021 26 8 3829 3838 31822815 10.1038/s41380-019-0626-7
A. Cherubini M.E. Caligiuri P. Peran U. Sabatini C. Cosentino F. Amato Importance of Multimodal MRI in Characterizing Brain Tissue and Its Potential Application for Individual Age Prediction IEEE J Biomed Health Inform 2016 20 5 1232 1239 27164612 10.1109/JBHI.2016.2559938
K.J. Petersen J. Strain S. Cooley F. Vaida B.M. Ances Machine Learning Quantifies Accelerated White-Matter Aging in Persons With HIV J Infect Dis 2022 226 1 49 58 35481983 9890925 10.1093/infdis/jiac156
W.I. Tseng Y.C. Hsu T.W. Kao Brain Age Difference at Baseline Predicts Clinical Dementia Rating Change in Approximately Two Years J Alzheimers Dis 2022 86 2 613 627 1:CAS:528:DC%2BB38XnvVOhs7s%3D 35094993 10.3233/JAD-215380
N.U. Dosenbach B. Nardos A.L. Cohen D.A. Fair J.D. Power J.A. Church et al. Prediction of individual brain maturity using fMRI Science 2010 329 5997 1358 1361 1:CAS:528:DC%2BC3cXhtFajs7vO 20829489 3135376 10.1126/science.1194144
F. Liem G. Varoquaux J. Kynast F. Beyer S. Kharabian Masouleh J.M. Huntenburg et al. Predicting brain-age from multimodal imaging data captures cognitive impairment Neuroimage 2017 148 179 188 27890805 10.1016/j.neuroimage.2016.11.005
H. Eavani M. Habes T.D. Satterthwaite Y. An M.K. Hsieh N. Honnorat et al. Heterogeneity of structural and functional imaging patterns of advanced brain aging revealed via machine learning methods Neurobiol Aging 2018 71 41 50 30077821 6162110 10.1016/j.neurobiolaging.2018.06.013
A.N. Nielsen D.J. Greene C. Gratton N.U.F. Dosenbach S.E. Petersen B.L. Schlaggar Evaluating the Prediction of Brain Maturity From Functional Connectivity After Motion Artifact Denoising Cereb Cortex 2019 29 6 2455 2469 29850877 10.1093/cercor/bhy117
J. Gonneaud A.T. Baria A. Pichet Binette B.A. Gordon J.P. Chhatwal C. Cruchaga et al. Accelerated functional brain aging in pre-clinical familial Alzheimer’s disease Nat Commun 2021 12 1 5346 1:CAS:528:DC%2BB3MXitVSju77F 34504080 8429427 10.1038/s41467-021-25492-9
J. Gao J. Liu Y. Xu D. Peng Z. Wang Brain age prediction using the graph neural network based on resting-state functional MRI in Alzheimer's disease Front Neurosci 2023 17 1222751 37457008 10347411 10.3389/fnins.2023.1222751
M.S. Goyal T.M. Blazey Y. Su L.E. Couture T.J. Durbin R.J. Bateman et al. Persistent metabolic youth in the aging female brain Proc Natl Acad Sci U S A 2019 116 8 3251 3255 1:CAS:528:DC%2BC1MXjtlCmur8%3D 30718410 6386682 10.1073/pnas.1815917116
S.M. Smith D. Vidaurre F. Alfaro-Almagro T.E. Nichols K.L. Miller Estimation of brain age delta from brain imaging Neuroimage 2019 200 528 539 31201988 10.1016/j.neuroimage.2019.06.017
M.M.J. Wittens G.J. Allemeersch D.M. Sima M. Naeyaert T. Vanderhasselt A.M. Vanbinst et al. Inter- and Intra-Scanner Variability of Automated Brain Volumetry on Three Magnetic Resonance Imaging Systems in Alzheimer's Disease and Controls Front Aging Neurosci 2021 13 746982 34690745 8530224 10.3389/fnagi.2021.746982
R. Moqadam M. Dadar Y. Zeighami Investigating the impact of motion in the scanner on brain age predictions Imaging Neurosci 2024 2 1 21 10.1162/imag_a_00079