[en] Heat-to-charge conversion efficiency of thermoelectric materials is closely linked to the entropy per charge carrier. Thus, magnetic materials are promising building blocks for highly efficient energy harvesters as their carrier entropy is boosted by a spin degree of freedom. In this work, we investigate how this spin-entropy impacts heat-to-charge conversion in the A-type antiferromagnet CrSBr. We perform simultaneous measurements of electrical conductance and thermocurrent while changing magnetic order using the temperature and magnetic field as tuning parameters. We find a strong enhancement of the thermoelectric power factor at around the Néel temperature. We further reveal that the power factor at low temperatures can be increased by up to 600% upon applying a magnetic field. Our results demonstrate that the thermoelectric properties of 2D magnets can be optimized by exploiting the sizable impact of spin-entropy and confirm thermoelectric measurements as a sensitive tool to investigate subtle magnetic phase transitions in low-dimensional magnets.
Disciplines :
Physics
Author, co-author :
Canetta, Alessandra ; Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium
Volosheniuk, Serhii; Kavli Institute of Nanoscience, Delft University of Technology, 2628CJ Delft, The Netherlands
Satheesh, Sayooj; Max-Planck-Institut für Festkörperforschung, D-70569 Stuttgart, Germany
Alvarinhas Batista, José Pedro ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM)
Castellano, Aloïs ; Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures
Conte, Riccardo; Kavli Institute of Nanoscience, Delft University of Technology, 2628CJ Delft, The Netherlands
Chica, Daniel George; Department of Chemistry, Columbia University, New York, New York 10027, United States
Watanabe, Kenji ; Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
Taniguchi, Takashi ; Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
Roy, Xavier ; Department of Chemistry, Columbia University, New York, New York 10027, United States
van der Zant, Herre S J ; Kavli Institute of Nanoscience, Delft University of Technology, 2628CJ Delft, The Netherlands
Burghard, Marko; Max-Planck-Institut für Festkörperforschung, D-70569 Stuttgart, Germany
Verstraete, Matthieu ; Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures ; ITP, Physics Department, Utrecht University, 3508 TA Utrecht, The Netherlands
Gehring, Pascal ; Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium
ERC - European Research Council MEXT - Ministry of Education, Culture, Sports, Science and Technology FWB - Fédération Wallonie-Bruxelles DFG - Deutsche Forschungsgemeinschaft EU - European Union FWO - Fonds Wetenschappelijk Onderzoek Vlaanderen JSPS - Japan Society for the Promotion of Science NIMM - National Institute for Materials Science F.R.S.-FNRS - Fonds de la Recherche Scientifique NWO - Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Funding text :
P.G. acknowledges financial support from the F.R.S.-FNRS of Belgium (FNRS-CQ-1.C044.21-SMARD, FNRS-CDR-J.0068.21-SMARD, FNRS-MIS-F.4523.22-TopoBrain), and from the EU (ERC-StG-10104144-MOUNTAIN). P.G., A.C., A.Castellano, J.A-B., and M.V. acknowledge funding from the Federation Wallonie-Bruxelles through the ARC Grant No. 21/26-116, and from the FWO and FRS-FNRS under the Excellence of Science (EOS) programme (40007563-CONNECT). H.v.d.Z. acknowledges support by the FET open project QuIET (Number 767187) and by The Netherlands Organisation for Scientific Research (NWO). K.W. and T.T. acknowledge support from the JSPS KAKENHI (Grant Numbers 21H05233 and 23H02052) and World Premier International Research Center Initiative (WPI), MEXT, Japan for the growth of h-BN crystals. M.B. is grateful for support from the Deutsche Forschungsgemeinschaft (DFG) via Grant BU 1125/11-1. M.V. acknowledges a PRACE award granting access to MareNostrum4 at Barcelona Supercomputing Center (BSC), Spain and Discoverer in SofiaTech, Bulgaria (OptoSpin project id. 2020225411). Synthetic work at Columbia was supported by the National Science Foundation (NSF) through the Columbia Materials Science and Engineering Research Center on Precision-Assembled Quantum Materials (DMR-2011738).
Sun, P.; Kumar, K. R.; Lyu, M.; Wang, Z.; Xiang, J.; Zhang, W. Generic Seebeck effect from spin entropy. Innovation 2021, 2, 100101, 10.1016/j.xinn.2021.100101
Behnia, K. Fundamentals of Thermoelectricity; Oxford University Press: 2015.
Apertet, Y.; Ouerdane, H.; Goupil, C.; Lecoeur, P. A note on the electrochemical nature of the thermoelectric power. European Physical Journal Plus 2016, 131, 76, 10.1140/epjp/i2016-16076-8
Cai, J.; Mahan, G. D. Effective Seebeck coefficient for semiconductors. Phys. Rev. B 2006, 74, 075201, 10.1103/PhysRevB.74.075201
Chaikin, P. M.; Beni, G. Thermopower in the correlated hopping regime. Phys. Rev. B 1976, 13, 647- 651, 10.1103/PhysRevB.13.647
Peterson, M. R.; Shastry, B. S. Kelvin formula for thermopower. Phys. Rev. B 2010, 82, 195105, 10.1103/PhysRevB.82.195105
Yang, G.; Sang, L.; Zhang, C.; Ye, N.; Hamilton, A.; Fuhrer, M. S.; Wang, X. The role of spin in thermoelectricity. Nature Reviews Physics 2023, 5, 466- 482, 10.1038/s42254-023-00604-0
Pyurbeeva, E.; Mol, J. A.; Gehring, P. Electronic measurements of entropy in meso- and nanoscale systems. Chemical Physics Reviews 2022, 3, 041308, 10.1063/5.0101784
Shastry, B. S. In New Materials for Thermoelectric Applications: Theory and Experiment; Zlatic, V., Hewson, A., Eds.; Springer Netherlands: Dordrecht, 2013; pp 25- 29.
Tsujii, N.; Nishide, A.; Hayakawa, J.; Mori, T. Observation of enhanced thermopower due to spin fluctuation in weak itinerant ferromagnet. Science Advances 2019, 5, eaat5935 10.1126/sciadv.aat5935
Portavoce, A.; Assaf, E.; Bertoglio, M.; Narducci, D.; Bertaina, S. Magnetic moment impact on spin-dependent Seebeck coefficient of ferromagnetic thin films. Sci. Rep. 2023, 13, 172, 10.1038/s41598-022-26993-3
Yao, Y.; Zhan, X.; Sendeku, M. G.; Yu, P.; Dajan, F. T.; Zhu, C.; Li, N.; Wang, J.; Wang, F.; Wang, Z.; He, J. Recent progress on emergent two-dimensional magnets and heterostructures. Nanotechnology 2021, 32, 472001, 10.1088/1361-6528/ac17fd
Jiang, X.; Liu, Q.; Xing, J.; Liu, N.; Guo, Y.; Liu, Z.; Zhao, J. Recent progress on 2D magnets: Fundamental mechanism, structural design and modification. Applied Physics Reviews 2021, 8, 031305, 10.1063/5.0039979
Burch, K.; Mandrus, D.; Park, J.-G. Magnetism in two-dimensional van der Waals materials. Nature 2018, 563, 47- 52, 10.1038/s41586-018-0631-z
Cortie, D. L.; Causer, G. L.; Rule, K. C.; Fritzsche, H.; Kreuzpaintner, W.; Klose, F. Two-Dimensional Magnets: Forgotten History and Recent Progress towards Spintronic Applications. Adv. Funct. Mater. 2020, 30, 1901414, 10.1002/adfm.201901414
Telford, E. J.; Dismukes, A. H.; Lee, K.; Cheng, M.; Wieteska, A.; Bartholomew, A. K.; Chen, Y.-S.; Xu, X.; Pasupathy, A. N.; Zhu, X.; Dean, C. R.; Roy, X. Layered Antiferromagnetism Induces Large Negative Magnetoresistance in the van der Waals Semiconductor CrSBr. Adv. Mater. 2020, 32, 2003240, 10.1002/adma.202003240
Telford, E. Coupling between magnetic order and charge transport in a two-dimensional magnetic semiconductor. Nat. Mater. 2022, 21, 754- 760, 10.1038/s41563-022-01245-x
Bauer, G. E. W.; Saitoh, E.; van Wees, B. J. Spin caloritronics. Nat. Mater. 2012, 11, 391- 399, 10.1038/nmat3301
Lee, K.; Dismukes, A. H.; Telford, E. J.; Wiscons, R. A.; Wang, J.; Xu, X.; Nuckolls, C.; Dean, C. R.; Roy, X.; Zhu, X. Magnetic Order and Symmetry in the 2D Semiconductor CrSBr. Nano Lett. 2021, 21, 3511- 3517, 10.1021/acs.nanolett.1c00219 PMID: 33856213.
Wu, F.; Gutiérrez-Lezama, I.; López-Paz, S. A.; Gibertini, M.; Watanabe, K.; Taniguchi, T.; von Rohr, F. O.; Ubrig, N.; Morpurgo, A. F. Quasi-1D Electronic Transport in a 2D Magnetic Semiconductor. Adv. Mater. 2022, 34, 2109759, 10.1002/adma.202109759
Lopez-Paz, S. A.; Guguchia, Z.; Pomjakushin, V. Y.; Witteveen, C.; Cervellino, A.; Luetkens, H.; Casati, N.; Morpurgo, A. F.; von Rohr, F. O. Dynamic magnetic crossover at the origin of the hidden-order in van der Waals antiferromagnet CrSBr. Nat. Commun. 2022, 13, 4745, 10.1038/s41467-022-32290-4
Gehring, P.; van der Star, M.; Evangeli, C.; Le Roy, J. J.; Bogani, L.; Kolosov, O. V.; van der Zant, H. S. J. Efficient heating of single-molecule junctions for thermoelectric studies at cryogenic temperatures. Appl. Phys. Lett. 2019, 115, 073103, 10.1063/1.5118861
Gehring, P.; Sowa, J. K.; Hsu, C.; de Bruijckere, J.; van der Star, M.; Le Roy, J. J.; Bogani, L.; Gauger, E. M.; van der Zant, H. S. J. Complete mapping of the thermoelectric properties of a single molecule. Nat. Nanotechnol. 2021, 16, 426, 10.1038/s41565-021-00859-7
Castellanos-Gomez, A.; Buscema, M.; Zant, H.; Steele, G. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Materials 2014, 1, 011002, 10.1088/2053-1583/1/1/011002
Frisenda, R.; Navarro-Moratalla, E.; Gant, P.; Perez de Lara, D.; Jarillo-Herrero, P.; Gorbachev, R.; Castellanos-Gomez, A. Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev. 2018, 47, 53- 68, 10.1039/C7CS00556C
Lambert, C. J.; Sadeghi, H.; Al-Galiby, Q. H. Quantum-interference-enhanced thermoelectricity in single molecules and molecular films. Comptes Rendus. Physique 2016, 17, 1084- 1095, 10.1016/j.crhy.2016.08.003
Liu, W.; Guo, X.; Schwartz, J.; Xie, H.; Dhale, N. U.; Sung, S. H.; Kondusamy, A. L. N.; Wang, X.; Zhao, H.; Berman, D.; Hovden, R.; Zhao, L.; Lv, B. A Three-Stage Magnetic Phase Transition Revealed in Ultrahigh-Quality van der Waals Bulk Magnet CrSBr. ACS Nano 2022, 16, 15917- 15926, 10.1021/acsnano.2c02896 PMID: 36149801.
Boix-Constant, C.; Mañas-Valero, S.; Ruiz, A. M.; Rybakov, A.; Konieczny, K. A.; Pillet, S.; Baldoví, J. J.; Coronado, E. Probing the Spin Dimensionality in Single-Layer CrSBr Van Der Waals Heterostructures by Magneto-Transport Measurements. Adv. Mater. 2022, 34, 2204940, 10.1002/adma.202204940
Ye, C.; Wang, C.; Wu, Q.; Liu, S.; Zhou, J.; Wang, G.; Söll, A.; Sofer, Z.; Yue, M.; Liu, X.; Tian, M.; Xiong, Q.; Ji, W.; Renshaw Wang, X. Layer-Dependent Interlayer Antiferromagnetic Spin Reorientation in Air-Stable Semiconductor CrSBr. ACS Nano 2022, 16, 11876- 11883, 10.1021/acsnano.2c01151 PMID: 35588189.
Klein, J. The Bulk van der Waals Layered Magnet CrSBr is a Quasi-1D Material. ACS Nano 2023, 17, 5316- 5328, 10.1021/acsnano.2c07316 PMID: 36926838.
Madsen, G. K.; Carrete, J.; Verstraete, M. BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients. Comput. Phys. Commun. 2018, 231, 140- 145, 10.1016/j.cpc.2018.05.010
Zunger, A.; Wei, S.-H.; Ferreira, L. G.; Bernard, J. E. Special quasirandom structures. Phys. Rev. Lett. 1990, 65, 353- 356, 10.1103/PhysRevLett.65.353
Körmann, F.; Grabowski, B.; Dutta, B.; Hickel, T.; Mauger, L.; Fultz, B.; Neugebauer, J. Temperature Dependent Magnon-Phonon Coupling in bcc Fe from Theory and Experiment. Phys. Rev. Lett. 2014, 113, 165503, 10.1103/PhysRevLett.113.165503
Wang, Y.; Rogado, N. S.; Cava, R. J.; Ong, N. P. Spin entropy as the likely source of enhanced thermopower in NaxCo2O4. Nature 2003, 423, 425- 428, 10.1038/nature01639
Okabe, T. Spin-fluctuation drag thermopower of nearly ferromagnetic metals. J. Phys.: Condens. Matter 2010, 22, 115604, 10.1088/0953-8984/22/11/115604
Bonner, J. C.; Fisher, M. E. The Entropy of an Antiferromagnet in a Magnetic Field. Proceedings of the Physical Society 1962, 80, 508, 10.1088/0370-1328/80/2/318
Wu, H.; Zhang, W.; Yang, L.; Wang, J.; Li, J.; Li, L.; Gao, Y.; Zhang, L.; Du, J.; Shu, H.; Chang, H. Strong intrinsic room-temperature ferromagnetism in freestanding non-van der Waals ultrathin 2D crystals. Nat. Commun. 2021, 12, 5688, 10.1038/s41467-021-26009-0
Li, D.; Gong, Y.; Chen, Y.-X.; Lin, J.; Khan, Q.; Zhang, Y.; Li, Y.; Xie, H. Recent Progress of Two-Dimensional Thermoelectric Materials. Nano-Micro Letters 2020, 12, 36, 10.1007/s40820-020-0374-x
Razeghi, M.; Spiece, J.; Oğuz, O.; Pehlivanoğlu, D.; Huang, Y.; Sheraz, A.; Başçı, U.; Dobson, P.; Weaver, J.; Gehring, P.; Kasirga, S. Single-material MoS2 thermoelectric junction enabled by substrate engineering. npj 2D Materials and Applications 2023, 7, 36, 10.1038/s41699-023-00406-z
Tu, S. Record thermopower found in an IrMn-based spintronic stack. Nat. Commun. 2020, 11, 2023, 10.1038/s41467-020-15797-6
Oh, J.; Kim, Y.; Chung, S.; Kim, H.; Son, J. G. Fabrication of a MoS2/Graphene Nanoribbon Heterojunction Network for Improved Thermoelectric Properties. Advanced Materials Interfaces 2019, 6, 1901333, 10.1002/admi.201901333