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ABSTRACT: Heat-to-charge conversion efficiency of thermo-
electric materials is closely linked to the entropy per charge carrier.
Thus, magnetic materials are promising building blocks for highly
efficient energy harvesters as their carrier entropy is boosted by a
spin degree of freedom. In this work, we investigate how this spin-
entropy impacts heat-to-charge conversion in the A-type anti-
ferromagnet CrSBr. We perform simultaneous measurements of
electrical conductance and thermocurrent while changing magnetic
order using the temperature and magnetic field as tuning
parameters. We find a strong enhancement of the thermoelectric
power factor at around the Neél temperature. We further reveal that
the power factor at low temperatures can be increased by up to
600% upon applying a magnetic field. Our results demonstrate that
the thermoelectric properties of 2D magnets can be optimized by
exploiting the sizable impact of spin-entropy and confirm thermoelectric measurements as a sensitive tool to investigate subtle
magnetic phase transitions in low-dimensional magnets.
KEYWORDS: 2D magnetism, CrSBr, thermoelectric, entropy

The Seebeck coefficient (α) quantifies the electromotive
force or gradient of the electrochemical potential ∇V =

∇μ̃/q developing in a material exposed to a temperature
gradient ∇T (Figure 1), and is the central parameter that
determines the efficiency of a thermoelectric device.1,2 As the
electrochemical potential μ̃ of a population of electrically
charged particles consists of the sum of the chemical potential
μ and the electrostatic contribution qφ, the Seebeck coefficient
can be written as3

= =
q T q T T (1)

where q is the elementary charge. The second term of eq 1,
often referred to as the effective Seebeck coefficient, contains
dynamical effects linked to scattering/carrier relaxation
processes.3,4 In contrast, the first component�known as the
Kelvin formula5,6�is purely thermodynamic. On the basis of
thermodynamic considerations for an electronic system, this
term is directly related to the average entropy transported per
charge carrier1,7 using the Maxwell equation =( ) ( )T N

S
N T

, where N is the mean time-averaged population of the system
and S is the electronic entropy.7−9 This implies that all
mechanisms that increase the entropy per carrier can enhance

the Seebeck coefficient. In particular, the spin degrees of
freedom of carriers in magnetic materials can lead to such
increased entropy,7,10−12 as these correspond to more phase
space for the same number of electrons (especially the
magnetically active d electrons). The different types of entropy
will affect the electronic states (band energies and electron
density) and the chemical potential, which then modifies the
Seebeck coefficient, as shown in eq 1. Figure 1 illustrates this
concept by comparing the Seebeck effect of an antiferromagnet
in three temperature regimes linked to different magnetic
phases. In all cases, under open-circuit conditions, a thermally
driven diffusion current of charge carriers (red arrows) from
the heated region (depicted in orange) to the cold one (in
blue) is balanced by a drift current generated by an electric
field that builds up inside the material. Additionally, the so-
called spin-entropy, Sm, in magnetic materials can contribute to
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their Seebeck effect (bottom panels of Figure 1).1,7 Sm is
minimum below the “spin freezing” temperature (Figure 1a, a
special magnetic state in CrSBr, see discussion below).
Thermal fluctuations will then increase Sm (Figure 1b),
which reaches its maximum above the phase transition

temperature, as the material enters the paramagnetic (PM)
state (Figure 1c).1

In this context, thanks to their controllable magnetism,13−16

two-dimensional (2D) magnets provide an ideal platform to
test this effect. Among the layered van der Waals (vdW)

Figure 1. Seebeck effect in nonmagnetic and magnetic materials. Schematic illustrating the working principle of the Seebeck effect in a material in
different magnetic phases. The three images refer to different temperature ranges and consequently magnetic phases: “spin freezing” state (a),
antiferromagnetic (AFM) state (b), and paramagnetic (PM) state (c). The top pictures show the thermally driven diffusion of the charge carriers,
of which direction and magnitude are qualitatively indicated by the red arrows. The bottom images show the additional contribution of the spin-
entropy (Sm) to the Seebeck coefficient. Direction and magnitude of the entropy flow are qualitatively indicated by the black arrows.1,7

Temperature ranges are indicated in the large orange arrow at the bottom of the figure, while, in a), the direction of the temperature gradient is
illustrated by an orange-to-blue arrow.

Figure 2. Crystal structure, measurement setup, and electrical transport of CrSBr. (a) Crystal structure of CrSBr, from the c axis (top left), b axis
(top right) and a axis (bottom). Cr, S and Br atoms are represented as cyan, pink and purple spheres, respectively. (b) Side view of the device. (c)
Schematic of the setup used for magneto-transport and thermoelectric measurements. (d) Optical image of the measured device. The magenta
dashed guideline highlights the position of the CrSBr flake, covered by the hBN layer. (e) Temperature dependence of the conductance G (purple)
and the second derivative of the conductance G

T
d
d

2

2 (cyan). The white region and the light blue/gray region correspond respectively to the

paramagnetic (PM) and antiferromagnetic (AFM) phases of CrSBr. (f) Magneto-resistance ratio (MRR) versus the applied magnetic field B at
different temperatures between 20 and 160 K. An offset of 6% is applied for clarity between each pairs of curves. The AFM and FM magnetic
phases are shaded in gray and green, respectively. The black dotted line defines the saturation field HS (see Supporting Information section S9).
Scale bar in (d): 10 μm.
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materials A-type antiferromagnet CrSBr stands out for its good
cleavability as well as its Neél temperature TN of 132 K, one of
the highest reported among vdW antiferromagnets.14,17

Compared to ferromagnets, antiferromagnetic (AFM) materi-
als offer the possibility to change their spin structure into a
field-induced ferromagnetic (FM) configuration upon the
application of an external magnetic field, adding a degree of
freedom in tuning the electronic and thermoelectric proper-
ties.18,19 Each CrSBr vdW layer consists of two fused buckled
planes of CrS, sandwiched between Br atoms and stacked
along the c axis (see Figure 2a).14,17 CrSBr is an A-type
antiferromagnet, with intralayer FM coupling and interlayer
AFM interaction, and with an easy/medium/hard axis
coinciding with the crystallographic b/a/c axes, respectively.20

Furthermore, CrSBr shows semiconducting transport proper-
ties, with a direct band gap of EG = 1.5 eV and finite electrical
conductivity at low temperature.18 In particular, thanks to the
strong coupling between magnetic ordering and transport
properties in CrSBr, an external magnetic field can be used to

alter the electrical resistance, which tends to decrease as the
field increases. This comes as a consequence of the reduction
of spin fluctuations, and the different interlayer spin-flip
scattering between AFM and FM configurations.17,18,20,21

While the electrical transport and magnetic properties of this
material have been extensively investigated,17,18,20−22 the effect
of magnetic order on the entropy and thus the thermoelectric
properties has not been reported to date.
In this paper, we study the impact of electronic and spin-

entropy on the thermoelectric properties of CrSBr thin flakes.
To this end, we change the magnetic order by varying the
sample temperature or by applying an external magnetic field,
while simultaneously measuring the electrical and thermo-
electric transport properties. We observe a steep increase of the
Seebeck coefficient and the thermoelectric power factor with
increasing temperature as electrons and spins mobilize, with a
local maximum slightly below TN which we explain by a
competition between electronic band entropy and magnetic
entropy in CrSBr. We further reveal that a magnetic field can

Figure 3. Magnetic field and temperature dependence of the Seebeck coefficient of CrSBr. a) Variation of the Seebeck coefficient (purple curve)
and its first derivative (cyan curve) at B = 0 as a function of temperature. The temperatures TN and Tfreeze separate the graph in three areas, colored
respectively in white, gray and light blue. b) First-principles Seebeck coefficient as a function of T, for a representative (n-type) doping level,
calculated in the AFM (black curve), PM (orange curve), and interpolated magnetic states (purple curve). c) Magneto-Seebeck coefficient as a
function of temperature. Each curve is offset by 5% for clarity, and averaged as +B B( ) ( )

2
in order to remove any parasitic effect due to drift in

the measurement. The black dotted guidelines delimit the transition region (depicted in pink) in which the spins are canting from AFM (gray area)
to FM (green area) ordering and the Seebeck coefficient reaches its maximum. In particular, the external black dotted line between the transition
region and the FM state represents the saturation magnetic field HS (see Supporting Information section S9). The field-dependent spin
reorientation and interlayer tunneling is illustrated in the top part of the image. The orientation of the crystallographic axes is also reported. An
electron residing on one of the layers (dark gray sphere) can tunnel (indicated by the black curved arrows) or not (indicated by the black curved
arrows with red X) depending on its spin orientation.
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enhance the power factor by up to 600% at low temperatures.
These findings highlight how (spin)entropy engineering in 2D
magnetic materials could be used to build thermoelectric heat
engines with a strongly enhanced performance.
To measure the electrical and thermoelectric properties of

CrSBr thin flakes we employ a device architecture (Figure 2b−
c) that we recently developed for thermoelectric experiments
on single molecule junctions.23,24 It consists of prepatterned
contacts, thermometers and microheaters on top of which a
CrSBr flake has been stamped using a dry transfer method.25,26

A thin hexagonal Boron Nitride (hBN) flake is used to
encapsulate CrSBr to prevent degradation and contamination
(see Supporting Information sections S1−5 for details). An
optical micrograph of the final device is shown in Figure 2d.
For a typical measurement (Figure 2c), an AC current Ih at
frequency ω1 is applied to the microheater which generates a
temperature bias ΔT proportional to Ih

2, therefore having
frequency 2ω1. Simultaneously, an AC voltage Vsd at frequency
ω2 ≫ ω1 is applied to the drain contact. The current to ground
on the source contact is then demodulated at frequencies ω2

and 2ω1 to extract the differential conductance =G I
V

sd

sd
and the

Seebeck coefficient = =V
T

I
G T

th th , by assuming α = L/G,
where L is the thermoelectric conductivity27 (see Supporting
Information section S8 for details on the temperature
calibration). The frequencies ω1 and ω2 used in the
experiments, respectively 3 and 13 Hz, are slow enough for
the system to equilibrate. By using such a configuration, we are
able to record simultaneously the electrical conductance and
thermoelectric properties and therefore to evaluate in a more
accurate way the thermoelectric properties of CrSBr, as we can
exclude possible offsets/drifts that could occur when perform-
ing individual measurements. Finally, all magnetic fields in this
study were applied parallel to the a (medium) axis of CrSBr.
Figure 2e illustrates the temperature dependence of G and of

G
T

d
d

2

2 , respectively. G decreases when lowering T, typical for

semiconducting materials and in good agreement with previous
studies.17,18,21 Furthermore, we observe a maximum in G and a
sharp dip in G

T
d
d

2

2 around 133 ± 1 K. We associate this value

with TN, where the transition from the PM state (white region)
to the AFM one (gray region) occurs.10,17,18,22,28 Upon further
lowering T, G drops by 1 order of magnitude between TN and
20 K.21 At temperatures lower than Tfreeze = 47 ± 2 K, the
appearance of a low-temperature magnetic hidden order has
been reported.18,22,29 We do not observe variations in G
around Tfreeze; however, as we will show later, the Seebeck
coefficient changes abruptly below this temperature. G values
depicted in Figure 2e are in good agreement with the
conductance reported in previous works.17,18

In Figure 2f we show the magneto-resistance ratio
= ·=

=MRR 100R B R B
R B

( ) ( 0)
( 0)

at different temperatures between

20 and 160 K. Below TN, for low magnetic fields, spins are
AFM coupled between layers and aligned along the b (easy)
axis (see gray area). As reported previously, this suppresses the
interlayer tunneling, and thus leads to an increase in electrical
resistance.17,18 By raising the applied magnetic field, spins tend
to cant: This re-enables interlayer tunneling and therefore
lowers the resistance.17,18,30 Saturation of the MRR is visible
when FM order between the layers is established (see green
area).17

Figure 3a shows the temperature dependence of the Seebeck
coefficient simultaneously measured with G(T) (Figure 2e).
The negative sign of α is consistent with the n-type doping
typically found in CrSBr, which is attributed to Br
vacancies.17,31 We observe an overall decrease from −265 to
−9 μV/K when cooling the sample from 200 to 20 K, which is
the base temperature of our experiment. Three areas are
highlighted by means of different colors. In the white region (T
> TN), corresponding to the PM phase, |α| increases as T
decreases. |α| reaches its maximum at TN, stays constant until T
≈ 90 K, and then decreases (overall about 45%) until Tfreeze
(gray region). When cooling below Tfreeze (light blue area), |α|
decreases faster�as can be seen in the first derivative dα/dT
(cyan curve)�down to the value of −9 μV/K at 20 K. To
explain this behavior, we performed first-principles calculations
within the constant relaxation time approximation,32 for a
doping of ∼8 × 1018 electrons per cm3 (see Supporting
Information Figure S9). In Figure 3b we compare the AFM
ground state, a collinear PM state (averaging special
quasirandom structures33), and an interpolation between the

Figure 4. Field and temperature dependence of the power factor. (a) Temperature-dependent power factor, for B = 0 (purple) and B = 4 T (blue).
(b) Magneto-power factor (δPF) as a function of temperature, measured at B = 4 T.
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two.34 The calculations are in good quantitative agreement at
low and intermediate temperatures, show the same qualitative
extremum and upturn around TN, but underestimate the
upward jump of α in the full PM phase. Our calculation of the
bands in a collinear PM state produces a smaller Seebeck
amplitude (less negative). Freeing the spins to be noncollinear
PM should produce even more phase space and entropy for
the spins, and therefore a larger jump. It should be noted that
our first principle model is not suitable to predict α(T) at T <
50 K. In this regime, a strong modulation of the carrier
concentration is expected which is not accounted for in the
calculations.
To gain further evidence for the impact of magnetic order

on the thermoelectric properties of CrSBr, we measured the
change in the Seebeck coefficient as a function of the applied
magnetic field. Figure 3c shows this magneto-Seebeck
coefficient ratio = ·=

= 100B B
B

( ) ( 0)
( 0)

versus magnetic field

B at temperatures varying between 20 and 160 K. At 160 K, the
flake is in a PM state and the curve shows almost no variation
with applied B field. Below TN and for small magnetic fields,
CrSBr is AFM ordered (gray area) and δα is minimum at B =
0. As the absolute value of B becomes larger, δα increases and
reaches a local maximum, then decreases until saturating when
FM order is established (green area). The areas including the
local maxima of δα (in pink) can be identified as transition
regions, in which the spins are canting from the a to b direction
due to the application of the external B field.22 We observe an
increase in δα of up to 13% at low T when changing from AFM
to FM order (see Supporting Information Figure S7 for
measurements on additional CrSBr devices).
Figure 4a displays the temperature-dependent power factor

PF = α2 · σ, where σ is the electrical conductivity of CrSBr (see
Supporting Information section S3). As part of the figure of
merit zT, the power factor helps quantify the energy harvesting
efficiency of the material. As it is also proportional to the
maximum achievable output power, it is a useful parameter for
quantifying Peltier cooling. At B = 0, PF shows a peak of 7 μW
m−1 K−2 around TN, where the maxima of G and α also
simultaneously occur. This peak increases in magnitude and
shifts to lower temperatures when a magnetic field of B = 4 T is
applied. Figure 4b shows the magneto-power factor

= = =
= ·PF PF B PF B

PF B
( 4T) ( 0)

( 0) 100
as a function of temperature. We

observe that the relative change δPF increases with decreasing
temperature and reaches values up to 600% at 20K. Below we
discuss that these findings can be explained by the intrinsic
band structure of AFM CrSBr, taking into account variations in
the entropy linked to the magnetic order.
As we described at the beginning of this article, the Seebeck

coefficient is closely linked to the entropy S of the system (see
eq 1).8,35 The entropy of a mesoscopic system can be
estimated using the Boltzmann formula S = kB ln(Ω), where Ω
represents the number of all possible microstates of the
system.1,36 Here, we assume that Ω contains three main
contributions. Ωp represents the conventional distribution of
momenta of the electron gas (the electronic band contribu-
tion). Then, we take into account a layer degree of freedom
Ωlayer which quantifies the number of layers a charge carrier can
access, as CrSBr is a layered vdW material in which interlayer
tunneling is precluded when switching to AFM order.37 Lastly,
we include a term Ωs representing all possible spin
configurations, which yields the spin-entropy Sm.

38 The sign

of this contribution depends on the nature of the d bands
hosting the magnetization, which is positive in CrSBr (hole
like, from the d band valence electrons).1 Therefore, the
electronic and spin-entropy contributions have opposite signs.
We now turn back to Figure 3a, which depicts the temperature
dependence of α. As T ≥ Tfreeze, the growth of the Seebeck
coefficient abruptly slows down, which is simultaneous with
the appearance of a magnetic hidden order below Tfreeze. Such
hidden order was already observed previously by other groups,
who associate its origin either to a magnetic coupling between
self-trapped defects,18 the anisotropic structure of CrSBr�
which can be seen as weakly and incoherently coupled 1D
chains21�or a spin-dimensionality crossover caused by a
slowing down of the magnetic fluctuations (spin freezing).22,29

The consequence of the spin freezing phenomenon is that spin
fluctuations are fully suppressed (Ωs = 1) below Tfreeze, and
therefore cannot contribute to the entropy22 to counteract the
electronic α.1 Additionally, interlayer tunneling is suppressed
(Ωlayer = 1).21,22,29 As the spins mobilize upon heating, their
contribution Sm is superimposed on intrinsic electronic α. Due
to the opposite signs of the electronic and spin-entropy
contributions, their combined action leads to a plateau and
turnover when increasing T. At higher temperatures (T ∼ TN),
two effects cause the reduction in |α| observed in our
experiment: First, fluctuations and Sm increase as CrSBr
approaches TN, then saturate in the fully PM phase;10,39

second, an increase in carrier concentration decreases the
magnitude of α (less negative, see Supporting Information
Figure S8). The subsequent increase in |α| beyond temper-
atures of 200 K, as observed in our experiments and predicted
by theory, can be attributed to the dominance of Ωp over the
saturated Ωs in the fully PM state.
Figure 3c illustrates how an external magnetic field, B, affects

α. The application of B along the a direction of CrSBr
produces a continuous canting of the spins.10 Such field-
induced spin reorientation initially raises Ωs, which leads to an
increase in |α| (pink shaded areas). When further increasing B,
the FM order is established and Ωs is minimized, reducing |α|
again.38,40 In addition, the transition from AFM to FM order
enables interlayer tunneling and thus raises Ωlayer (see Figure
3c). This could explain the higher α in the FM phase
compared to the AFM one and has an important consequence:
Since both σ and α simultaneously increase with magnetic
field, the relative change of the power factor (α2σ) between
AFM and FM order can reach very high values, up to 600% as
observed in our experiment (Figure 4b).
In this work, we investigate the magnetic field and

temperature dependence of electric and thermoelectric proper-
ties of the A-type antiferromagnet CrSBr. We reveal a strong
impact of magnetic order on the thermoelectric response of the
material, which we attribute to a spin-entropy contribution to
the total thermopower. In particular, we detect a peak in both
the Seebeck coefficient and the power factor around the
magnetic transition temperature TN. These findings present a
potential way to overcome the limits of conventional
thermoelectric devices by employing magnetic materials.
While devices based on CrSBr show enhanced thermoelectric
properties at cryogenic temperatures, future research should
investigate 2D magnets with a higher transition temperature to
enable room temperature operation. Promising materials that
deserve attention are the recently investigated 2D compounds
CrTe2 and Fe3GaTe2 with magnetic ordering temperatures
>300 K.41,42 To this end, the use of 2D materials adds further
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benefits, such as the possibility to tune the transition
temperature by varying the flake thickness, composition,
electrostatic gating, or by producing heterostructures of
different layers, in order to yield optimum performance at
room temperature.43−46
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