[en] This study provides occurrence data for acrylamide in various foodstuffs, including those covered by Recommendation (EU) 2019/1888, from 210 samples purchased on the Belgian market. Detection frequencies exceeded 84% in potato-based products other than fries, vegetable crisps, black olives, cocoa powders, coffee substitutes and cereals and snacks. Large variations in acrylamide levels were found in cereals and snacks, with no correlation between cereal type or processing. Snacks containing chia did not show higher acrylamide levels than other cereal-based snacks. Maximum levels found were 4389 and 3063 µg kg-1 in coffee substitutes and vegetable crisps, respectively. Potato-based products contained 2 to 27 times less acrylamide when prepared in oven, compared to deep fryer processing. Artificially oxidised "Californian-style" black olives contained five times more acrylamide than "Greek-style" olives. In bread, pastries, nuts, oilseeds, dried fruits and confectionaries, detection frequencies varied from 27 to 69% and the average acrylamide content was <30 µg kg-1.
Research Center/Unit :
FARAH. Santé publique vétérinaire - ULiège
Disciplines :
Food science
Author, co-author :
Szternfeld, Philippe ; Chemical & Physical Health Risks Department, Sciensano, Brussels, Belgium
Van Leeuw, Virginie; Chemical & Physical Health Risks Department, Sciensano, Brussels, Belgium
Scippo, Marie-Louise ; Université de Liège - ULiège > Département de sciences des denrées alimentaires (DDA) > Analyse des denrées alimentaires
Vinkx, Christine; Federal Public Service Health, Food Chain Safety and Environment, Brussel, Belgium
Van Hoeck, Els; Chemical & Physical Health Risks Department, Sciensano, Brussels, Belgium
Joly, Laure; Chemical & Physical Health Risks Department, Sciensano, Brussels, Belgium
Language :
English
Title :
Characterisation of new sources of acrylamide in food marketed in Belgium.
Publication date :
2025
Journal title :
Food Additives and Contaminants. Part B, Surveillance
Amrein TM, Andres L, Escher F, Amadò R., 2007. Occurrence of acrylamide in selected foods and mitigation options. Food Addit Contam. 24(sup1):13–25. doi: 10.1080/02652030701242558.
Amrein TM, Lukac H, Andres L, Perren R, Escher F, Amadò R. 2005. Acrylamide in roasted almonds and hazelnuts. J Agric Food Chem. 53(20):7819–7825. doi: 10.1021/jf051132k.
Anastassiades M, Lehotay SJ, Stajnbaher D, Schenck FJ. 2003. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J AOAC Int. 86(2):412–431.
Anastassiades M, Tasdelen B, Scherbaum E. 2006. New developments in QuEChERS methodology. Books of abstracts, EPRW 2006. Korfu, Greece.
Becalski A, Brady B, Feng S, Gauthier BR, Zhao T. 2011. Formation of acrylamide at temperatures lower than 100°C: the case of prunes and a model study. Food Addit Contam. 28(6):726–730. doi: 10.1080/19440049.2010.535217.
Bel S, Van den Abeele S, Lebacq T, Ost C, Brocatus L, Stiévenart C, Teppers E, Tafforeau J, Cuypers K. 2016. Protocol of the Belgian food consumption survey 2014: objectives, design and methods. Archiv Public Health. 74(1):20. doi: 10.1186/s13690-016-0131-2.
Biedermann M, Biedermann-Brem S, Noti A, Grob K. 2002. Methods for determining the potential of acrylamide formation and its elimination in raw materials for food preparation, such as potatoes. Mitt Lebensm Hyg. 93:653–667.
Breitling-Utzmann C, Treyer A, Bauer N. 2023. Approaches to minimize Acrylamide in oxidized California style olives. Poster. Chemichal Reactions in Foods IX; Prague, Czech Republic.
Breitling-Utzmann C, Wendler S. 2019. Formation of acrylamide in vegetable crisps - influence of processing conditions and reducing sugars. Deutsche Lebensm-Rundsch. 115:265.
Breitling-Utzmann C, Wendler S. 2019. Formation of acrylamide in vegetable crisps - influence of processing conditions and reducing sugars. Deutsche Lebensm--Rundsch: Z für Lebensmittelkunde und Lebensmittelrecht. 115:265.
Brenes-Álvarez M, Ramírez EM, García-García P, Medina E, Brenes M, Romero C. 2024. Assessment of black ripe olive processing for acrylamide mitigation. LWT. 198:116027. doi: 10.1016/j.lwt.2024.116027.
Bureau of Chemical Safety. 2012. Health Canada’s revised exposure assessment of acrylamide in food [Internet]. [accessed 2024 Jan15]. https://www.canada.ca/en/health-canada/services/food-nutrition/food-safety/chemical-contaminants/food-processing-induced-chemicals/acrylamide/revised-exposure-assessment-acrylamide.html.
Casado FJ, Montaño A. 2008. Influence of processing conditions on acrylamide content in black ripe olives. J Agric Food Chem. 56(6):2021–2027. doi: 10.1021/jf072960b.
Charoenprasert S, Mitchell A. 2014. Influence of california-style black ripe olive processing on the formation of acrylamide. J Agric Food Chem. 62(34):8716–8721. doi: 10.1021/jf5022829.
Claeys W, De Meulenaer B, Huyghebaert A, Scippo M-L, Hoet P, Matthys C. 2016. Reassessment of the acrylamide risk: Belgium as a case-study. Food Control. 59:628–635. doi: 10.1016/j.foodcont.2015.06.051.
Croft* M, Tong P, Fuentes D, Hambridge T. 2004. Australian survey of acrylamide in carbohydrate-based foods. Food Addit Contam. 21(8):721–736. doi: 10.1080/02652030412331272458.
Das AB, Srivastav PP. 2012. Acrylamide in snack foods. Toxicol Mechanisms Methods. 22(3):163–169. doi: 10.3109/15376516.2011.623329.
De Paola EL, Montevecchi G, Masino F, Garbini D, Barbanera M, Antonelli A. 2017. Determination of acrylamide in dried fruits and edible seeds using QuEChERS extraction and LC separation with MS detection. Food Chem. 217:191–195. doi: 10.1016/j.foodchem.2016.08.101.
De Ridder K, Bel S, Brocatus L, Lebacq T, Ost C, Teppers E. 2016. Résumé des résultats. 2014-2015. In: Tafforeau J, editor. Enquête de consommation alimentaire. Bruxelles: WIV-ISP.
Duedahl-Olesen L. 2019. Acrylamide formation during domestic cooking of olives.
EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain). 2015. Scientific opinion on acrylamide in food. EFSA J. 13(6):4104, 321. doi: 10.2903/j.efsa.2015.4104.
EFSA NDA Panel (EFSA Panel on Nutrition, Novel Foods and Food Allergens), Turck D, Castenmiller J, de Henauw S, Hirsch-Ernst KI, Kearney J, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Engel K-H, Frenzel T, Heinonen M, Marchelli R, Neuhäuser-Berthold M, Pöting A, Poulsen M, Sanz Y, Schlatter JR, van Loveren H, Gelbmann W, Matijević L, Romero P and Knutsen HK. 2019. Scientific Opinion on the safety of chia seeds (Salvia hispanica L.) as a novel food for extended uses pursuant to Regulation (EU) 2015/2283. EFSA J. 17(4):5657, 17 p. doi: 10.2903/j.efsa.2019.5657.
EFSA (European Food Safety Authority), Benford D, Bignami M, Chipman JK, Ramos Bordajandi L. 2022. Scientific report on the assessment of the genotoxicity of acrylamide. EFSA J. 20(5):7293, 45 p. doi: 10.2903/j.efsa.2022.7293.
Euromonitor Grocery universe. 2017. Results of the 55th inventory of retail grocery in Belgium, drawn up by Nielsen [Internet]. http://www.nielsen.com/be/en/insights/reports/2017/nielsen-grocery-universe-2017.html.
European Commission. 2007. COMMISSION REGULATION (EC) No 333/2007 of 28 March 2007 laying down the methods of sampling and analysis for the official control of levels of lead, cadmium, mercury, inorganic tin, 3-MCPD and benzo(a)pyrene in foodstruffs. Off J Eur Union. L88:29–38.
European Commission. 2010. COMMISSION RECOMMENDATION of 2 June 2010 on the monitoring of acrylamide levels in food. Off J Eur Union. L137:4–10.
European Commission. 2017. COMMISSION REGULATION (EU) No 2017/2158 of 20 November 2017 establishing mitigation measures and benchmark levels for the reduction of the presence of acrylamide in food. Off J Eur Union. L304:24–44.
European Commission. 2019. COMMISSION RECOMMENDATION (EU) No 2019/1888 of 7 November 2019 on the monitoring of the presence of acrylamide in certain foods. Off J Eur Union. L290:31–33.
European Commission. 2021. Guidance document on analytical quality control and method validation procedures for pesticide residues and analysis in food and feed SANTE 11312/2021 supersedes document No. SANTE/2019/12682. Implemented by 01/01/2022 [Internet]. https://www.eurl-pesticides.eu/userfiles/file/EurlALL/SANTE_11312_2021.pdf.
European Parliament and Council. 2015. REGULATION (EU) No 2015/2283 of the EUROPEAN PARLIAMENT and of the COUNCIL of 25 November 2015 on novel food, amending regulation (EU) No 1169/2011 of the European parliament and of the council and repealing regulation (EC) No 258/97 of the European parliament and of the council and commission regulation (EC) No 1852/2001. Off J Eur Union. L327:1–22.
Galluzzo FG, Cammilleri G, Pantano L, Lo Cascio G, Pulvirenti A, Macaluso A, Vella A, Ferrantelli V. 2021. Acrylamide assessment of wheat bread incorporating chia seeds (Salvia hispanica L.) by LC-MS/MS. Food Addit Contam. 38(3):388–395. doi: 10.1080/19440049.2020.1853823.
Hölzle E, Breitling-Utzmann C, Blumberg O, Klass N, Remezov A, Schödl S, Sischka A, Tränkle K, Steliopoulos P, Oellig C. 2025. Influence of chia and flaxseeds on acrylamide formation in sweet bakery products. Food Chem. 463:141344. doi: 10.1016/j.foodchem.2024.141344.
IARC (International Agency for Research on Cancer). 2010. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC MonogrEval Carcinog RIsks Hum. 92:1–853. http://publications.iarc.fr/110PMID:21141735.
Jägerstad M, Skog K. 2005. Genotoxicity of heat-processed foods. Mutat Res/Fundamental Mol Mechanisms Mutagen. 574(1):156–172. doi: 10.1016/j.mrfmmm.2005.01.030.
Keramat J, LeBail A, Prost C, Soltanizadeh N. 2011. Acrylamide in foods: chemistry and analysis. A Rev Food Bioprocess Technol. 4(3):340–363. doi: 10.1007/s11947-010-0470-x.
Kruszewski B, Obiedziński MW. 2020. Impact of raw materials and production processes on furan and acrylamide contents in dark chocolate. J Agric Food Chem. 68(8):2562–2569. doi: 10.1021/acs.jafc.0c00412.
Lantz I, Ternité R, Wilkens J, Hoenicke K, Guenther H, van der Stegen Ghd, van der Stegen GHD. 2006. Studies on acrylamide levels in roasting, storage and brewing of coffee. Mol Nutr Food Res. 50(11):1039–1046. doi: 10.1002/mnfr.200600069.
MacDonald S, Lloyd A, Chan D, Bryce L, Grijalvo Diego I, Chapman S. 2023. Acrylamide and furans UK retail survey summary | food standards agency[Internet]. [accessed 2024 Jan15]. https://www.food.gov.uk/research/acrylamide-and-furans-survey-summary.
Martín-Vertedor D, Fernández A, Mesías M, Martínez M, Díaz M, Martín-Tornero E. 2020. Industrial strategies to reduce acrylamide formation in Californian-Style Green Ripe Olives. Foods. 9(9):1202. doi: 10.3390/foods9091202.
Mesías M, Gómez P, Olombrada E, Morales FJ. 2023. Formation of acrylamide during the roasting of chia seeds (Salvia hispanica L.). Food Chem. 401:134169. doi: 10.1016/j.foodchem.2022.134169.
Mojska H, Gielecińska I. 2013. Studies of acrylamide level in coffee and coffee substitutes: influence of raw material and manufacturing conditions. Roczniki Państwowego Zakładu Higieny. 64(3):173–181.
Mottram DS, Wedzicha BL, Dodson AT. 2002. Acrylamide is formed in the Maillard reaction. Nature. 419(6906):448–449. doi: 10.1038/419448a.
Nguyen KH, Fromberg A, Duedahl-Olesen L, Christensen T, Granby K. 2022. Processing contaminants in potato and other vegetable crisps on the Danish market: levels and estimation of exposure. J Food Composition Anal. 108:104411. doi: 10.1016/j.jfca.2022.104411.
Oellig C, Gottstein E, Granvogl M. 2022. Analysis of acrylamide in vegetable chips after derivatization with 2-mercaptobenzoic acid by liquid chromatography–mass spectrometry. Eur Food Res Technol. 248(4):937–946. doi: 10.1007/s00217-021-03898-5.
Schouten MA, Santanatoglia A, Angeloni S, Ricciutelli M, Acquaticci L, Caprioli G, Vittori S, Romani S. 2024. Effects of nuts, dried fruits, dried seeds and black olives as enrichment ingredients on acrylamide concentrations in sweet and savoury biscuits. Food Bioprocess Technol. 17(6):1525–1538. doi: 10.1007/s11947-023-03214-x.
Scientific Opinion of the Panel on Dietetic Products Nutrition and Allergies on a request from the European Commission on the safety of ‘Chia seed (Salvia hispanica) and ground whole Chia seed’ as a food ingredient. 2009. EFSA J. 996:1–26. [accessed 2024 Dec11].
Stadler RH, Blank I, Varga N, Robert F, Hau J, Guy PA, Robert M-C, Riediker S. 2002. Acrylamide from Maillard reaction products. Nature. 419(6906):449–450. doi: 10.1038/419449a.
Surdyk N, Rosén J, Andersson R, Aman P. 2004. Effects of asparagine, fructose, and baking conditions on acrylamide content in yeast-leavened wheat bread. J Agric Food Chem. 52(7):2047–2051. doi: 10.1021/jf034999w.
Žilić S. 2016. Acrylamide in soybean products, roasted nuts, and dried fruits. Acrylamide In Food. [place unknown]; p. 197–213. doi: 10.1016/B978-0-12-802832-2.00010-3.
Žilić S, Nikolić V, Mogol BA, Hamzalıoğlu A, Taş NG, Kocadağlı T, Simić M, Gökmen V. 2022. Acrylamide in corn-based thermally processed foods: a review. J Agric Food Chem. 70(14):4165–4181. doi: 10.1021/acs.jafc.1c07249.