Multiple myeloma; CD38; Single domain antibodies; Theranostic; Radiotherapy
Abstract :
[en] CD38 is a multifunctional transmembrane glycoprotein found in multiple tissues and overexpressed in many cancer cells, notably in hematological malignancies such as leukemia and multiple myeloma (MM). Therefore, targeting CD38 remains an attractive strategy for cancer treatment in hematological malignancies as well as in solid tumors. It plays a critical role in the progression of these diseases through its ADP-ribosyl cyclase and cADPR-hydrolase activities. Its importance has led to the development of various anti-CD38 monoclonal antibodies (mAbs), including daratumumab and isatuximab, approved for MM treatment. These mAbs exert their anti-tumor effects through Fc-dependent immune mechanisms and immunomodulation, enhancing T-cell and NK-cell-mediated responses. However, resistance mechanisms arise during the treatment with daratumumab, creating the necessity for new therapies. This review explains current knowledge about the role of CD38 as a target in oncology and aims to delineate the use of single domain antibodies (sdAbs) as innovative theranostic tools in nuclear medicine. For diagnostic purposes, PET radionuclides like 68 Ga, 64Cu, and SPECT radionuclides like 99mTc and 111In, are commonly used. Significant progress has been made in anti-CD38 radioligand therapy (RLT), with anti-CD38 antibodies providing insights into tumor biology and treatment efficacy. In terms of therapy, RLT is a promising approach that offers precise targeting of malignant cells while minimizing exposure to healthy tissue. This involves the use of radionuclides emitting α particles, like 225Ac, 212Pb or 211At, and β--particles like 90Y, 131I, or 177Lu, to exert cytotoxic effects. Derived from Camelidae heavy chain antibodies, sdAbs offer advantages over conventional mAbs such as small size, high stability, specificity, and ability to recognize hidden epitopes. CD38-specific sdAbs, such as sdAb 2F8, characterized by our laboratory, showing excellent tumor targeting and their engineered constructs, such as biparatopic antibodies and chimeric antibodies, represent a new generation of theranostic agents for diagnosis and treatment CD38-expressing malignancies.
Disciplines :
Hematology
Author, co-author :
Bocuzzi, Valentina ; Université de Liège - ULiège > Département des sciences cliniques > Médecine nucléaire
Fonds De La Recherche Scientifique - FNRS Fondation contre le Cancer
Funding text :
The laboratory of Haematology was supported by the Foundation Against Cancer, the Fonds National de la Recherche Scientifique (FNRS, Belgium) and the Fonds Sp\u00E9ciaux de la Recherche (University of Li\u00E8ge).We would like to thank the Laboratory of Hematology (GIGA-ULi\u00E8ge), the Centre for Protein Engineering (ULi\u00E8ge) and the Molecular Imaging and Therapy Laboratory (Vrije Universiteit Brussel) for their excellent technical assistance in our different projects.
E.L. Reinherz P.C. Kung G. Goldstein R.H. Levey S.F. Schlossman Discrete stages of human intrathymic differentiation: analysis of normal thymocytes and leukemic lymphoblasts of T-cell lineage Proc Natl Acad Sci U S A 1980 77 3 1588 1592 6966400 348542 10.1073/pnas.77.3.1588
R. Graeff Q. Liu I.A. Kriksunov Q. Hao C.L. Hon Acidic residues at the active sites of CD38 and ADP-ribosylt cyclase determine nicotinic acid adenine dinucleotide phosphate (NAADP) synthesis and hydrolysis activities J Biol Chem 2006 10.1074/jbc.M604370200 17182614
G. Monaco B. Lee W. Xu S. Mustafah Y.Y. Hwang C. Carré et al. RNA-Seq signatures normalized by mRNA abundance allow absolute deconvolution of human immune cell types Cell Rep 2019 10.1016/j.celrep.2019.01.041 31553907 6876861
B.J. Schmiedel D. Singh A. Madrigal A.G. Valdovino-Gonzalez B.M. White J. Zapardiel-Gonzalo et al. Impact of genetic polymorphisms on human immune cell gene expression Cell 2018 10.1016/j.cell.2018.10.022 30449622 6289654
W. Szlasa J. Czarny N. Sauer K. Rakoczy N. Szymańska J. Stecko et al. Targeting CD38 in neoplasms and non-cancer diseases Cancers (Basel). 2022 10.3390/cancers14174169 36077708 9454480
R.T. Hoppe R.H. Advani W.Z. Ai R.F. Ambinder P. Armand C.M. Bello et al. Hodgkin Lymphoma, Version 2.2020, NCCN Clinical Practice Guidelines in Oncology J Natl Compr Canc Netw 2020 18 6 755 781 32502987 10.6004/jnccn.2020.0026
R. Di Gaetano V. Gasparetto A. Padoan B. Callegari L. Candiotto M.C. Sanzari et al. Flow cytometry CD4 (+)CD26 (-)CD38 (+) lymphocyte subset in the microenvironment of Hodgkin lymphoma-affected lymph nodes Ann Hematol 2014 93 8 1319 1326 24627194 10.1007/s00277-014-2044-x
M. Hummel S. Bentink H. Berger W. Klapper S. Wessendorf T.F.E. Barth et al. A biologic definition of Burkitt’s lymphoma from transcriptional and genomic profiling N Engl J Med 2006 354 23 2419 2430 10.1056/NEJMoa055351 16760442
C. Atousa Maleki Adam N.U.N.J.K. Seegmiller W. Chen Bright CD38 expression is an indicator of MYC rearrangement Leuk Lymphoma 2009 50 6 1054 1057 10.1080/10428190902930470
Y. Liu T. Bian Y. Zhang Y. Zheng J. Zhang X. Zhou et al. A combination of LMO2 negative and CD38 positive is useful for the diagnosis of Burkitt lymphoma Diagn Pathol 2019 14 1 100 31484540 6727582 10.1186/s13000-019-0876-3
G. Ott A. Rosenwald E. Campo Understanding MYC-driven aggressive B-cell lymphomas: pathogenesis and classification Blood 2013 122 24 3884 3891 10.1182/blood-2013-05-498329 24009228
A. Rosenthal A. Younes High grade B-cell lymphoma with rearrangements of MYC and BCL2 and/or BCL6: double hit and triple hit lymphomas and double expressing lymphoma Blood Rev 2017 31 2 37 42 27717585 10.1016/j.blre.2016.09.004
S.J. Rodig J.-A. Vergilio A. Shahsafaei D.M. Dorfman Characteristic expression patterns of TCL1, CD38, and CD44 identify aggressive lymphomas harboring a MYC translocation Am J Surg Pathol 2008 32 1 113 122 18162778 10.1097/PAS.0b013e3180959e09
A. Alsuwaidan E. Pirruccello J. Jaso P. Koduru R. Garcia J. Krueger et al. Bright CD38 expression by flow cytometric analysis is a biomarker for double/triple hit lymphomas with a moderate sensitivity and high specificity Cytometry B Clin Cytom 2019 96 5 368 374 30734478 10.1002/cyto.b.21770
E. Calabretta C. Carlo-Stella The many facets of CD38 in lymphoma: from tumor-microenvironment cell interactions to acquired resistance to immunotherapy Cells 2020 10.3390/cells9040802 32225002 7226059
J.J. Castillo E.N. Libby S.M. Ansell M.L. Palomba K. Meid C.A. Flynn et al. Multicenter phase 2 study of daratumumab monotherapy in patients with previously treated Waldenström macroglobulinemia Blood Adv 2020 4 20 5089 5092 10.1182/bloodadvances.2020003087 33085756 7594378
W.G. Morice D. Chen P.J. Kurtin C.A. Hanson E.D. McPhail Novel immunophenotypic features of marrow lymphoplasmacytic lymphoma and correlation with Waldenström’s macroglobulinemia Mod Pathol 2009 22 6 807 816 19287458 10.1038/modpathol.2009.34
J. Vose J. Armitage D. Weisenburger International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes J Clin Oncol 2008 26 25 4124 4130 18626005 10.1200/JCO.2008.16.4558
S.H. Swerdlow E. Campo S.A. Pileri N.L. Harris H. Stein R. Siebert et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms Blood 2016 127 20 2375 2390 26980727 4874220 10.1182/blood-2016-01-643569
F. Zaja V. Tabanelli C. Agostinelli A. Calleri A. Chiappella M. Varettoni et al. CD38, BCL‐2, PD‐1, and PD‐1L expression in nodal peripheral T‐cell lymphoma: possible biomarkers for novel targeted therapies? Am J Hematol 2017 10.1002/ajh.24571 28983953
L. Wang H. Wang P. Li Y. Lu Z. Xia H. Huang et al. CD38 expression predicts poor prognosis and might be a potential therapy target in extranodal NK/T cell lymphoma, nasal type Ann Hematol 2015 94 8 1381 1388 25865943 10.1007/s00277-015-2359-2
Vakiti A, Mewawalla P. Acute myeloid leukemia. In Treasure Island (FL); 2023.
Z.L. Piedra-Quintero Z. Wilson P. Nava M. Guerau-de-Arellano CD38: an immunomodulatory molecule in inflammation and autoimmunity Front Immunol 2020 10.3389/fimmu.2020.597959 33329591 7734206
M. Farber Y. Chen L. Arnold M. Möllmann E. Boog-Whiteside Y.-A. Lin et al. Targeting CD38 in acute myeloid leukemia interferes with leukemia trafficking and induces phagocytosis Sci Rep 2021 11 1 22062 34764342 8586007 10.1038/s41598-021-01300-8
K.L. Bride T.L. Vincent S.-Y. Im R. Aplenc D.M. Barrett W.L. Carroll et al. Preclinical efficacy of daratumumab in T-cell acute lymphoblastic leukemia Blood 2018 131 9 995 999 10.1182/blood-2017-07-794214 29305553 5833263
P. Ghia A.J.M. Ferreri F. Caligaris-Cappio Chronic lymphocytic leukemia Crit Rev Oncol Hematol 2007 64 3 234 246 17544290 10.1016/j.critrevonc.2007.04.008
P.E.M. Patten A.G.S. Buggins J. Richards A. Wotherspoon J. Salisbury G.J. Mufti et al. CD38 expression in chronic lymphocytic leukemia is regulated by the tumor microenvironment Blood 2008 111 10 5173 5181 18326821 10.1182/blood-2007-08-108605
S. Burgler Role of CD38 expression in diagnosis and pathogenesis of chronic lymphocytic leukemia and its potential as therapeutic target Crit Rev Immunol 2015 35 5 417 432 26853852 10.1615/CritRevImmunol.v35.i5.50
B. Bauvois E. Chapiro C. Quiney K. Maloum S.A. Susin F. Nguyen-Khac The value of neutrophil gelatinase-associated lipocalin receptor as a novel partner of CD38 in chronic lymphocytic leukemia: from an adverse prognostic factor to a potential pharmacological target? Biomedicines. 2023 10.3390/biomedicines11092335 37760777 10525793
T. Vaisitti S. Aydin D. Rossi F. Cottino L. Bergui G. D’Arena et al. CD38 increases CXCL12-mediated signals and homing of chronic lymphocytic leukemia cells Leukemia 2010 24 5 958 969 10.1038/leu.2010.36 20220774
M. Benkisser-Petersen M. Buchner A. Dörffel M. Dühren-von-Minden R. Claus K. Kläsener et al. Spleen tyrosine kinase is involved in the CD38 signal transduction pathway in chronic lymphocytic leukemia PLoS ONE 2016 11 12 28036404 5201248 10.1371/journal.pone.0169159
A. Paulus F. Malavasi A. Chanan-Khan CD38 as a multifaceted immunotherapeutic target in CLL Leuk Lymphoma 2022 63 10 2265 2275 35975791 10.1080/10428194.2022.2090551
S.K. Kumar V. Rajkumar R.A. Kyle M. van Duin P. Sonneveld M.-V. Mateos et al. Multiple myeloma Nat Rev Dis Prim 2017 3 17046 28726797 10.1038/nrdp.2017.46
R. Heusschen J. Muller E. Duray N. Withofs A. Bolomsky F. Baron et al. Molecular mechanisms, current management and next generation therapy in myeloma bone disease Leuk Lymphoma 2018 59 1 14 28 28573897 10.1080/10428194.2017.1323272
S.K. Kumar J.H. Lee J.J. Lahuerta G. Morgan P.G. Richardson J. Crowley et al. Risk of progression and survival in multiple myeloma relapsing after therapy with IMiDs and bortezomib: a multicenter international myeloma working group study Leukemia 2012 26 1 149 157 21799510 10.1038/leu.2011.196
P. Lin R. Owens G. Tricot C.S. Wilson Flow cytometric immunophenotypic analysis of 306 cases of multiple myeloma Am J Clin Pathol 2004 121 4 482 488 15080299 10.1309/74R4TB90BUWH27JX
F. Costa B. Dalla Palma N. Giuliani CD38 expression by myeloma cells and its role in the context of bone marrow microenvironment: modulation by therapeutic agents Cells 2019 10.3390/cells8121632 31847204 6952797
Y. Kawano S. Kushima H. Hata M. Matsuoka The role of CD38 in multiple myeloma cell biology Blood 2021 138 Supplement 1 1580 10.1182/blood-2021-150884
F. Morandi D. Marimpietri A.L. Horenstein M. Bolzoni D. Toscani F. Costa et al. Microvesicles released from multiple myeloma cells are equipped with ectoenzymes belonging to canonical and non-canonical adenosinergic pathways and produce adenosine from ATP and NAD () Oncoimmunology 2018 7 8 30221054 6136872 10.1080/2162402X.2018.1458809
L. Sun J. Iqbal S. Dolgilevich T. Yuen X.-B. Wu B.S. Moonga et al. Disordered osteoclast formation and function in a CD38 (ADP-ribosyl cyclase)-deficient mouse establishes an essential role for CD38 in bone resorption FASEB J 2003 17 3 369 375 12631576 10.1096/fj.02-0205com
G. An C. Acharya X. Feng K. Wen M. Zhong L. Zhang et al. Osteoclasts promote immune suppressive microenvironment in multiple myeloma: therapeutic implication Blood 2016 128 12 1590 1603 27418644 5034739 10.1182/blood-2016-03-707547
F. Costa D. Toscani A. Chillemi V. Quarona M. Bolzoni V. Marchica et al. Expression of CD38 in myeloma bone niche: a rational basis for the use of anti-CD38 immunotherapy to inhibit osteoclast formation Oncotarget 2017 8 34 56598 56611 28915615 5593586 10.18632/oncotarget.17896
J. Krejcik T. Casneuf I.S. Nijhof B. Verbist J. Bald T. Plesner et al. Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma Blood 2016 128 3 384 394 27222480 4957162 10.1182/blood-2015-12-687749
Bu X, Kato J, Hong JA, Merino MJ, Schrump DS, Lund FE, et al. CD38 knockout suppresses tumorigenesis in mice and clonogenic growth of human lung cancer cells. Carcinogenesis. 2018;39(2).
Gao L, Liu Y, Du X, Ma S, Ge M, Tang H, et al. The intrinsic role and mechanism of tumor expressed-CD38 on lung adenocarcinoma progression. Cell Death Dis. 2021;12(7).
L. Chen L. Diao Y. Yang X. Yi B.L. Rodriguez Y. Li et al. CD38-mediated immunosuppression as a mechanism of tumor cell escape from PD-1/PD-l1 blockade Cancer Discov 2018 10.1158/2159-8290.CD-17-1033 30578357 6467650
G. Bertolini M. Compagno D.C. Belisario C. Bracci T. Genova F. Mussano et al. CD73/adenosine pathway involvement in the interaction of non-small cell lung cancer stem cells and bone cells in the pre-metastatic Niche Int J Mol Sci 2022 10.3390/ijms23095126 36361523 9656696
A.-S. Heimes N. Riedel K. Almstedt S. Krajnak R. Schwab K. Stewen et al. Prognostic impact of CD38- and IgκC-positive tumor-infiltrating plasma cells in triple-negative breast cancer Int J Mol Sci 2023 10.3390/ijms242015219 37894900 10607675
B.B. Ben E. Blacher E. Mantsur H. Schwartz H. Vaknine N. Erez et al. Stromal CD38 regulates outgrowth of primary melanoma and generation of spontaneous metastasis Oncotarget 2018 10.18632/oncotarget.25737
F. Morandi B. Morandi A.L. Horenstein A. Chillemi V. Quarona G. Zaccarello et al. A non-canonical adenosinergic pathway led by CD38 in human melanoma cells induces suppression of T cell proliferation Oncotarget 2015 10.18632/oncotarget.4693 26329660 4694853
N. Walterskirchen C. Müller C. Ramos S. Zeindl S. Stang D. Herzog et al. Metastatic colorectal carcinoma-associated fibroblasts have immunosuppressive properties related to increased IGFBP2 expression Cancer Lett 2022 10.1016/j.canlet.2022.215737 35569697
T.A. Karakasheva T.J. Waldron E. Eruslanov S.B. Kim J.S. Lee S. O’Brien et al. CD38-expressing myeloid-derived suppressor cells promote tumor growth in a murine model of esophageal cancer Cancer Res 2015 10.1158/0008-5472.CAN-14-3639 26294209 4592477
T.A. Karakasheva G.A. Dominguez A. Hashimoto E.W. Lin C. Chiu K. Sasser et al. CD38+ M-MDSC expansion characterizes a subset of advanced colorectal cancer patients JCI Insight. 2018 10.1172/jci.insight.97022 29563330 5926906
A. Levy E. Blacher H. Vaknine F.E. Lund R. Stein L. Mayo CD38 deficiency in the tumor microenvironment attenuates glioma progression and modulates features of tumor-associated microglia/macrophages Neuro Oncol 2012 10.1093/neuonc/nos121 22700727 3408254
N.W.C.J. van de Donk P.G. Richardson F. Malavasi CD38 antibodies in multiple myeloma: back to the future Blood 2018 131 1 13 29 29118010 10.1182/blood-2017-06-740944
C. Touzeau P. Moreau Daratumumab for the treatment of multiple myeloma Expert Opin Biol Therapy 2017 17 7 887 893 10.1080/14712598.2017.1322578
L. Moreno C. Perez A. Zabaleta I. Manrique D. Alignani D. Ajona et al. The mechanism of action of the anti-CD38 monoclonal antibody isatuximab in multiple myeloma Clin Cancer Res 2019 25 10 3176 3187 10.1158/1078-0432.CCR-18-1597 30692097
M.S. Raab M. Engelhardt A. Blank H. Goldschmidt H. Agis I.W. Blau et al. MOR202, a novel anti-CD38 monoclonal antibody, in patients with relapsed or refractory multiple myeloma: a first-in-human, multicentre, phase 1–2a trial Lancet Haematol 2020 7 5 e381 e394 32171061 10.1016/S2352-3026(19)30249-2
E.R. Fedyk L. Zhao A. Koch G. Smithson J. Estevam G. Chen et al. Safety, tolerability, pharmacokinetics and pharmacodynamics of the anti-CD38 cytolytic antibody TAK-079 in healthy subjects Br J Clin Pharmacol 2020 86 7 1314 1325 32045493 7319013 10.1111/bcp.14241
G. Zhang C. Guo Y. Wang X. Zhang S. Liu W. Qu et al. FTL004, an anti-CD38 mAb with negligible RBC binding and enhanced pro-apoptotic activity, is a novel candidate for treatments of multiple myeloma and non-Hodgkin lymphoma J Hematol Oncol 2022 15 177 36581954 9798557 10.1186/s13045-022-01395-0
S. Kassem B.K. Diallo N. El-Murr N. Carrié A. Tang A. Fournier et al. SAR442085, a novel anti-CD38 antibody with enhanced antitumor activity against multiple myeloma Blood 2022 139 8 1160 1176 35201323 10.1182/blood.2021012448
H.S. Ugamraj K. Dang L.-H. Ouisse B. Buelow E.N. Chini G. Castello et al. TNB-738, a biparatopic antibody, boosts intracellular NAD+ by inhibiting CD38 ecto-enzyme activity MAbs 2022 14 1 2095949 35867844 9311320 10.1080/19420862.2022.2095949
S. Chehab E.H. Panjic C. Gleason S. Lonial A.K. Nooka Daratumumab and its use in the treatment of relapsed and/or refractory multiple myeloma Future Oncol 2018 14 30 3111 3121 30136602 10.2217/fon-2018-0275
G.A. Ulaner N.B. Sobol J.A. O’Donoghue A.S. Kirov C.C. Riedl R. Min et al. CD38-targeted immuno-PET of multiple myeloma: from xenograft models to first-in-human imaging Radiology 2020 295 3 606 615 32255416 10.1148/radiol.2020192621
R.P. Taylor M.A. Lindorfer Cytotoxic mechanisms of immunotherapy: harnessing complement in the action of anti-tumor monoclonal antibodies Semin Immunol 2016 28 3 309 316 27009480 10.1016/j.smim.2016.03.003
M. de Weers Y.-T. Tai M.S. van der Veer J.M. Bakker T. Vink D.C.H. Jacobs et al. Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors J Immunol 2011 186 3 1840 1848 21187443 10.4049/jimmunol.1003032
J.D. Mellor M.P. Brown H.R. Irving J.R. Zalcberg A. Dobrovic A critical review of the role of Fc gamma receptor polymorphisms in the response to monoclonal antibodies in cancer J Hematol Oncol 2013 6 1 23286345 3549734 10.1186/1756-8722-6-1
M.B. Overdijk S. Verploegen M. Bögels M. Van Egmond J.J. Lammerts Van Bueren T. Mutis et al. Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma MAbs 2015 7 2 311 321 25760767 4622648 10.1080/19420862.2015.1007813
M.B. Overdijk J.H.M. Jansen M. Nederend J.J. Lammerts van Bueren R.W.J. Groen P.W.H.I. Parren et al. The therapeutic CD38 monoclonal antibody daratumumab induces programmed cell death via Fcγ receptor-mediated cross-linking J Immunol 2016 197 3 807 813 27316683 10.4049/jimmunol.1501351
H.M. Lokhorst T. Plesner J.P. Laubach H. Nahi P. Gimsing M. Hansson et al. Targeting CD38 with daratumumab monotherapy in multiple myeloma N Engl J Med 2015 373 13 1207 1219 26308596 10.1056/NEJMoa1506348
S. Lonial B.M. Weiss S.Z. Usmani S. Singhal A. Chari N.J. Bahlis et al. Daratumumab monotherapy in patients with treatment-refractory multiple myeloma (SIRIUS): an open-label, randomised, phase 2 trial Lancet (London, England) 2016 387 10027 1551 1560 26778538 10.1016/S0140-6736(15)01120-4
I.S. Nijhof T. Casneuf J. van Velzen B. van Kessel A.E. Axel K. Syed et al. CD38 expression and complement inhibitors affect response and resistance to daratumumab therapy in myeloma Blood 2016 128 7 959 970 27307294 10.1182/blood-2016-03-703439
C.O. Landgren A. Chari Y.C. Cohen A. Spencer P. Voorhees J.A. Estell et al. Daratumumab monotherapy for patients with intermediate-risk or high-risk smoldering multiple myeloma: a randomized, open-label, multicenter, phase 2 study (CENTAURUS) Leukemia 2020 34 7 1840 1852 32024950 7326703 10.1038/s41375-020-0718-z
W. Tang L. Zhang Y. Zheng L. Pan T. Niu Daratumumab-based immunotherapy vs lenalidomide, bortezomib and dexamethasone in transplant-ineligible newly diagnosed multiple myeloma: a systemic review Front Oncol 2024 10.3389/fonc.2024.1286029 39497714 11479861
S.V. Rajkumar Multiple myeloma: 2024 update on diagnosis, risk-stratification, and management Am J Hematol 2024 99 9 1802 1824 38943315 10.1002/ajh.27422
Z. Liu X. Xu H. Liu X. Zhao C. Yang R. Fu Immune checkpoint inhibitors for multiple myeloma immunotherapy Exp Hematol Oncol 2023 12 1 99 38017516 10685608 10.1186/s40164-023-00456-5
I. Saltarella V. Desantis A. Melaccio A.G. Solimando A. Lamanuzzi R. Ria et al. Mechanisms of resistance to anti-CD38 daratumumab in multiple myeloma Cells 2020 10.3390/cells9010167 31936617 7017193
P.G. Richardson A. Perrot J.F. San-Miguel M. Beksac I. Spicka X. Leleu et al. Updates from ICARIA-MM, a phase 3 study of isatuximab (Isa) plus pomalidomide and low-dose dexamethasone (Pd) versus Pd in relapsed and refractory multiple myeloma (RRMM) J Clin Oncol 2021 39 15_Suppl 8017 10.1200/JCO.2021.39.15_suppl.8017
T. Martin M.-A. Dimopoulos J. Mikhael K. Yong M. Capra T. Facon et al. Isatuximab, carfilzomib, and dexamethasone in patients with relapsed multiple myeloma: updated results from IKEMA, a randomized Phase 3 study Blood Cancer J 2023 13 1 72 10.1038/s41408-023-00797-8 37156782 10166682
J. Deckert M.-C. Wetzel L.M. Bartle A. Skaletskaya V.S. Goldmacher F. Vallée et al. SAR650984, a novel humanized CD38-targeting antibody, demonstrates potent antitumor activity in models of multiple myeloma and other CD38+ hematologic malignancies Clin Cancer Res 2014 20 17 4574 4583 24987056 10.1158/1078-0432.CCR-14-0695
H. Jiang C. Acharya G. An M. Zhong X. Feng L. Wang et al. SAR650984 directly induces multiple myeloma cell death via lysosomal-associated and apoptotic pathways, which is further enhanced by pomalidomide Leukemia 2016 30 2 399 408 26338273 10.1038/leu.2015.240
N.W.C.J. van de Donk S.Z. Usmani CD38 antibodies in multiple myeloma: mechanisms of action and modes of resistance Front Immunol 2018 9 2134 30294326 6158369 10.3389/fimmu.2018.02134
X. Feng L. Zhang C. Acharya G. An K. Wen L. Qiu et al. Targeting CD38 suppresses induction and function of T regulatory cells to mitigate immunosuppression in multiple myeloma Clin Cancer Res 2017 23 15 4290 4300 28249894 5540790 10.1158/1078-0432.CCR-16-3192
I. Jovčevska S. Muyldermans The therapeutic potential of nanobodies BioDrugs 2020 34 1 11 26 31686399 10.1007/s40259-019-00392-z
Z. Farajpour F. Rahbarizadeh B. Kazemi D. Ahmadvand A nanobody directed to a functional epitope on VEGF, as a novel strategy for cancer treatment Biochem Biophys Res Commun 2014 446 1 132 136 24569074 10.1016/j.bbrc.2014.02.069
S. Muyldermans Nanobodies: natural single-domain antibodies Annu Rev Biochem 2013 82 775 797 23495938 10.1146/annurev-biochem-063011-092449
P. Bannas J. Hambach F. Koch-Nolte Nanobodies and nanobody-based human heavy chain antibodies as antitumor therapeutics Front Immunol 2017 8 1603 29213270 5702627 10.3389/fimmu.2017.01603
L. Schriewer K. Schütze K. Petry J. Hambach W. Fumey J. Koenigsdorf et al. Nanobody-based CD38-specific heavy chain antibodies induce killing of multiple myeloma and other hematological malignancies Theranostics 2020 10 6 2645 2658 32194826 7052896 10.7150/thno.38533
P. Bannas F. Koch-Nolte Perspectives for the development of CD38-specific heavy chain antibodies as therapeutics for multiple myeloma Front Immunol 2018 9 2559 30459772 6232533 10.3389/fimmu.2018.02559
N. Baum M. Eggers J. Koenigsdorf S. Menzel J. Hambach T. Staehler et al. Mouse CD38-specific heavy chain antibodies inhibit CD38 GDPR-cyclase activity and mediate cytotoxicity against tumor cells Front Immunol 2021 12 34539634 8446682 10.3389/fimmu.2021.703574
N. Baum R. Fliegert A. Bauche J. Hambach S. Menzel F. Haag et al. Daratumumab and nanobody-based heavy chain antibodies inhibit the ADPR cyclase but not the NAD (+) hydrolase activity of CD38-expressing multiple myeloma cells Cancers (Basel). 2020 10.3390/cancers13010076 33396591 7795599
K. Schütze K. Petry J. Hambach N. Schuster W. Fumey L. Schriewer et al. CD38-specific biparatopic heavy chain antibodies display potent complement-dependent cytotoxicity against multiple myeloma cells Front Immunol 2018 9 2553 30524421 6262402 10.3389/fimmu.2018.02553
J. Hambach W. Fumey T. Stähler A.J. Gebhardt G. Adam K. Weisel et al. Half-life extended nanobody-based CD38-specific bispecific killercell engagers induce killing of multiple myeloma cells Front Immunol 2022 13 35651607 9150782 10.3389/fimmu.2022.838406
T. Li S. Qi M. Unger Y.N. Hou Q.W. Deng J. Liu et al. Immuno-targeting the multifunctional CD38 using nanobody Sci Rep 2016 6 27055 27251573 4890012 10.1038/srep27055
J. Caers E. Duray L. Vrancken G. Marcion V. Bocuzzi K. De Veirman et al. Radiotheranostic agents in hematological malignancies Front Immunol 2022 13 35865548 9294596 10.3389/fimmu.2022.911080
A. Zheleznyak R. Tang K. Duncan B. Manion K. Liang B. Xu et al. Development of new CD38 targeted peptides for cancer imaging Mol Imaging Biol 2024 10.1007/s11307-024-01901-5 38480650 11282151
J.-P. Salvador L. Vilaplana M.-P. Marco Nanobody: outstanding features for diagnostic and therapeutic applications Anal Bioanal Chem 2019 411 9 1703 1713 30734854 10.1007/s00216-019-01633-4
C. Wang Y. Chen Y.N. Hou Q. Liu D. Zhang H. Zhao et al. ImmunoPET imaging of multiple myeloma with [68Ga]Ga-NOTA-Nb1053 Eur J Nucl Med Mol Imaging 2021 48 9 2749 2760 33543326 10.1007/s00259-021-05218-1
G. Crișan N.S. Moldovean-Cioroianu D.-G. Timaru G. Andrieș C. Căinap V. Chiș Radiopharmaceuticals for PET and SPECT imaging: a literature review over the last decade Int J Mol Sci 2022 10.3390/ijms23095023 36142264 9499482
A. Ghai D. Maji N. Cho C. Chanswangphuwana M. Rettig D. Shen et al. Preclinical development of CD38-targeted [(89)Zr]Zr-DFO-daratumumab for imaging multiple myeloma J Nucl Med 2018 59 2 216 222 29025987 5807532 10.2967/jnumed.117.196063
E. Caserta J. Chea M. Minnix E.K. Poku D. Viola S. Vonderfecht et al. Copper 64-labeled daratumumab as a PET/CT imaging tracer for multiple myeloma Blood 2018 131 7 741 745 29301755 5814935 10.1182/blood-2017-09-807263
A. Krishnan V. Adhikarla E.K. Poku J. Palmer A. Chaudhry V.E. Biglang-Awa et al. Identifying CD38+ cells in patients with multiple myeloma: first-in-human imaging using copper-64-labeled daratumumab Blood Adv 2020 4 20 5194 5202 33095874 7594407 10.1182/bloodadvances.2020002603
E. Zamagni F. Patriarca C. Nanni B. Zannetti E. Englaro A. Pezzi et al. Prognostic relevance of 18-F FDG PET/CT in newly diagnosed multiple myeloma patients treated with up-front autologous transplantation Blood 2011 118 23 5989 5995 21900189 10.1182/blood-2011-06-361386
D.E. Steinmeyer E.L. McCormick The art of antibody process development Drug Discov Today 2008 13 13 613 618 18598918 10.1016/j.drudis.2008.04.005
T. Suzuki A. Ishii-Watabe M. Tada T. Kobayashi T. Kanayasu-Toyoda T. Kawanishi et al. Importance of neonatal FcR in regulating the serum half-life of therapeutic proteins containing the Fc domain of human IgG1: a comparative study of the affinity of monoclonal antibodies and Fc-fusion proteins to human neonatal FcR J Immunol 2010 184 4 1968 1976 20083659 10.4049/jimmunol.0903296
R. Chakravarty S. Goel W. Cai Nanobody: the “magic bullet” for molecular imaging? Theranostics. 2014 4 386 398 24578722 3936291 10.7150/thno.8006
E. Duray M. Lejeune F. Baron Y. Beguin N. Devoogdt A. Krasniqi et al. A non-internalised CD38-binding radiolabelled single-domain antibody fragment to monitor and treat multiple myeloma J Hematol Oncol 2021 14 1 183 34727950 8561907 10.1186/s13045-021-01171-6
W. Wei D. Zhang C. Wang Y. Zhang S. An Y. Chen et al. Annotating CD38 expression in multiple myeloma with [(18)F]F-Nb1053 Mol Pharm 2022 19 10 3502 3510 34846151 10.1021/acs.molpharmaceut.1c00733
L. Shi B. Chen T. Liu L. Li B. Hu C. Li et al. (99m)Tc-CD3813: a nanobody-based single photon emission computed tomography radiotracer with clinical potential for myeloma imaging and evaluation of CD38 expression Mol Pharm 2022 19 7 2583 2594 35696536 10.1021/acs.molpharmaceut.2c00279
X. Li Y. Wang Q. Yang L. Song L. Kang Z. Hu et al. Microarray-based CD38 peptide probe screening for multiple myeloma imaging Mol Pharm 2024 21 1 245 254 38096423 10.1021/acs.molpharmaceut.3c00808
M. Akbarian A. Khani S. Eghbalpour V.N. Uversky Bioactive peptides: synthesis, sources, applications, and proposed mechanisms of action Int J Mol Sci 2022 10.3390/ijms23031445 35163367 8836030
J.-S. Choi S.H. Joo Recent trends in cyclic peptides as therapeutic agents and biochemical tools Biomol Ther (Seoul) 2020 28 1 18 24 31597413 10.4062/biomolther.2019.082
A.K. Sharma K. Gupta A. Mishra G. Lofland I. Marsh D. Kumar et al. CD38-specific Gallium-68 labeled peptide radiotracer enables pharmacodynamic monitoring in multiple myeloma with PET Adv Sci 2024 11 16 10.1002/advs.202308617
Y. Woo S. Chaurasiya M. O’Leary E. Han Y. Fong Fluorescent imaging for cancer therapy and cancer gene therapy Mol Therapy Oncolytics. 2021 10.1016/j.omto.2021.06.007
H. Kang M.W. Kang S. Kashiwagi H.S. Choi NIR fluorescence imaging and treatment for cancer immunotherapy J ImmunoTherapy Cancer. 2022 10.1136/jitc-2022-004936
N. Cho S. Ko M. Shokeen Preclinical development of near-infrared-labeled CD38-targeted daratumumab for optical imaging of CD38 in multiple myeloma Mol Imaging Biol 2021 10.1007/s11307-020-01542-4 32964391
N. Cho S. Ko M. Shokeen Tissue biodistribution and tumor targeting of near-infrared labelled anti-CD38 antibody-drug conjugate in preclinical multiple myeloma Oncotarget 2021 10.18632/oncotarget.28074 34611478 8487729
W. Fumey J. Koenigsdorf V. Kunick S. Menzel K. Schütze M. Unger et al. Nanobodies effectively modulate the enzymatic activity of CD38 and allow specific imaging of CD38+ tumors in mouse models in vivo Sci Rep 2017 10.1038/s41598-017-14112-6 29084989 5662768
L.J. Pape J. Hambach A.J. Gebhardt B. Rissiek T. Stähler N. Tode et al. CD38-specific nanobodies allow in vivo imaging of multiple myeloma under daratumumab therapy Front Immunol 2022 13 1010270 36389758 9647632 10.3389/fimmu.2022.1010270
Fang C, Li T, Li Y, Xu GJ, Deng QW, Chen YJ, et al. Correction: CD38 produces nicotinic acid adenine dinucleotide phosphate in the lysosome. (J Biol Chem. 2018;293:8151–8160. https://doi.org/10.1074/jbc.RA118.002113). J Biol Chem. 2019; 294.
A.H. ElMaraashly J. Tario J. Hillengass Y.-W. Qian Camelid-derived CD38 antibody successfully circumvents epitope blockade by the therapeutic anti-CD38 antibody daratumumab Am J Clin Pathol 2023 160 5 524 532 37527544 10.1093/ajcp/aqad086
G. Borrego-Soto R. Ortiz-López A. Rojas-Martínez Ionizing radiation-induced DNA injury and damage detection in patients with breast cancer Genet Mol Biol 2015 38 4 420 432 26692152 4763322 10.1590/S1415-475738420150019
E. Daguenet S. Louati A.-S. Wozny N. Vial M. Gras J.-B. Guy et al. Radiation-induced bystander and abscopal effects: important lessons from preclinical models Br J Cancer 2020 123 3 339 348 10.1038/s41416-020-0942-3 32581341 7403362
S. Hu C. Shao Research progress of radiation induced bystander and abscopal effects in normal tissue Radiat Med Prot. 2020 1 2 69 74 10.1016/j.radmp.2020.04.001
M. D’Huyvetter C. Xavier V. Caveliers T. Lahoutte S. Muyldermans N. Devoogdt Radiolabeled nanobodies as theranostic tools in targeted radionuclide therapy of cancer Expert Opin Drug Deliv 2014 11 12 1939 1954 25035968 4245996 10.1517/17425247.2014.941803
J.L. Hatcher-Lamarre V.A. Sanders M. Rahman C.S. Cutler L.C. Francesconi Alpha emitting nuclides for targeted therapy Nucl Med Biol 2021 92 228 240 33558017 10.1016/j.nucmedbio.2020.08.004
D.J. Green N.N. Orgun J.C. Jones M.D. Hylarides J.M. Pagel D.K. Hamlin et al. A preclinical model of CD38-pretargeted radioimmunotherapy for plasma cell malignancies Cancer Res 2014 74 4 1179 1189 24371230 10.1158/0008-5472.CAN-13-1589
D.J. Green S. O’Steen Y. Lin M.L. Comstock A.L. Kenoyer D.K. Hamlin et al. CD38-bispecific antibody pretargeted radioimmunotherapy for multiple myeloma and other B-cell malignancies Blood 2018 131 6 611 620 29158362 5805491 10.1182/blood-2017-09-807610
L. Kang D. Jiang E. Ehlerding T. Barnhart C. Ferreira R. Wang et al. Safety and dosimetry evaluation of radioimmunotherapy using 177Lu-labeled antibodies in lymphoma J Nucl Med 2019 60 supplement 1 1004
W. Dawicki K.J.H. Allen R. Jiao M.E. Malo M. Helal M.S. Berger et al. Daratumumab-225Actinium conjugate demonstrates greatly enhanced antitumor activity against experimental multiple myeloma tumors Oncoimmunology. 2019 8 8 1607673 31413916 6682347 10.1080/2162402X.2019.1607673
I. Quelven J. Monteil M. Sage A. Saidi J. Mounier A. Bayout et al. (212)Pb α-radioimmunotherapy targeting CD38 in multiple myeloma: a preclinical study J Nucl Med 2020 61 7 1058 1065 31862796 7383085 10.2967/jnumed.119.239491
M. Minnix V. Adhikarla E. Caserta E. Poku R. Rockne J.E. Shively et al. Comparison of CD38-targeted α- versus β-radionuclide therapy of disseminated multiple myeloma in an animal model J Nucl Med 2021 62 6 795 801 33127621 8729861 10.2967/jnumed.120.251983
S. O’Steen M.L. Comstock J.J. Orozco D.K. Hamlin D.S. Wilbur J.C. Jones et al. The α-emitter astatine-211 targeted to CD38 can eradicate multiple myeloma in a disseminated disease model Blood 2019 134 15 1247 1256 31395601 6788008 10.1182/blood.2019001250