Paper published in a book (Scientific congresses and symposiums)
Characterizing the performance of the SPHERE exoplanet imager at the Very Large Telescope using deep learning
Bissot, Ludo; Milli, J.; Choquet, E. et al.
2024In Jackson, Kathryn J; Schmidt, Dirk; Vernet, Elise (Eds.) Adaptive Optics Systems IX
Editorial reviewed
 

Files


Full Text
Bissot24_SPIE_SPHERE_deep_learning.pdf
Author postprint (2.1 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
SPHERE; High Contrast Imaging; Machine Learning; Neural Network; Exoplanet; Very Large Telescope
Abstract :
[en] The Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument is a high-contrast imager designed for detecting exoplanets. It has been operational at the Very Large Telescope since 2014. To make the most of the extensive data generated by SPHERE, improve future observation planning, and advance instrument development, it is crucial to understand how its performance is affected by various environmental factors. The primary goal of this project is to use machine learning and deep learning techniques to predict detection limits, measured by the contrast between exoplanets and their host stars. Two types of models will be developed : random forest models and Multi-Layer Perceptron (MLP) models. The aim is to better understand the relationship between input parameters and detection limits, providing deeper insights into this field. Additionally, a neural network will be used to capture uncertainties in the input features, thus providing confidence intervals for its predictions.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Bissot, Ludo ;  Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR)
Milli, J.;  Institute de Planetologie et d'Astrophysique de Grenoble
Choquet, E.;  Aix-Marseille Universite, Laboratoire d'Astrophysique
Cantalloube, F.;  Institute de Planetologie et d'Astrophysique de Grenoble
Delorme, P.;  Institute de Planetologie et d'Astrophysique de Grenoble
Mouillet, D.;  Institute de Planetologie et d'Astrophysique de Grenoble
Louppe, Gilles  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Big Data
Absil, Olivier  ;  Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO)
Language :
English
Title :
Characterizing the performance of the SPHERE exoplanet imager at the Very Large Telescope using deep learning
Publication date :
27 August 2024
Event name :
SPIE Astronomical Telescopes + Instrumentation 2024
Event organizer :
SPIE
Event place :
Yokohama, Japan
Event date :
16-21 June 2024
Event number :
13097
Audience :
International
Main work title :
Adaptive Optics Systems IX
Author, co-author :
Jackson, Kathryn J
Schmidt, Dirk
Vernet, Elise
Publisher :
SPIE, Bellingham, United States - Washington
Collection name :
Proceedings of SPIE 13097
Collection ISSN :
0277-786X
Pages :
130976I
Peer reviewed :
Editorial reviewed
European Projects :
FP7 - 337569 - VORTEX - Taking extrasolar planet imaging to a new level with vector vortex coronagraphy
H2020 - 819155 - EPIC - Earth-like Planet Imaging with Cognitive computing
Funders :
ERC - European Research Council
ULiège. ARC - Université de Liège. Actions de Recherche Concertées
European Union
Commentary :
Copyright 2024 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/13097/3020236/Characterizing-the-performance-of-the-SPHERE-exoplanet-imager-at-the/10.1117/12.3020236.short
Available on ORBi :
since 02 January 2025

Statistics


Number of views
5 (3 by ULiège)
Number of downloads
2 (1 by ULiège)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenCitations
 
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBi