SPHERE; High Contrast Imaging; Machine Learning; Neural Network; Exoplanet; Very Large Telescope
Abstract :
[en] The Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument is a high-contrast imager designed for detecting exoplanets. It has been operational at the Very Large Telescope since 2014. To make the most of the extensive data generated by SPHERE, improve future observation planning, and advance instrument development, it is crucial to understand how its performance is affected by various environmental factors. The primary goal of this project is to use machine learning and deep learning techniques to predict detection limits, measured by the contrast between exoplanets and their host stars. Two types of models will be developed : random forest models and Multi-Layer Perceptron (MLP) models. The aim is to better understand the relationship between input parameters and detection limits, providing deeper insights into this field. Additionally, a neural network will be used to capture uncertainties in the input features, thus providing confidence intervals for its predictions.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Bissot, Ludo ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR)
Milli, J.; Institute de Planetologie et d'Astrophysique de Grenoble
FP7 - 337569 - VORTEX - Taking extrasolar planet imaging to a new level with vector vortex coronagraphy H2020 - 819155 - EPIC - Earth-like Planet Imaging with Cognitive computing
Funders :
ERC - European Research Council ULiège. ARC - Université de Liège. Actions de Recherche Concertées European Union
Commentary :
Copyright 2024 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/13097/3020236/Characterizing-the-performance-of-the-SPHERE-exoplanet-imager-at-the/10.1117/12.3020236.short
Beuzit, J. L., Vigan, A., Mouillet, D., Dohlen, K., Gratton, R., Boccaletti, A., Sauvage, J. F., Schmid, H. M., Langlois, M., Petit, C., Baruffolo, A., Feldt, M., Milli, J., Wahhaj, Z., Abe, L., Anselmi, U., Antichi, J., Barette, R., Baudrand, J., Baudoz, P., Bazzon, A., Bernardi, P., Blanchard, P., Brast, R., Bruno, P., Buey, T., Carbillet, M., Carle, M., Cascone, E., Chapron, F., Charton, J., Chauvin, G., Claudi, R., Costille, A., De Caprio, V., de Boer, J., Delboulbé, A., Desidera, S., Dominik, C., Downing, M., Dupuis, O., Fabron, C., Fantinel, D., Farisato, G., Feautrier, P., Fedrigo, E., Fusco, T., Gigan, P., Ginski, C., Girard, J., Giro, E., Gisler, D., Gluck, L., Gry, C., Henning, T., Hubin, N., Hugot, E., Incorvaia, S., Jaquet, M., Kasper, M., Lagadec, E., Lagrange, A. M., Le Coroller, H., Le Mignant, D., Le Ruyet, B., Lessio, G., Lizon, J. L., Llored, M., Lundin, L., Madec, F., Magnard, Y., Marteaud, M., Martinez, P., Maurel, D., Ménard, F., Mesa, D., Möller-Nilsson, O., Moulin, T., Moutou, C., Origné, A., Parisot, J., Pavlov, A., Perret, D., Pragt, J., Puget, P., Rabou, P., Ramos, J., Reess, J. M., Rigal, F., Rochat, S., Roelfsema, R., Rousset, G., Roux, A., Saisse, M., Salasnich, B., Santambrogio, E., Scuderi, S., Segransan, D., Sevin, A., Siebenmorgen, R., Soenke, C., Stadler, E., Suarez, M., Tiphène, D., Turatto, M., Udry, S., Vakili, F., Waters, L. B. F. M., Weber, L., Wildi, F., Zins, G., and Zurlo, A., “SPHERE: the exoplanet imager for the Very Large Telescope,” 631, A155 (Nov. 2019).
Marois, C., Lafrenière, D., Doyon, R., Macintosh, B., and Nadeau, D., “Angular Differential Imaging: A Powerful High-Contrast Imaging Technique,” 641, 556–564 (Apr. 2006).
Xuan, W. J., Mawet, D., Ngo, H., Ruane, G., Bailey, V. P., Choquet, É., Absil, O., Alvarez, C., Bryan, M., Cook, T., et al., “Characterizing the performance of the nirc2 vortex coronagraph at wm keck observatory,” The Astronomical Journal 156(4), 156 (2018).
Krogh, A., “What are artificial neural networks?,” Nature biotechnology 26(2), 195–197 (2008).
Rosenblatt, F., [The perceptron, a perceiving and recognizing automaton Project Para], Cornell Aeronautical Laboratory (1957).
Louppe, G., Wehenkel, L., Sutera, A., and Geurts, P., “Understanding variable importances in forests of randomized trees,” Advances in neural information processing systems 26 (2013).
Dahlqvist, C.-H., Milli, J., Absil, O., Cantalloube, F., Matra, L., Choquet, E., Del Burgo, C., Marshall, J., Wyatt, M., and Ertel, S., “The shardds survey: limits on planet occurrence rates based on point sources analysis via the auto-rsm framework,” Astronomy & Astrophysics 666, A33 (2022).
Delorme, P., Meunier, N., Albert, D., Lagadec, E., Coroller, H. L., Galicher, R., Mouillet, D., Boccaletti, A., Mesa, D., Meunier, J.-C., et al., “The sphere data center: a reference for high contrast imaging processing,” arXiv preprint arXiv:1712.06948 (2017).
Galicher, R., Boccaletti, A., Mesa, D., Delorme, P., Gratton, R., Langlois, M., Lagrange, A.-M., Maire, A.L., Le Coroller, H., Chauvin, G., et al., “Astrometric and photometric accuracies in high contrast imaging: The sphere speckle calibration tool (specal),” Astronomy & Astrophysics 615, A92 (2018).
Maire, A.-L., Langlois, M., Dohlen, K., Lagrange, A.-M., Gratton, R., Chauvin, G., Desidera, S., Girard, J. H., Milli, J., Vigan, A., et al., “Sphere irdis and ifs astrometric strategy and calibration,” in [Ground-based and Airborne Instrumentation for Astronomy VI], 9908, 975–986, SPIE (2016).