[en] Farmers must continuously improve their livestock production systems to remain competitive in the growing dairy market. Precision livestock farming technologies provide individualized monitoring of animals on commercial farms, optimizing livestock production. Continuous acoustic monitoring is a widely accepted sensing technique used to estimate the daily rumination and grazing time budget of free-ranging cattle. However, typical environmental and natural noises on pastures noticeably affect the performance limiting the practical application of current acoustic methods. In this study, we present the operating principle and generalization capability of an acoustic method called Noise-Robust Foraging Activity Recognizer (NRFAR). The proposed method determines foraging activity bouts by analyzing fixed-length segments of identified jaw movement events produced during grazing and rumination. The additive noise robustness of the NRFAR was evaluated for several signal-to-noise ratios using stationary Gaussian white noise and four different nonstationary natural noise sources. In noiseless conditions, NRFAR reached an average balanced accuracy of 86.4%, outperforming two previous acoustic methods by more than 7.5%. Furthermore, NRFAR performed better than previous acoustic methods in 77 of 80 evaluated noisy scenarios (53 cases with p<0.05). NRFAR has been shown to be effective in harsh free-ranging environments and could be used as a reliable solution to improve pasture management and monitor the health and welfare of dairy cows. The instrumentation and computational algorithms presented in this publication are protected by a pending patent application: AR P20220100910. Web demo available at: https://sinc.unl.edu.ar/web-demo/nrfar.
Disciplines :
Animal production & animal husbandry Computer science Agriculture & agronomy
Author, co-author :
Martinez-Rau, Luciano S. ; Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional, sinc(i), FICH-UNL/CONICET, Argentina ; Department of Computer and Electrical Engineering, Mid Sweden University, Sundsvall, Sweden
Chelotti, José ; Université de Liège - ULiège > Département GxABT > Animal Sciences (AS) ; Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional, sinc(i), FICH-UNL/CONICET, Argentina
Ferrero, Mariano ; Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional, sinc(i), FICH-UNL/CONICET, Argentina
Galli, Julio R. ; Instituto de Investigaciones en Ciencias Agrarias de Rosario, IICAR, UNR-CONICET, Argentina ; Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Argentina
Utsumi, Santiago A. ; W.K. Kellogg Biological Station and Department of Animal Science, Michigan State University, United States ; Department of Animal and Range Science, New Mexico State University, United States
Planisich, Alejandra M. ; Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Argentina
Rufiner, H. Leonardo ; Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional, sinc(i), FICH-UNL/CONICET, Argentina ; Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Argentina
Giovanini, Leonardo L.; Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional, sinc(i), FICH-UNL/CONICET, Argentina
Language :
English
Title :
A noise-robust acoustic method for recognizing foraging activities of grazing cattle
Knowledge Foundation UNR - National University of Rosario NIFA - National Institute of Food and Agriculture UNL - Universidad Nacional del Litoral ASaCTeI - Agencia Santafesina de Ciencia, Tecnología e Innovación CONICET - National Scientific and Technical Research Council
Funding text :
The authors wish to express their gratitude to the staff of the KBS Robotic Dairy Farm, who participated in the investigation. Additionally, we acknowledge the direct support from AgBioResearch-MSU. The authors would like to thank Constanza Quaglia (technical staff, CONICET) and J. Tom\u00E1s Molas G. (technical staff, UNER-UNL) for their technical support in achieving the web demo. This work was supported by the Universidad Nacional del Litoral [CAID 50620190100080LI and 50620190100151LI ]; Universidad Nacional de Rosario [AGR216, 2013 - AGR266, 2016 - and 80020180300053UR , 2019]; Agencia Santafesina de Ciencia, Tecnolog\u00EDa e Innovaci\u00F3n [ IO-2018\u201300082 ], CONICET [PUE sinc(I), 2017]; and USDA-NIFA [ MICL0222 and MICL0406 ].The authors wish to express their gratitude to the staff of the KBS Robotic Dairy Farm, who participated in the investigation. Additionally, we acknowledge the direct support from AgBioResearch-MSU. The authors would like to thank Constanza Quaglia (technical staff, CONICET) and J. Tom\u00E1s Molas G. (technical staff, UNER-UNL) for their technical support in achieving the web demo. This work was supported by the Universidad Nacional del Litoral, Argentina [CAID 50620190100080LI and 50620190100151LI]; Universidad Nacional de Rosario, Argentina [AGR216, 2013 - AGR266, 2016 - and 80020180300053UR, 2019]; Agencia Santafesina de Ciencia, Tecnolog\u00EDa e Innovaci\u00F3n [IO-2018\u201300082], CONICET, Argentina [PUE sinc(I), 2017]; USDA-NIFA [MICL0222 and MICL0406] and Knowledge Foundation, Sweden [CAID NIIT 20180170. The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Utsumi Santiago reports financial support was provided by National Institute of Food and Agriculture. Giovanini, Leonardo Luis has patent #AR P20220100910 pending to Assignee.
Abeni, F., Galli, A., Monitoring cow activity and rumination time for an early detection of heat stress in dairy cow. Int. J. Biometeorol. 61:3 (2017), 417–425.
Allrich, R.D., Estrous behavior and detection in cattle. Vet. Clin. North Am.: Food Animal Pract. 9:2 (1993), 249–262.
Andriamandroso, A., Bindelle, J., Mercatoris, B., Lebeau, F., A review on the use of sensors to monitor cattle jaw movements and behavior when grazing. Biotechnol. Agronomie Soc. Environ., 20, 2016.
Aquilani, C., Confessore, A., Bozzi, R., Sirtori, F., Pugliese, C., Review: Precision livestock farming technologies in pasture-based livestock systems. Animal, 16(1), 2022, 100429.
Arablouei, R., Wang, Z., Bishop-Hurley, G.J., Liu, J., Multimodal sensor data fusion for in-situ classification of animal behavior using accelerometry and GNSS data. Smart Agric. Technol., 4, 2023, 100163.
Balasso, P., Marchesini, G., Ughelini, N., Serva, L., Andrighetto, I., Machine learning to detect posture and behavior in dairy cows: Information from an accelerometer on the animal's left flank. Animals, 11(10), 2021.
Banhazi, T.M., Lehr, H., Black, J., Crabtree, H., Schofield, P., Tscharke, M., Berckmans, D., Precision livestock farming: an international review of scientific and commercial aspects. Int. J. Agric. Biol. Eng. 5:3 (2012), 1–9.
Beauchemin, K.A., Ingestion and mastication of feed by dairy cattle. Vet. Clin. North Am.: Food Animal Pract. 7:2 (1991), 439–463.
Beauchemin, K., Invited review: Current perspectives on eating and rumination activity in dairy cows. J. Dairy Sci. 101:6 (2018), 4762–4784.
Benos, L., Tagarakis, A.C., Dolias, G., Berruto, R., Kateris, D., Bochtis, D., Machine learning in agriculture: A comprehensive updated review. Sensors, 21(11), 2021.
Bosi, M., Brandenburg, K., Quackenbush, S., Fielder, L., Akagiri, K., Fuchs, H., Dietz, M., ISO/IEC MPEG-2 advanced audio coding. J. Audio Eng. Soc. 45:10 (1997), 789–814.
Brandenburg, K., Stoll, G., ISO/MPEG-1 audio: A generic standard for coding of high-quality digital audio. J. Audio Eng. Soc. 42:10 (1994), 780–792.
Bristow, D.J., Holmes, D.S., Cortisol levels and anxiety-related behaviors in cattle. Physiol. Behav. 90:4 (2007), 626–628.
Cabezas, J., Yubero, R., Visitación, B., Navarro-García, J., Algar, M.J., Cano, E.L., Ortega, F., Analysis of accelerometer and GPS data for cattle behaviour identification and anomalous events detection. Entropy, 24(3), 2022.
Chapa, J.M., Maschat, K., Iwersen, M., Baumgartner, J., Drillich, M., Accelerometer systems as tools for health and welfare assessment in cattle and pigs – a review. Behav. Process., 181, 2020, 104262.
Chelotti, J.O., Vanrell, S.R., Galli, J.R., Giovanini, L.L., Rufiner, H.L., A pattern recognition approach for detecting and classifying jaw movements in grazing cattle. Comput. Electron. Agric. 145 (2018), 83–91.
Chelotti, J.O., Vanrell, S.R., Martinez-Rau, L.S., Galli, J.R., Utsumi, S.A., Planisich, A.M., Almirón, S.A., Milone, D.H., Giovanini, L.L., Rufiner, H.L., Using segment-based features of jaw movements to recognise foraging activities in grazing cattle. Biosyst. Eng. 229 (2023), 69–84.
Chelotti, J.O., Vanrell, S.R., Rau, L.S.M., Galli, J.R., Planisich, A.M., Utsumi, S.A., Milone, D.H., Giovanini, L.L., Rufiner, H.L., An online method for estimating grazing and rumination bouts using acoustic signals in grazing cattle. Comput. Electron. Agric., 173, 2020, 105443.
Connor, E.E., Invited review: Improving feed efficiency in dairy production: challenges and possibilities. Animal 9:3 (2015), 395–408.
Dolecheck, K.A., Silvia, W.J., Heersche, G. Jr., Chang, Y.M., Ray, D., Stone, A., Wadsworth, B., Bewley, J., Behavioral and physiological changes around estrus events identified using multiple automated monitoring technologies. J. Dairy Sci. 98:12 (2015), 8723–8731.
Ferrero, M., Vignolo, L.D., Vanrell, S.R., Martinez-Rau, L.S., Chelotti, J.O., Galli, J.R., Giovanini, L.L., Rufiner, H.L., A full end-to-end deep approach for detecting and classifying jaw movements from acoustic signals in grazing cattle. Eng. Appl. Artif. Intell., 121, 2023, 106016.
Fonseca, E., Favory, X., Pons, J., Font, F., Serra, X., FSD50k: An open dataset of human-labeled sound events. IEEE/ACM Trans. Audio Speech Lang. Process. 30 (2022), 829–852.
Galli, J., Cangiano, C., Pece, M., Larripa, M., Milone, D., Utsumi, S., Laca, E., Monitoring and assessment of ingestive chewing sounds for prediction of herbage intake rate in grazing cattle. Animal 12:5 (2018), 973–982.
Galli, J.R., Milone, D.H., Cangiano, C.A., Martínez, C.E., Laca, E.A., Chelotti, J.O., Rufiner, H.L., Discriminative power of acoustic features for jaw movement classification in cattle and sheep. Bioacoustics 29:5 (2020), 602–616.
Garcia, R., Aguilar, J., Toro, M., Pinto, A., Rodriguez, P., A systematic literature review on the use of machine learning in precision livestock farming. Comput. Electron. Agric., 179, 2020, 105826.
He, H., Bai, Y., Garcia, E.A., Li, S., 2008. ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence). Hong Kong, pp. 1322–1328.
Kamminga, J.W., Le, D.V., Meijers, J.P., Bisby, H., Meratnia, N., Havinga, P.J., Robust sensor-orientation-independent feature selection for animal activity recognition on collar tags. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 2(1), 2018.
Kilgour, R.J., In pursuit of “normal”: A review of the behaviour of cattle at pasture. Appl. Animal Behav. Sci. 138:1 (2012), 1–11.
Kovács, L., Kézér, F., Ruff, F., Szenci, O., Rumination time and reticuloruminal temperature as possible predictors of dystocia in dairy cows. J. Dairy Sci. 100:2 (2017), 1568–1579.
Laca, E.A., Ungar, E.D., Seligman, N.G., Ramey, M.R., Demment, M.W., An integrated methodology for studying short-term grazing behaviour of cattle. Grass Forage Sci. 47:1 (1992), 81–90.
Li, C., Tokgoz, K.K., Fukawa, M., Bartels, J., Ohashi, T., Takeda, K.-i., Ito, H., Data augmentation for inertial sensor data in CNNs for cattle behavior classification. IEEE Sens. Lett. 5:11 (2021), 1–4.
Li, G., Xiong, Y., Du, Q., Shi, Z., Gates, R.S., Classifying ingestive behavior of dairy cows via automatic sound recognition. Sensors, 21(15), 2021, 5231.
Liakos, K.G., Busato, P., Moshou, D., Pearson, S., Bochtis, D., Machine learning in agriculture: A review. Sensors, 18(8), 2018, 2674.
Lovarelli, D., Bacenetti, J., Guarino, M., A review on dairy cattle farming: Is precision livestock farming the compromise for an environmental, economic and social sustainable production?. J. Clean. Prod., 262, 2020, 121409.
Lovarelli, D., Brandolese, C., Leliveld, L., Finzi, A., Riva, E., Grotto, M., Provolo, G., Development of a new wearable 3D sensor node and innovative open classification system for dairy cows’ behavior. Animals, 12(11), 2022, 1447.
Manor, E., Greenberg, S., Custom hardware inference accelerator for TensorFlow lite for microcontrollers. IEEE Access 10 (2022), 73484–73493.
Martinez-Rau, L.S., Adı n, V., Giovanini, L.L., Oelmann, B., Bader, S., 2023a. Real-Time Acoustic Monitoring of Foraging Behavior of Grazing Cattle Using Low-Power Embedded Devices. In: 2023 IEEE Sensors Applications Symposium. SAS, pp. 01–06.
Martinez-Rau, L.S., Chelotti, J.O., Ferrero, M., Galli, J.R., Utsumi, S., Planisich, A., Vignolo, L., Giovanini, L., Rufiner, H.L., Daylong acoustic recordings of grazing and rumination activities in dairy cows. Sci. Data, 10, 2023, 782.
Martinez-Rau, L.S., Chelotti, J.O., Vanrell, S.R., Galli, J.R., Utsumi, S.A., Planisich, A.M., Rufiner, H.L., Giovanini, L.L., A robust computational approach for jaw movement detection and classification in grazing cattle using acoustic signals. Comput. Electron. Agric., 192, 2022, 106569.
Martinez-Rau, L.S., Chelotti, J.O., Vanrell, S.R., Giovanini, L.L., 2020. Developments on real-time monitoring of grazing cattle feeding behavior using sound. In: 2020 IEEE International Conference on Industrial Technology. ICIT, Buenos Aires, Argentina, pp. 771–776.
Martinez-Rau, L.S., Weißbrich, M., Payá-Vayá, G., A 4μW low-power audio processor system for real-time jaw movements recognition in grazing cattle. J. Signal Process. Syst. 95:4 (2023), 407–424.
Michie, C., Andonovic, I., Davison, C., Hamilton, A., Tachtatzis, C., Jonsson, N., Duthie, C.-A., Bowen, J., Gilroy, M., The internet of things enhancing animal welfare and farm operational efficiency. J. Dairy Res. 87:S1 (2020), 20–27.
Milone, D.H., Galli, J.R., Cangiano, C.A., Rufiner, H.L., Laca, E.A., Automatic recognition of ingestive sounds of cattle based on hidden Markov models. Comput. Electron. Agric. 87 (2012), 51–55.
Mosley, L., A Balanced Approach to the Multi-Class Imbalance Problem. (Ph.D. thesis), 2013, Industrial and Manufacturing Systems Engineering, Iowa State University, Ames.
Osei-Amponsah, R., Dunshea, F.R., Leury, B.J., Cheng, L., Cullen, B., Joy, A., Abhijith, A., Zhang, M.H., Chauhan, S.S., Heat stress impacts on lactating cows grazing Australian summer pastures on an automatic robotic dairy. Animals, 10(5), 2020, 869.
Özmen, G., Ozkan, İ.A., Seref, I., Tademir, S., Mustafa, c., Arslan, E., Sound analysis to recognize cattle vocalization in a semi-open barn. Gazi J. Eng. Sci. 8:1 (2022), 158–167.
Pahl, C., Hartung, E., Grothmann, A., Mahlkow-Nerge, K., Haeussermann, A., Rumination activity of dairy cows in the 24 hours before and after calving. J. Dairy Sci. 97:11 (2014), 6935–6941.
Pahl, C., Hartung, E., Mahlkow-Nerge, K., Haeussermann, A., Feeding characteristics and rumination time of dairy cows around estrus. J. Dairy Sci. 98:1 (2015), 148–154.
Paudyal, S., Maunsell, F., Richeson, J., Risco, C., Donovan, D., Pinedo, P., Rumination time and monitoring of health disorders during early lactation. Animal 12:7 (2018), 1484–1492.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12:85 (2011), 2825–2830.
Piczak, K.J., 2015. ESC: Dataset for Environmental Sound Classification. In: Proceedings of the 23rd ACM International Conference on Multimedia. Brisbane, Queensland, Australia, ISBN: 9781450334594, pp. 1015–1018.
Rehman, A.U., Abbasi, A.Z., Islam, N., Shaikh, Z.A., A review of wireless sensors and networks’ applications in agriculture. Comput. Stand. Interfaces 36:2 (2014), 263–270.
Reith, S., Hoy, S., Relationship between daily rumination time and estrus of dairy cows. J. Dairy Sci. 95:11 (2012), 6416–6420.
Riaboff, L., Shalloo, L., Smeaton, A., Couvreur, S., Madouasse, A., Keane, M., Predicting livestock behaviour using accelerometers: A systematic review of processing techniques for ruminant behaviour prediction from raw accelerometer data. Comput. Electron. Agric., 192, 2022, 106610.
Rook, A., Huckle, C., Activity bout criteria for grazing dairy cows. Appl. Animal Behav. Sci. 54:2 (1997), 89–96.
Sáez, J.A., Luengo, J., Herrera, F., Evaluating the classifier behavior with noisy data considering performance and robustness: The equalized loss of accuracy measure. Neurocomputing 176 (2016), 26–35.
Schirmann, K., von Keyserlingk, M., Weary, D., Veira, D., Heuwieser, W., Technical note: Validation of a system for monitoring rumination in dairy cows. J. Dairy Sci. 92:12 (2009), 6052–6055.
Shen, W., Cheng, F., Zhang, Y., Wei, X., Fu, Q., Zhang, Y., Automatic recognition of ingestive-related behaviors of dairy cows based on triaxial acceleration. Inf. Process. Agric. 7:3 (2020), 427–443.
Skowronski, M.D., Harris, J.G., Exploiting independent filter bandwidth of human factor cepstral coefficients in automatic speech recognition. J. Acoust. Soc. Am. 116:3 (2004), 1774–1780.
Steinmetz, M., von Soosten, D., Hummel, J., Meyer, U., Dänicke, S., Validation of the RumiWatch converter V0.7.4.5 classification accuracy for the automatic monitoring of behavioural characteristics in dairy cows. Arch. Animal Nutr. 74:2 (2020), 164–172.
Stygar, A.H., Gómez, Y., Berteselli, G.V., Dalla Costa, E., Canali, E., Niemi, J.K., Llonch, P., Pastell, M., A systematic review on commercially available and validated sensor technologies for welfare assessment of dairy cattle. Front. Vet. Sci., 8, 2021.
Vanrell, S.R., Chelotti, J.O., Bugnon, L.A., Rufiner, H.L., Milone, D.H., Laca, E.A., Galli, J.R., Audio recordings dataset of grazing jaw movements in dairy cattle. Data Brief, 30, 2020, 105623.
Vanrell, S.R., Chelotti, J.O., Galli, J.R., Utsumi, S.A., Giovanini, L.L., Rufiner, H.L., Milone, D.H., A regularity-based algorithm for identifying grazing and rumination bouts from acoustic signals in grazing cattle. Comput. Electron. Agric. 151 (2018), 392–402.
Wang, L., Arablouei, R., Alvarenga, F.A., Bishop-Hurley, G.J., Classifying animal behavior from accelerometry data via recurrent neural networks. Comput. Electron. Agric., 206, 2023, 107647.
Watt, L., Clark, C., Krebs, G., Petzel, C., Nielsen, S., Utsumi, S., Differential rumination, intake, and enteric methane production of dairy cows in a pasture-based automatic milking system. J. Dairy Sci. 98:10 (2015), 7248–7263.
Werner, J., Leso, L., Umstatter, C., Niederhauser, J., Kennedy, E., Geoghegan, A., Shalloo, L., Schick, M., O'Brien, B., Evaluation of the RumiWatchSystem for measuring grazing behaviour of cows. J. Neurosci. Methods 300 (2018), 138–146.
Wilkinson, J.M., Lee, M.R.F., Rivero, M.J., Chamberlain, A.T., Some challenges and opportunities for grazing dairy cows on temperate pastures. Grass Forage Sci. 75:1 (2020), 1–17.
Wu, Y., Liu, M., Peng, Z., Liu, M., Wang, M., Peng, Y., Recognising cattle behaviour with deep residual bidirectional lstm model using a wearable movement monitoring collar. Agriculture, 12(8), 2022.