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A B S T R A C T

Farmers must continuously improve their livestock production systems to remain competitive in the growing
dairy market. Precision livestock farming technologies provide individualized monitoring of animals on
commercial farms, optimizing livestock production. Continuous acoustic monitoring is a widely accepted
sensing technique used to estimate the daily rumination and grazing time budget of free-ranging cattle.
However, typical environmental and natural noises on pastures noticeably affect the performance limiting
the practical application of current acoustic methods. In this study, we present the operating principle and
generalization capability of an acoustic method called Noise-Robust Foraging Activity Recognizer (NRFAR).
The proposed method determines foraging activity bouts by analyzing fixed-length segments of identified
jaw movement events produced during grazing and rumination. The additive noise robustness of the NRFAR
was evaluated for several signal-to-noise ratios using stationary Gaussian white noise and four different
nonstationary natural noise sources. In noiseless conditions, NRFAR reached an average balanced accuracy
of 86.4%, outperforming two previous acoustic methods by more than 7.5%. Furthermore, NRFAR performed
better than previous acoustic methods in 77 of 80 evaluated noisy scenarios (53 cases with 𝑝 < 0.05). NRFAR
has been shown to be effective in harsh free-ranging environments and could be used as a reliable solution
to improve pasture management and monitor the health and welfare of dairy cows. The instrumentation and
computational algorithms presented in this publication are protected by a pending patent application: AR
P20220100910. Web demo available at: https://sinc.unl.edu.ar/web-demo/nrfar.
1. Introduction

The new and diverse precision livestock farming tools and applica-
tions significantly reduce farm labor (Lovarelli et al., 2020; Tzanidakis
et al., 2023). Precision livestock farming solutions allow individual-
ized monitoring of animals to optimize herd management in most
production systems (Michie et al., 2020). Monitoring the feeding be-
havior of livestock can provide valuable insights into animal welfare,
including their nutritional, health, and performance status (Banhazi
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et al., 2012; Garcia et al., 2020). Changes in grazing patterns, pe-
riodicity, and duration can be used to inform the management of
pasture allocation (Connor, 2015), while changes in ruminant di-
ets signal anxiety (Bristow and Holmes, 2007) or stress (Abeni and
Galli, 2017; Schirmann et al., 2009), as well as an early indicator of
diseases (Osei-Amponsah et al., 2020; Paudyal et al., 2018), rumen
health (Beauchemin, 2018, 1991), and the onset of parturition (Kovács
et al., 2017; Pahl et al., 2014) and estrus (Dolecheck et al., 2015; Pahl
et al., 2015).
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Free-ranging cattle spend 40%–80% of their daily time budget on
razing and rumination activities (Kilgour, 2012; Phillips, 2002). A
razing bout involves the process of searching, apprehending, chewing,

and swallowing herbage and is characterized by a sequence of ingestive
jaw movement (JM) events associated with chews, bites, and composite
chew-bites, without a fixed or predefined order. A bite event involves
the apprehending and severing of the herbage, a chew event involves
crushing, grinding, and processing previously gathered herbage, and
 chew-bite event occurs when herbage is apprehended, severed, and
omminuted in the same JM (Ungar and Rutter, 2006). Rumination is

defined as the period of time during which an animal repeatedly regur-
gitates previously ingested food (cud) from its rumen, then chews the
cud for 40–60 s, and re-swallows it. Rumination bouts begin with the
irst regurgitation and end with the last swallow (Beauchemin, 2018;

Galli et al., 2020). Grazing and rumination involve JM-events taken at
ates of 0.75–1.20 JM per second. Changes in the type and sequence

of distinctive JM-events can be aggregated over time to determine the
sequence and duration of foraging activities (Andriamandroso et al.,
2016).

Feeding activity monitoring of cattle has primarily been approached
through the use of noninvasive wearable sensors, including nose-band
pressure, inertial measurement units, and microphone systems (Benos
t al., 2021; Stygar et al., 2021). Each sensing technique has its ad-

vantages and disadvantages depending on the environment and ap-
plication. Current nose-band pressure sensors are combined with ac-
celerometers to log data from JMs. Raw data are analyzed by software
o determine foraging behaviors and provide specific information as-
ociated with them (Steinmetz et al., 2020; Werner et al., 2018).

Human intervention is required to process the data recorded on a
computer, making it not scalable for use on commercial farms (Riaboff
t al., 2022). Sensors based on inertial measurement units are widely

used to recognize multiple behaviors such as grazing, rumination,
osture, and locomotion (Aquilani et al., 2022; Chapa et al., 2020).

Although accelerometer-based sensors are typically used in indoor
environments (Balasso et al., 2021; Lovarelli et al., 2022; Wu et al.,
2022), their use in outdoor environments has been increased in the
ecent years (Arablouei et al., 2023; Cabezas et al., 2022; Wang et al.,

2023). One major drawback of inertial measurement units is their
limited ability to estimate herbage intake in grazing (Wilkinson et al.,
2020). Furthermore, the reliability of these sensors is highly dependent
on their precise location, orientation, and secure clamping, making
eproducing results difficult (Kamminga et al., 2018; Li et al., 2021a).

For this reason, acoustic sensors are preferred over former sensors
for monitoring the foraging and rumination behaviors of cattle out-
doors. Head-placed microphones allow to collect detailed information
on ingestive behaviors (Laca et al., 1992). Acoustic sensors are used
o automatically recognize JM-events (Ferrero et al., 2023; Li et al.,

2021b), estimate rumination and grazing bouts (Vanrell et al., 2018),
distinguish between plants and feedstuffs eaten (Galli et al., 2020;
Milone et al., 2012), and estimate differences in dry matter intake (Galli
t al., 2018). Despite progress, the evaluation of the generalization
apabilities of motion- and acoustic-based monitoring solutions are
imited due to the scarcity of public and standardized datasets (Vanrell
t al., 2020; Martinez-Rau et al., 2023b). As a result, there is room
or improving the confidence in the acoustic monitoring of free-grazing
attle.

In recent years, acoustic methods have been developed for recogniz-
ing foraging activities. Vanrell et al. (2018) developed a method based
on the analysis of the autocorrelation of the acoustic signal for the
ecognition of foraging activities. This method operates offline because
t requires storing several hours of acoustic recording to discover the
egularity patterns in the signal. Offline operation introduces consider-
ble delays in making inferences about foraging activities, which could
e critical for the early detection of an event, such as estrus (Allrich,

1993; Reith and Hoy, 2012). The Bottom-Up Foraging Activity Rec-
gnizer (BUFAR) developed by Chelotti et al. (2020) operates online,
 e

2 
meaning that the incoming digital acoustic signal is processed as it is
generated. BUFAR analyzes 5-min segments of identified JM-events to
determine grazing and rumination bouts, outperforming the method
of Vanrell et al. (2018) with significantly lower computational costs.

ore recently, Chelotti et al. (2023) proposed an online Jaw Movement
egment-based Foraging Activity Recognizer (JMFAR) that outperforms
UFAR. This is achieved by analyzing information from JMs that
ave been detected but not yet classified, enabling the recognition of
razing and rumination bouts. However, BUFAR and JMFAR exhib-
ted an average confusion of approximately 10% between grazing and

rumination, indicating a need for improvement in the recognition of
hese activities. Another significant drawback of these methods is their
imited capability to recognize foraging activities in diverse operational
onditions or in the presence of noise (Chelotti et al., 2023). To be use-

ful in practical applications, acoustic foraging recognizers must work
roperly even under adverse noise and mismatch conditions, where
ariations in recording settings and environmental conditions are com-
on. Additionally, low computation demands make them feasible for

mbedding in an acoustic monitoring sensor (Rehman et al., 2014).
otivated by this need, this paper describes in detail the operation,

noise robustness and generalization capability of an alternative acoustic
method for the recognition of grazing and rumination activities in
free-range cattle. The proposed method involves a noise-robust method-
logy for detecting and classifying JM-events used to recognize foraging
ctivities. In a recent proof-of-concept study, the implementation of the
roposed method was assessed for real-time operation on a low-power
icrocontroller (Martinez-Rau et al., 2023a). The main contributions

of this work are: (i) The presentation of an online acoustic method
or estimating grazing and rumination bouts in cattle, characterized
y a low computational cost. It classifies four classes of JM-events,

which are analyzed in fixed-length segments to delimit activity bouts.
(ii) The proposed method recognizes foraging activities in free-range
environments under different and adverse acoustic conditions, using
a robust JM event recognizer that is capable of identifying JM events
under quiet and noisy operating conditions. (iii) Artificial noise sounds
of different natures are used to simulate multiple adverse acoustic
scenarios in controlled experiments (Skowronski and Harris, 2004).

The rest of this paper is organized as follows: Section 2 briefly
escribes a system for recognizing foraging activities and analyzes the
peration and limitations of BUFAR and JMFAR. Section 3 introduces
he proposed algorithm. This section also outlines the acquisition of
he datasets, the experimental setup, and the performance metric used

to validate the algorithms. The comparative results for the proposed
and former algorithms are shown in Section 4. Section 5 explains and
discusses the results of this work. Finally, the main conclusions follow
n Section 6.

2. Current acoustic method analysis

In this section, a brief description and limitations of two current
acoustic foraging activity recognizers, called BUFAR and JMFAR, are
presented. Both methods are drawn the general structure of a typical
pattern recognition system (Bishop, 2006; Martinez-Rau et al., 2020)
and can be represented by the common block diagram shown in Fig. 1.
A foraging activity recognizer can be analyzed at three temporal levels:
bottom, middle, and top. These levels operate on the millisecond,
second, and minute scales, respectively. A JM-event recognizer operates
t both the bottom and middle levels to detect and classify different
ypes of JM-events. The input digitized sound is conditioned, processed,
nd down-sampled using signal processing techniques to reduce the
omputational cost of the middle and top levels. The processed signals
re used at the middle level for a JM detector based on adaptive
hresholds. When a JM is detected, a set of distinctive JM features are
omputed over a time window centered on the JM. Finally, a machine
earning model uses the extracted set of JM features to classify the JM-
vent with a corresponding timestamp. The middle level provides JM
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Fig. 1. General block diagram of the BUFAR, JMFAR, and the proposed NRFAR methods divided into temporal scales. The JM information transferred to the top level is different
in each method.
information to the top level. The top level buffers the JM information
n nonoverlapping segments of 5-min duration. For each segment, a
et of activity features is computed to serve as input to a classifier
hat determines the activity performed by the animal. Segments of
-min duration store sufficient JM information data in the buffer to
enerate a confidence set of activity features, without significantly
ffecting the correct delimitation of foraging activity. Five-min duration
grees with the optimal segment duration value found in two previous
tudies (Chelotti et al., 2020; Rook and Huckle, 1997).

As previously mentioned, the type and sequence of distinctive JM-
events can be analyzed to recognize foraging activities. Inspired by this,
the BUFAR method uses a real-time JM-event recognizer developed
by Chelotti et al. (2018) to detect and classify JM-events into three
different classes: chews, bites, and chew-bites. The JM information
comprises the timestamps and classes of the JM-events (see the top
level of Fig. 1). The JM information is analyzed in nonoverlapping
5-min segments. For each segment, a set of four statistical activity
features is extracted, including (i) the rate of JM-events, and the
proportion of the JM-events corresponding to the classes (ii) chew, (iii)
bite, and (iv) chew-bite. These features are then used for a multilayer
perceptron (MLP) classifier (Bishop, 2006) to determine the activities
erformed. However, inherent detection and classification errors of

JM-events may cause misclassification of foraging activities. A more
detailed description of BUFAR is provided by Chelotti et al. (2020).

The JMFAR method partially overcomes the limitation of BUFAR
because it does not compute information about the JM-events classes.
Instead, JMFAR analyses nonoverlapping 5-min segments from the
detected JM. The same JM-event recognizer used in BUFAR is also used
in JMFAR to compute the JM information. JM information consists of
the signal used to detect the JM, the timestamps of the detected JM, and
the extracted set of JM features. JM information, analyzed in segments,
is employed to compute a set of activity features. The set of twenty-one
statistical, temporal, and spectral features serves as input to an MLP
classifier that determines the corresponding activity performed. A more

Chelotti et al. (2023).
detailed description of JMFAR is provided by

3 
3. Material and methods

3.1. Proposed foraging activity recognizer

The high sensitivity to noise of the JM-event recognizer used in
BUFAR and JMFAR could lead to the misclassification of foraging
activities. When the input audio signal is contaminated by noise, the
accurate detection of JM, the computation of JM features, and the
classification of JM-events are significantly impacted (Martinez-Rau
et al., 2022). As a result, the noise directly impacts the JM information
and consequently affects the computation of the set of activity features,
leading to possible misclassification of activity. The activity recognition
in quiet and noise conditions can be improved by using a better
JM-event recognizer. This work proposes an online method called
Noise-Robust Foraging Activity Recognizer (NRFAR). NRFAR introduces
the use of the Chew-Bite Energy Based Algorithm (CBEBA) for the
recognition of JM-events in diverse acoustic environments (Martinez-
Rau et al., 2022). Similar to BUFAR, NRFAR analyses nonoverlapping
segments of 5-min duration of recognized JM-events classes for the
subsequent classification of foraging activities.

The CBEBA is a real-time pattern recognition method, able to dis-
tinguish individualized JM-events in terms of four different classes:
rumination-chews, grazing-chews, bites, and chew-bites. It outperforms
previously published methods in both the detection and classification
of JM-events in both noiseless and noisy environments. Briefly, the
implementation of CBEBA can be divided into four successive stages
(Fig. 1):

• Signal processor: the digitized input audio signal undergoes a
second-order Butterworth band-pass filter to isolate the JM fre-
quency range. The filtered signal is then squared to obtain the
instantaneous power signal. To reduce computation, the former
signal is used to compute two additional down-sampled signals:
a decimated envelope signal and an energy signal calculated by
frames.
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Fig. 2. Example of recognized 5-min segments (blue color) compared to the ground
truth reference labels (yellow color). The classified activity label assigned to every
segment enters the smoothing filter to generate the output label of NRFAR.

• JM detector: the presence of a peak in the envelope signal above a
time-varying threshold indicates the detection of a candidate JM-
event. When this indication occurs, the energy signal is compared
with another adaptive threshold to delimit the boundaries of the
candidate JM-event. The time-varying threshold considers short-
timescale anatomical and behavioral characteristics of the animal,
as well as, long-timescale variable feeding patterns. The adaptive
threshold changes according to the background noise floor level
on the acoustic signals.

• JM feature extractor: both delimited signals are used to extract
a set of five robust JM features. These heuristic features are the
duration, energy, symmetry of the envelope, zero-cross derivative
of the envelope, and accumulated absolute value of the derivative
of the envelope. To avoid the detection of a false-positive JM-
event, it is classified only if the duration and energy are in a
predefined range.

• JM classifier: A multilayer perceptron (MLP) classifier determines
the class of the JM-event. The structure of the MLP classifier is 5-
6-4 neurons in the input, hidden, and output layers. Furthermore,
the adaptive thresholds are tuned based on the signal-to-noise
ratio (SNR) estimated over the envelope and energy signals.

A more detailed description of CBEBA is provided by Martinez-Rau
et al. (2022).

The top level of the proposed NRFAR processes the JM information
provided by the JM-event recognizer CBEBA in nonoverlapping 5-
min segments to establish the corresponding foraging activity. The JM
information is the recognized JM-events, along with their respective
timestamps. Each segment of JM information is used to generate a set
of five activity features: (i) the rate of JM-events, and the proportion
of the JM-events corresponding to the classes (ii) rumination-chew,
(iii) grazing-chew, (iv) bite, and (v) chew-bite. The set of extracted
activity features feeds an MLP activity classifier to label the foraging
activity in terms of grazing, rumination and other. The classified label
outputs are smoothed using a third-order median filter to reduce the
possible misclassifications of the recognized activity along consecutive
segments. Fig. 2 shows an example of the proper operation of the
smoothing filter.
4 
3.2. Datasets description

This study uses two datasets to evaluate the algorithms under
matched and mismatched conditions. The first one (referred to as DS1)
is a public dataset collected at the Michigan State University’s Pas-
ture Dairy Research Center (W.K. Kellogg Biological Station, Hickory
Corners, MI, USA) from July 31 to August 19, 2014 (Martinez-Rau
et al., 2023b). In this dataset, the cows were handled using a pasture-
based robotic milking system with unrestricted cow traffic, as described
by Watt et al. (2015). Cows were voluntarily milked 3.0 ± 1.0 times
per day using two Lely A3-Robotic milking units (Lely Industries NV,
Maassluis, The Netherlands). Inside the dairy barn, the dairy cows were
fed a grain-based concentrate. Cows had 24-h access to grazing pad-
docks with a predominance of either tall fescue (Lolium arundinacea),
orchardgrass (Dactylis glomerata) and white clover (Trifolium repens),
or perennial ryegrass (Lolium perenne) and white clover. From a herd
of 146 lactating high-producing multiparous Holstein cows, 5 animals
were selected to record acoustic signals and to monitor their foraging
behavior in a noninvasive manner continuously. Specific information
on grain-based concentrate, pasture on paddocks, and individualized
characteristics of the 5 dairy cows are provided by Martinez-Rau et al.
(2023b).

Individualized 24-h of continuous acoustic recordings were ob-
tained on 6 nonconsecutive days. The foraging behavior of the 5 dairy
cows was recorded by 5 independent recording systems that were
rotated daily, according to a 5 x 5 Latin-square design. This setup
was allowed to verify differences in sound signals associated with a
particular recording system, cow, or experimental day. The recording
systems were randomly assigned to the cows on the first day. On the
sixth day, the same order was used to reassign the recording systems
to the cows. No prior training was considered necessary for the use of
the recording systems before the start of the study.

Each recording system comprised two directional electret micro-
phones connected to a digital recorder (Sony Digital ICD-PX312, Sony,
San Diego, CA, USA). The digital recorder was protected in a weather-
proof case (1015 Micron Case Series, Pelican Products, Torrance, CA,
USA) and mounted on the top side of a halter neck strap (Fig. 3). One
microphone was positioned facing outwards in a noninvasive manner
and pressed against the forehead of the cow to collect the sounds
produced by the animal. The other microphone was placed facing
inwards to capture the vibrations transmitted through the bones. The
microphones kept the intended location using rubber foam and an
elastic headband attached to the halter. This design prevents micro-
phone movements, reduces wind noise, and protects microphones from
friction and scratches (Milone et al., 2012). The digital recorders saved
the audio recordings in MP3 format (Brandenburg and Stoll, 1994)
with a 16-bit resolution at a sampling rate of 44.1 kHz. Each channel
of the stereo MP3 files corresponds to the microphone facing inwards
and outwards. In this study, the stereo MP3 files were converted to
mono WAV files, and only those mono WAV files corresponding to the
microphones facing inwards were used because they provide a better
sound quality of the foraging activities with less presence of external
noise sounds.

The second dataset (referred to as DS2) was collected at the Campo
Experimental J.F. Villarino (Facultad de Ciencias Agrarias, Universidad
Nacional de Rosario, Zavalla, Argentina) on August 1, 2022. The pro-
tocol used for the experiment has been evaluated and approved by the
Committee on Ethical Use of Animals for Research of the Universidad
Nacional de Rosario. This intensified pastoral-based dairy farm has a
herd of 140–165 milking cows, with an individual production of 24–
27 l of milk daily. Three 4-year-old lactating Holstein cows weighing
570–600 kg were selected for this experiment. The experimental cows
were allowed to graze freely within a fully enclosed paddock measuring
approximately 60 by 20 m, and they had continuous access to a water-
ing trough. The paddock area was covered with naturalized perennial
grasses (with a dominance of Cynodon sp., Lolium sp., and Festuca sp.).
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Fig. 3. Recording system used to record the acoustic signals composed of microphones (a) that are covered by rubber foam and an elastic headband (b), which are wired and
plugged (c) to a digital recorder placed inside a waterproof case (d) attached to a neck halter.
Source: Figure extracted from Martinez-Rau et al. (2023b).
All cows were tamed and trained in the experimental routine before the
experiment. Each animal was equipped with an acquisition data device
consisting of an external microphone (IP57 100 mm, −42 ± 3 dB, SNR
57 dB) plugged via a 3.5 mm jack to a Moto G6 smartphone (Moto G6
smartphone specification, 2018). The smartphones were fixed inside
plastic boxes secured to prevent unintended internal movements. As
in DS1, microphones were located on the cow’s forehead and boxes
were mounted to the top sides of halter neck straps (Fig. 3). Audio
recordings were stored in the Moto G6 using high-efficiency advanced
audio coding (Bosi et al., 1997) with a bit rate of 128 kbps and a
sampling rate of 44.1 kHz, single channel (mono).

Each fieldwork employed an experienced animal handler who had
extensive knowledge of data collection on animal behavior. The handler
observed the animals for blocks of approximately 5 min per h during
daylight hours to ensure the proper placement and positioning of
recording systems on the cows. The observations were conducted from
a distance to minimize potential disruptions in animal behavior. The
handler registered the observed foraging activities and other relevant
parameters in a logbook. The ground truth identification of foraging
activities was carried out by two experts with long experience in forag-
ing behavior scouting and in the digital analysis of acoustic signals. An
expert listened to the audio recordings to identify, delimit, and label
the activities guided by the logbook. The results were double-inspected
and verified by the other expert. Although the experts agreed on all
label assignments, there were some small differences in the start or
end times of certain labels. In these cases, the experts collaborated to
reach a mutual agreement on the labels. Activity blocks were labeled
as grazing, rumination, or other (see Fig. 2).

Additionally, this study uses audio clips from two open acoustic
datasets to evaluate the algorithms under adverse conditions. The
selection process for the useful audio clips is shown in Fig. 4. The
first dataset is a labeled collection of 2000 environmental audio clips
of 5 s duration, organized into 50 categories with 40 audio clips
per category (Piczak, 2015). The second dataset is a multilabeled
collection of 51,197 audio clips, with a mean duration of 7.6 s, un-
equally distributed into 200 categories (Fonseca et al., 2022). To rep-
resent environmental and natural noises commonly found in field pas-
tures, the categories ‘‘aeroplane’’, ‘‘chirping birds’’, ‘‘cow’’, ‘‘crickets’’,
‘‘engine’’, ‘‘insects’’, ‘‘rain’’, ‘‘thunderstorm’’, and ‘‘wind’’ from the first
dataset and ‘‘aircraft’’, ‘‘animal’’, ‘‘bird vocalisation and birds call and
bird song’’, ‘‘car passing by’’, ‘‘cowbell’’, ‘‘cricket’’, ‘‘engine’’, ‘‘fixed-wing
aircraft and aeroplane’’, ‘‘frog’’, ‘‘insect’’, ‘‘livestock and farm animals and
5 
Fig. 4. Top-down scheme for selecting useful audio clips.

working animals’’, ‘‘rain’’, ‘‘raindrop’’, ‘‘thunder’’, and ‘‘wind’’ from the
second dataset were selected. These categories were grouped into four
exclusive sets according to their nature as follows:

1. Animals = {animal, bird vocalisation and birds call and bird song,
chirping birds, cow, cowbell, cricket, crickets, frog, insect, insects,
livestock and farm animals and working animals}
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Fig. 5. Confusion matrices for different foraging activities for the (a) BUFAR, (b) JMFAR, and (c) NRFAR methods when evaluating on DS1.
2. Vehicles = {aeroplane, aircraft, car passing by, engine, fixed-wing
aircraft and aeroplane}

3. Weather = {rain, raindrop, thunder, thunderstorm, wind}
4. Mixture = {Animals, Vehicles, Weather}

The audio clips of the sets were listened to by the experts, and
those that did not correspond with possible field pasture conditions
were discarded. Overall, 3042 useful audio clips lasting 13.1 h were
identified. For reproducibility, a list of selected audio clips is available
as Supplementary Material.

3.3. Numerical experiments setup

3.3.1. Experiment 1: performance evaluation under matched conditions
In the initial experiment, the NRFAR performance was evaluated

using DS1. This experiment assessed NRFAR effectiveness under con-
sistent conditions, including the same animals, recording devices, and
field conditions. NRFAR was coded, trained, and tested in Matlab
R2019b (MathWorks, Natick, MA, USA), following a stratified 5-fold
cross-validation scheme. A set of 349.4 h of outdoor audio recordings
of DS1, composed of 50.5% grazing, 34.9% rumination, and 14.6%
of other activities was used. The imbalanced distribution of classes
is consistent with typical cattle behavior (Kilgour, 2012). Therefore,
the test data were not balanced by class. From all available training
data in each fold, 30% of the majority class (grazing) was randomly
undersampled and 100% of the minority class (other) was synthetically
oversampled (He et al., 2008), to generate a balanced dataset for train-
ing (35.6% grazing, 35.1% rumination, and 29.3% of other activities).
The activity classifier is an MLP neural network formed by five input
6 
neurons (number of input features), one hidden layer, and three output
neurons (number of output labels corresponding to the activity class).
The activation functions used by the hidden and output layers are
the hyperbolic tangent sigmoid and softmax transfer functions, respec-
tively. During the MLP training phase, the scaled conjugate gradient
backpropagation algorithm was used to find the optimal weight and
bias of the network and optimize the MLP classifier’s hyperparameters.
The two hyper-parameters’ learning rate and number of neurons in the
hidden layer were fitted using a grid-search method. The learning rate
was evaluated at values of 0.1, 0.01, 0.001, and 0.0001, whereas the
number of neurons was evaluated within a range of 4 to 10.

3.3.2. Experiment 2: Generalization capability under clean mismatched
conditions

The NRFAR generalization capability was evaluated by processing
acoustic signals from different animals located in another field and
recorded with different devices. NRFAR was trained on DS1 and tested
on DS2. The training set was balanced using the same under- and over-
sampling techniques applied in the first experiment. DS2 is composed
of 13.2 h of audio recordings, corresponding to 51.8% grazing, 24.6%
rumination, and 23.6% of other activities.

3.3.3. Experiment 3: Noise robustness evaluation
External noise may reduce the operability of acoustic foraging ac-

tivity recognizers operating under free-range conditions. The particular
properties of these noise sources, including their finite duration and
limited bandwidth, make them difficult to distinguish and quantify in
the context of this study, which analyzed almost 350 h of audio record-
ings. Although audio recordings captured in DS1 might occasionally
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Fig. 6. Confusion matrices for different foraging activities for the (a) BUFAR, (b) JMFAR, and (c) NRFAR methods when evaluating on DS2.
contain some noise, the signals were assumed to be free of noise; that
is, they had an infinite SNR. In this experiment, the robustness of
the NRFAR to noise was evaluated in five trials for various levels of
contamination with noise and measured in terms of the SNR in a range
from 20 to −15 dB in steps of 5 dB. In each trial, NRFAR was trained
in the same way as in the first experiment but a different noise source
was artificially added to the audio recording of DS1 used for testing
and then normalized. A stationary Gaussian white noise source was
used in a trial, which is one of the most accepted methods for testing
the algorithm noise robustness (Sáez et al., 2016). White noise is an
‘‘infinite’’ bandwidth signal with constant power spectral density across
all frequencies. Furthermore, the previously mentioned set of audio
clips (Animals, Vehicles, Weather, and Mixture) was used in four trials
to represent nonstationary environmental and natural noises present
on the pasture. In each trial, the audio clips were randomly selected
without replacement and concatenated to represent the artificial noise
source that was used to contaminate the original audio recordings.
Some examples of waveforms and spectrograms at several SNRs pro-
duced during grazing and rumination are shown in the Supplementary
Material.

3.4. Metrics

State-of-the-art BUFAR and JMFAR methods were evaluated under
the same conditions as NRFAR to establish a comparison between
different methods. Each audio recording has an associated ground-truth
text file, specifying the start and end of the bouts, and the correspond-
ing activity labels. The activity bouts, which last from several minutes
to hours, were divided into nonoverlapping 1-s frames, following the
7 
approach described by Chelotti et al. (2023). This allowed a high-
resolution activity recognition analysis to evaluate the performance of
the methods. This action was performed on both the algorithm output
and the ground truth for a direct comparison. In total, 1,257,759 frames
and 47,606 frames were generated from the 349.4 h and 13.2 h of
audio recordings of DS1 and DS2, respectively. For each audio signal,
the balanced accuracy metric was calculated using the scikit-learn 1.2.2
library in Python1 (Pedregosa et al., 2011). This metric provides a good
indicator of the performance of multiclass imbalance problems (Mosley,
2013).

4. Results

4.1. Experiment 1

The recognition performance of the different methods under
matched conditions (i.e. trained and tested on DS1) reveals that NRFAR
properly classifies ≥88.2% of the frames into grazing or rumination
classes, thus showing a significant improvement compared with the
average of 79.5% for BUFAR and 84.3% for JMFAR (Fig. 5). BUFAR
exhibits the lowest recognition rate for the activities of interest but the
highest recognition for other activities (88.1%). Moreover, confusion
between grazing and rumination is lower for NRFAR (≤1.2%), than for
BUFAR (≥11.2%) and JMFAR (≥5.1%).

The computational cost of NRFAR, expressed in terms of operations
per second (ops/s), is 13.4% higher than that of BUFAR (43,060 ops/s

1 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.
balanced_accuracy_score.html.

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html
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vs. 37,966 ops/s) and 14.6% lower than that of JMFAR (43,060 ops/s
vs. 50,445 ops/s), with marginal variations presented between them.
A detailed analysis and assumption of the operations involved are
available in Appendix A.

4.2. Experiment 2

The generalization capability of the different methods to recognize
foraging activities is evaluated in the independent DS2 dataset. Fig. 6
shows the confusion matrices for the three methods. Qualitative pre-
vious results on DS1 are extended to those on DS2: NRFAR achieves
 higher recognition rate for both grazing and rumination classes than
MFAR and BUFAR, with lower confusion between these classes.

The comparison of each method’s performance in each dataset
hows that NRFAR presents similar average balanced accuracies, being
6.4% in DS1 and 87.4% in DS2. Comparing Fig. 6c versus Fig. 5c,
grazing is 5.9% higher in DS1 than in DS2, while rumination is 4.1%
ower. On the other hand, JMFAR exhibits a 7.7% higher classification
f grazing but 12.7% lower classification of rumination in DS1 than
n DS2 (Fig. 6b versus Fig. 5b). The classification of other activity is

similar in DS1 and DS2 for both NRFAR and JMFAR. BUFAR presents a
imilar capability for classifying rumination in DS1 and DS2. However,
he classification of grazing decreases 26.1% from DS1 to DS2 (Fig. 6a
ersus Fig. 5a).

4.3. Experiment 3

The robustness to adverse conditions of the NRFAR method is
evaluated and compared against the BUFAR and JMFAR methods using
different noise sources at multiple SNR levels. Gaussian white noise
s added to the audio signals of DS1 in appropriate proportions, to

achieve the desired SNR. Fig. 7 shows the balanced accuracy, averaged
ver the audio signals, obtained with each method under different
NR conditions. NRFAR outperforms JMFAR and BUFAR in all cases
p < 0.05; Wilcoxon signed-rank test computed over the balanced ac-
uracy of each signal (Wilcoxon, 1945)). The overall performance (av-
rage ± standard deviation) of NRFAR remains approximately constant,
anging from 0.86 ± 0.10 to 0.83 ± 0.13 for SNR ≥ 5 dB. Furthermore,
he performance of JMFAR is higher (ranging from 0.79 ± 0.16 to
0.71 ± 0.16) than that of BUFAR (ranging from 0.76 ± 0.17 to 0.69 ± 0.17)
nder low noise conditions (SNR ≥ 10 dB). For moderate and high
oise conditions (SNR ≤ 5 dB), BUFAR (ranging from 0.66 ± 0.17
o 0.39 ± 0.06) outperformed JMFAR (ranging from 0.65 ± 0.16 to
.32 ± 0.10).

In a more challenging and realistic scenario, the original audio
signals of DS1 are mixed with a nonstationary noise source in four
ndependent trials. The noise source contains exclusively sounds of
nimals, vehicles, weather, or a mixture of these sounds. The balanced
ccuracy metrics reported by the methods using the four noise sources
re shown in Fig. 8. The performance of NRFAR decreases as the SNR

decreases. However, the performance of BUFAR and JMFAR increases
in general for SNR between 20 dB and 10 dB. In general, NRFAR
outperforms BUFAR and JMFAR, particularly for SNR ≥ 15 dB and for
NR ≤ 0 dB. NRFAR has a higher balanced accuracy than BUFAR in
he 32 evaluated cases (p < 0.05 in 25 cases). Additionally, NRFAR

outperforms JMFAR for SNR ≥ 20 dB and SNR ≤ 0 dB (p < 0.05
n 14 of 16 cases). The results of comparing NRFAR with JMFAR for
NR between 15 dB and 5 dB are not always statistically significant,

although NRFAR presents higher performances than JMFAR in most
cases (Fig. 8). On the other hand, JMFAR presents higher average
alanced accuracy than BUFAR for SNR ≥ 0 dB for the four noise
ources, particularly for 10 ≥ SNR ≥ 0 dB (with p < 0.05 in 19 of
0 cases). Reported statistical significance test values obtained in the

experiments are available in Appendix B.
The previously reported results have been rearranged to provide

a different interpretation. Fig. 9 shows the performance degradation
 d

8 
Fig. 7. Performance rates (average ± standard deviation) for the NRFAR, BUFAR, and
JMFAR methods using additive Gaussian white noise at several SNR levels.

of the NRFAR, JMFAR, and BUFAR methods for the different noise
sources. In Fig. 9.a, the average balanced accuracy of NRFAR ranges
from [0.86–0.85] for SNR = 20 dB to [0.44–0.33] for −15 dB. NRFAR
reaches higher performance when Gaussian white noise is used. For
a particular SNR value, NRFAR performs similarly between the noise
sources representing more realistic acoustic pasture conditions. This is
lso true for JMFAR (Fig. 9.b) but not for BUFAR (Fig. 9.c).

By comparing stationary and nonstationary noise sources, BUFAR
nd NRFAR exhibit higher performance when Gaussian white noise is
dded to the audio signals in moderate and high levels (SNR ≤ 5 dB).
owever, for low noise conditions, the recognition performance of
MFAR is more affected when Gaussian white noise is used.

5. Discussion

Accurately classifying the most important ruminant foraging behav-
ior provides useful information to monitor their welfare and health,
nd to gain insight into their pasture dry matter intake and utiliza-
ion (Liakos et al., 2018). This is typically achieved using accelerom-

eters, pressure, or acoustic sensors. Commercial nose-band pressure
ensors require handlers to analyze raw data recorded on a computer,

which are not suitable for use in big rodeos (Riaboff et al., 2022). Ensur-
ing the proper location, orientation, and attachment of accelerometer
sensors mounted on a collar can become a laborious task for handlers
to prevent their motion. Meeting these requirements is even more chal-
lenging under free-ranging conditions. Therefore, acoustic sensors are
preferable for practical use under such conditions (Shen et al., 2020).
xisting state-of-the-art acoustic methods for estimating the foraging

activities of cattle, called BUFAR and JMFAR, are based on the analysis
of fixed-length segments of sound signals. However, the misclassifica-
tion of foraging activities remains a challenge. This study proposes an
improved online acoustic foraging activity recognizer (NRFAR) that an-
alyzes identified JM-event classes in nonoverlapping segments of 5-min
duration. Like BUFAR, NRFAR computes statistical features of JM-
vents to identify foraging activities. NRFAR uses the CBEBA method to

recognize JM-events into four classes: rumination-chews, grazing-chews,
bites, and chew-bites. The NRFAR method represents a significant im-
provement over the previous BUFAR method, which only distinguished
between bites, chew-bites, and chews, without discriminating between
umination-chews and grazing-chews events. The JMFAR method uses a
ifferent approach that does not require the identification of JM-events
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Fig. 8. Performance rates (average ± standard deviation) for the NRFAR, BUFAR, and JMFAR methods using noises commonly present on pasture at several SNR levels.
a
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to delimit grazing and rumination bouts. Instead, it extracts information
from the detected JM in the segment.

The results showed that the average correct recognition rate of the
activities of interest (grazing and rumination) for NRFAR was 91.5%
when evaluating in DS1, exceeding BUFAR by 12.0% and JMFAR by
.2% (Fig. 5). Importantly, this improvement in activity recognition

was achieved without incurring substantial changes in computational
ost. The remarkable performance improvement of NRFAR was due to
he improved discrimination of JM-events produced during rumination
nd grazing by CBEBA. The good classification rate of JM-events al-
owed the computation of a confidence set of activity features with
ore specific discriminatory information than BUFAR and JMFAR to

nhance activity classifications. NRFAR presented a minimal confusion
f ≤1.2% between grazing and rumination, which was lower than the

confusion reported by BUFAR (≥11.2%) and JMFAR (≥5.1%). The au-
thors hypothesized that the misclassification of foraging activities was
reduced because it depends mainly on the misrecognition of JM-events
associated with rumination (rumination-chew) and grazing (grazing-
chew, bite, and chew-bite), and not between all possible JM-event classes.
Therefore, NRFAR was less sensitive to JM-events misclassification
than BUFAR. Likewise, discrimination between foraging activities and
other activities presented a greater error in the NRFAR (≥4.1%). This
confusion was also observed in BUFAR and JMFAR and could be related
to the great diversity of behavior represented by the other class. From
a productivity standpoint, confusion of 5% or more between grazing
nd rumination can significantly affect the diagnoses of feeding perfor-
ance (e.g. low dry matter intake) (Watt et al., 2015) or metabolic

imbalances of nutritional origin in ruminants (e.g., subacute ruminal
acidosis) (Beauchemin, 2018).
9 
An acoustic method must be able to work effectively in different
setups to have practical utility. NRFAR, JMFAR, and BUFAR, initially
trained using DS1 signals, were tested on DS2 signals. Again, NRFAR
exceeded the average recognition rate of grazing and rumination of
JMFAR and BUFAR by 4.0% and 24.7%, respectively, with higher
verage balanced accuracy (87.4% for NRFAR, 84.4% for JMFAR, and

73.2% for BUFAR). Moreover, the average balanced accuracy of NRFAR
in DS2 was 1.0% higher than in DS1, with similar recognition rates of
the three classes in both datasets (Figs. 5c and 6c), demonstrating good
generalization capability. JMFAR also exhibited good generalization
erformance (average balanced accuracy of 78.9% in DS1 and 84.4%

in DS2) but an improvement in the recognition of rumination was
compensated with a decrease in grazing (Figs. 5b and 6b). Noteworthy
was the limited generalization ability of BUFAR to identify grazing,
decreasing from 83.5% in DS1 to 57.4% in DS2 (Figs. 5a and 6a).

Acoustic methods often have lower performance in confined envi-
onments such as barns because of the high levels and varying types

of noise present there. Acoustic reverberation existing in confined en-
vironments is the cause that noise has to be considered convolutional.
In free-ranging conditions, noise is still present but is less intense and
frequent, and can be considered additive. To reduce the unwanted
effects of acoustic noise, an appropriate microphone setup (as shown
n Fig. 3) can be used. Hence, the proper operation of acoustic meth-

ods in free-ranging is not necessarily compromised. The effectiveness
of an acoustic foraging activity recognizer depends on its ability to
work well in adverse field conditions, making it a useful and effective
tool for farmers and handlers. In this study, the noise robustness of
NRFAR was evaluated and compared with previous methods by adding
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Fig. 9. Variation of the performance metric across different noise sources for (a)
RFAR, (b) JMFAR, and (c) BUFAR. Marked points are the balanced accuracy, averaged
ver signals at a particular SNR level.

artificial noises to the original audio signals of DS1 at different levels
(20 ≤ SNR ≤ −15 dB), which were even higher than those produced by
eal noises in classical pasture environments (Bishop et al., 2019). The
oise robustness of the methods using a stationary noise source with
ifferent properties was evaluated (Fig. 7). Artificial random Gaussian

white noise was used to contaminate the audio signals. The white noise
signal has a theoretical ‘‘infinite’’ bandwidth and a constant power
spectral density across all frequencies, which can degrade important
acoustic cues over the entire frequency range. NRFAR had great ro-
bustness to noise for SNR ≥ 10 dB, keeping their balanced accuracy
almost constant. However, the performances of the JMFAR and BUFAR
methods decreased with decreasing SNR. JMFAR performed better than
BUFAR at low levels of noise (SNR ≥ 10 dB) since the noise had a
similar impact on both methods in this SNR range. BUFAR outper-
formed JMFAR for moderate and high noise levels (SNR ≤ −5 dB)
10 
due to the higher robustness to noise of the JM information from
recognized JM-events used by BUFAR. Furthermore, JMFAR exhibited
the largest drop in performance in this experiment. The decreasing
performance of JMFAR was due to the limited robustness to noise of the
JM information, computed from detected JM-events, analyzed to rec-
ognize foraging activities (Fig. 4). Additionally, NRFAR outperformed
the other methods for the entire range considered in these numerical
xperiments (SNR ≥ −15 dB) (14 of 16 evaluated scenarios).

The effects of different nonstationary noise sources commonly
present on pastures, such as sounds produced by animals, vehicles,
weather, and a mixture of these sounds, were also evaluated. Fig. 8
showed that JMFAR outperformed BUFAR, which is consistent with the
esults of Chelotti et al. (2023). In addition, NRFAR outperformed the
revious methods in 61 of 64 evaluated scenarios, with 39 of those

cases showing statistical significance (p < 0.05), as in the evaluations
using Gaussian white noise (Fig. 7). It should be noted that the
argest differences in favor of NRFAR were observed for SNR ≥ 15 dB
nd SNR ≤ 0 dB, but NRFAR performed similarly to JMFAR for
0 ≤ SNR ≤ 5 dB. Under high noise conditions, the performance of
RFAR was due to the high noise robustness and discriminative power
f the JM features used to classify the JM-events by CBEBA (middle
evel of Fig. 1) (Martinez-Rau et al., 2022).

The robustness of each method to different noise sources was ana-
lyzed. The performance of NRFAR using the four nonstationary noise
sources was similar to each other for a particular SNR level (Fig. 9.a),
even though these noise sources have different spectral energy dis-
tributions (Özmen et al., 2022). A similar situation was observed for
JMFAR (Fig. 9b), but not for BUFAR (Fig. 9c). It was noteworthy
hat NRFAR performed better when evaluated with stationary Gaussian
hite noise compared to the nonstationary noise sources (Fig. 9a),

particularly for moderate and high noise conditions. This particular
situation was also observed in BUFAR (Fig. 9c). Nonstationary noise
sources have uncertain onset, offset, and duration, which can lead to
false detection of JM, classifying noises as JM-events (middle level
of Fig. 1). Fig. 9b showed that JMFAR performed similarly with all
onstationary noise sources for SNR ≥ −5 dB because it did not depend
n the identification of JM-events. Remarkably, JMFAR was less robust
o stationary Gaussian white noise than to stationary noise sources at
ow noise levels (SNR ≥ 5 dB).

NRFAR has a low computational cost of 43,060 ops/s, which is
f the same order of magnitude as BUFAR and JMFAR. It is impor-
ant to note that most of the computational cost required by NRFAR
43,121 ops/s) comes from the computation of CBEBA (43,118 ops/s)
see Appendix A). This suggests that NRFAR could potentially be im-

plemented in an application-specific ultra-low-power microprocessor,
similar to the implementation of CBEBA (Martinez-Rau et al., 2023c).

his computational cost value is theoretical and considers only the
rithmetic and logic operations required to execute NRFAR. It is use-
ul to compare the computational requirements of different meth-
ds independently on the platform. However, the total processing
ime of a constrained electronic device depends on available hardware
esources (Manor and Greenberg, 2022). The recent deployment of

NRFAR in a low-power microcontroller (Martinez-Rau et al., 2023a),
ombined with its strong noise robustness, positions NRFAR as a reli-
ble tool to be embedded in an acoustic sensor for recognizing grazing
nd rumination activities.

6. Conclusion

This study proposes an improvement over former acoustic methods
to recognize and delimit foraging activity bouts of grazing cattle.
Inspired by the former BUFAR method, the proposed NRFAR method
analyzes fixed-length segments of recognized JM-events. NRFAR uses
a robust JM recognizer that discriminates JM-events produced during
grazing and rumination under different operating conditions. This al-
lows NRFAR to recognize foraging activities in free-range scenarios,
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even under adverse acoustic conditions. The method has shown a signif-
icant performance improvement over state-of-the-art acoustic methods
n quiet and noisy conditions, and in different settings. The evalua-

tion of noise robustness was performed by adding artificially different
amounts of stationary Gaussian white noise, and nonstationary natu-
ral noise commonly present in free-range. Future work must include
changes in the analysis of fixed-length segments to variable-length
segments using dynamic segmentation to facilitate more accurate esti-
mation of the foraging bouts of interest. Likewise, NRFAR could be used
as a reference for developing new methods based on multi-modal data
sensors to recognize feeding activities in more adverse environments,
such as barns.
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Appendix A. Computational cost

The computational cost of NRFAR depends on the input audio sam-
ling frequency, the sub-sampling frequency used internally in CBEBA
fixed at 𝑓𝑠 = 150 Hz in this analysis, according to its optimal value), the

configuration of the two MLP neural networks used to classify the JM-
events and foraging activities, and the duration of the segment lengths
(fixed at 5 min). To obtain a valid comparison with other methods, an
input sampling frequency of 𝑓𝑖 = 2 k Hz and 2 JM-events per second was
chosen. Furthermore, the worst-case computational cost scenario was
11 
selected for both MLP classifiers. In addition, any arithmetic operation,
arithmetic shift, logic comparison, or activation function is counted as
one operation. The required number of operations per second for the
omputation stages of each level of NRFAR is:
Bottom level:
1. Audio pre-processing: limiting the bandwidth with a second-

order band-pass filter and computing the instantaneous power
signal requires 7 ∗ 𝑓𝑖 and 𝑓𝑖 ops/s per sample, respectively. Then,
16,000 ops/s are required.

2. Signal computation: computing and decimating the envelope
signal requires 11 ∗ 𝑓𝑖 + 150 ops/s. Computing the energy signal
by frames requires 𝑓𝑖 + 300 ops/s. Altogether, this stage requires
24,450 ops/s.

Middle level:
1. JM-event detection: 4 + 0.925 ∗ 𝑓𝑠 and 12 + 𝑓𝑠 operations per

JM-event are necessary to detect and delimit the boundaries of
JM-events. Then, this stage takes 610 ops/s.

2. Feature extraction: 3.5 ∗ 𝑓𝑠 operations per JM-event are neces-
sary to compute the set of JM features. In total, 1050 ops/s are
required.

3. JM-event classification: deciding whether an event should be
classified requires 𝑓𝑠 + 3 operations per JM event, whereas the
MLP with 5-6-4 neurons requires 131 operations per JM-event,
thus, 568 ops/s are required.

4. Tuning parameters: 𝑓𝑠+ 39 operations per JM-event are necessary
to update the thresholds. Then, 378 ops/s are required.

Middle level:
1. Segment buffering: this stage requires 2 operations per JM-event

equivalent to 4 ops/s.
2. Feature extraction: computing the set of activity features re-

quires 608 ops/segment.
3. Activity classification: considering the maximum number of

neurons (10) in the hidden layer, the MLP requires 185 ops/
segment.

4. Smoothing process: this filtering stage takes 2 ops/segment.

Finally, the total computational cost of NRFAR is 43,060 ops/s +
795 ops/segment ≈ 43,063 ops/s. Similar to BUFAR, the overall com-
utational cost almost exclusively depends on the bottom and middle
evels of Fig. 1 (i.e., the JM event recognizer) because the top level is

only executed once every 5 min (segment length). Hence, the total com-
putational cost of NRFAR can be expressed as 12,918,795 ops/segment.

Appendix B. Statistical hypothesis test

The statistically significant discrepancies in the balanced accuracy
between NRFAR and BUFAR, NRFAR and JMFAR, and JMFAR and
BUFAR were evaluated using the Wilcoxon signed-rank test (Wilcoxon,
1945). Tables B.1, B.2, and B.3 show the p-values obtained from
he comparison of these methods. P-values with a green background
ndicate a significant difference in performance with a confidence level
f 5% (p = 0.05), and p-values with a pink background indicate a

nonsignificant difference.

Appendix C. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.compag.2024.109692.
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Table B.1
Statistically significant p-values were obtained by comparing the performance of
the NRFAR and BUFAR methods with different noise sources at several noise
levels.

SNR [dB] NRFAR vs. BUFAR
Animals Vehicles Weather Mixture White

20 3.88e−05 1.69e−08 8.75e−06 5.36e−06 1.02e−08
15 1.21e−04 7.79e−04 5.38e−04 8.33e−04 3.30e−11
10 1.58e−10 3.78e−01 9.34e−04 1.93e−06 7.36e−14
5 1.04e−15 1.92e−06 9.88e−15 1.34e−15 4.36e−13
0 1.43e−09 1.57e−09 1.71e−15 4.59e−10 1.16e−05
−5 7.39e−04 8.82e−06 5.20e−05 6.53e−04 1.98e−01
−10 6.23e−01 1.19e−02 9.68e−01 9.04e−01 2.16e−01
−15 5.63e−01 1.85e−01 9.44e−01 4.19e−01 6.01e−04

Table B.2
Statistically significant p-values were obtained by comparing the performance of
the NRFAR and JMFAR methods with different noise sources at several noise
levels.

SNR [dB] NRFAR vs. JMFAR
Animals Vehicles Weather Mixture White

20 8.45e−02 6.52e−04 1.80e−03 6.95e−03 5.45e−05
15 5.55e−01 2.30e−01 1.61e−01 9.76e−01 6.11e−10
10 3.66e−01 7.02e−01 3.28e−01 9.02e−01 2.61e−13
5 6.48e−01 5.98e−01 3.36e−01 2.69e−01 4.80e−15
0 3.12e−02 4.20e−04 3.77e−02 2.14e−01 8.13e−20
−5 3.29e−06 6.08e−07 8.82e−03 6.31e−03 2.83e−13
−10 4.04e−02 2.96e−03 1.20e−02 4.94e−03 6.17e−08
−15 5.95e−01 1.71e−01 7.00e−01 4.54e−01 3.15e−09

Table B.3
Statistically significant p-values were obtained by comparing the performance of
the JMFAR and BUFAR methods with different noise sources at several noise
levels.

SNR [dB] JMFAR vs. BUFAR
Animals Vehicles Weather Mixture White

20 4.67e−02 2.95e−03 2.33e−02 2.09e−02 4.39e−02
15 1.79e−04 6.66e−03 3.74e−03 2.36e−03 1.73e−01
10 2.01e−14 7.01e−02 4.646e−09 1.49e−10 1.58e−01
5 6.94e−17 1.04e−12 8.32e−18 3.47e−17 6.68e−01
0 1.25e−06 5.57e−10 2.58e−11 1.50e−10 1.07e−14
−5 6.81e−02 1.38e−01 5.61e−01 8.14e−01 4.71e−16
−10 9.58e−09 1.53e−04 7.81e−06 4.03e−08 3.89e−09
−15 4.20e−04 5.00e−01 2.73e−02 1.05e−04 5.31e−06
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