Estrany, Joan; University of the Balearic Islands/Instituto de Agroecología y Economía del Agua (INAGEA), Spain
Manfreda, Salvatore; University of Naples Federico II, Naples, Italy
Michez, Adrien ; Université de Liège - ULiège > Département GxABT > Echanges Eau - Sol - Plantes
Mokroš, Martin; University College London, London, UK ; Technical University in Zvolen, Zvolen, Slovakia ; Czech University of Life Sciences Prague, Prague, Czech Republic
Tsiafouli, Maria; Aristotle University of Thessaloniki, Thessaloniki, Greece
Gago, Xurxo; University of the Balearic Islands/Instituto de Agroecología y Economía del Agua (INAGEA), Spain
Language :
English
Title :
Understanding spatio-temporal complexity of vegetation using drones, what could we improve?
Abdollahnejad, A., Panagiotidis, D., Tree species classification and health status assessment for a mixed broadleaf-conifer forest with UAS multispectral imaging. Rem. Sens., 12(22), 2020, 3722.
Albuquerque, R.W., Vieira, D.L.M., Ferreira, M.E., Soares, L.P., Olsen, S.I., Araujo, L.S., et al. Mapping key indicators of forest restoration in the amazon using a low-cost drone and artificial intelligence. Rem. Sens., 14(4), 2022, 830.
Anderson, C.B., Biodiversity monitoring, earth observations and the ecology of scale. Ecol. Lett. 21:10 (2018), 1572–1585.
Anderson, K., Gaston, K.J., Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Front. Ecol. Environ. 11 (2013), 138–146.
Angermeier, P.L., Karr, J.R., Biological integrity versus biological diversity as policy directives: protecting biotic resources. Bioscience 44 (1994), 690–697.
Assmann, J.J., Myers-Smith, I.H., Kerby, J.T., Cunliffe, A.M., Daskalova, G.N., Drone data reveal heterogeneity in tundra greenness and phenology not captured by satellites. Environ. Res. Lett., 15(12), 2020, 125002.
Baena, S., Moat, J., Whaley, O., Boyd, D.S., Identifying species from the air: UAVs and the very high resolution challenge for plant conservation. PLoS One, 12(11), 2017, e0188714.
Bagstad, K.J., Cohen, E., Ancona, Z.H., McNulty, S.G., Sun, G., The sensitivity of ecosystem service models to choices of input data and spatial resolution. Appl. Geogr. 93 (2018), 25–36.
Bar-Massada, A., Kent, R., Carmel, Y., Environmental heterogeneity affects the location of modelled communities along the niche–neutrality continuum. Proc. Biol. Sci., 281, 2014, 20133249.
Barnas, A.F., Chabot, D., Hodgson, A.J., Johnston, D.W., Bird, D.M., Ellis-Felege, S.N., A standardized protocol for reporting methods when using drones for wildlife research. J. Unmanned Veh. Syst. 8:2 (2020), 89–98.
Beltrán-Marcos, D., Suárez-Seoane, S., Fernández-Guisuraga, J.M., Fernández-García, V., Pinto, R., García-Llamas, P., Calvo, L., Mapping soil burn severity at very high spatial resolution from unmanned aerial vehicles. Forests, 12(2), 2021, 179.
Bergamo, T.F., de Lima, R.S., Kull, T., Ward, R.D., Sepp, K., Villoslada, M., From UAV to PlanetScope: upscaling fractional cover of an invasive species Rosa rugosa. J. Environ. Manag., 336, 2023, 117693.
Bhatnagar, S., Gill, L., Regan, S., Waldren, S., Ghosh, B., A nested drone-satellite approach to monitoring the ecological conditions of wetlands. ISPRS J. Photogrammetry Remote Sens. 174 (2021), 151–165.
Blackburn, R.C., Barber, N.A., Farrell, A.K., Buscaglia, R., Jones, H.P., Monitoring ecological characteristics of a tallgrass prairie using an unmanned aerial vehicle. Restor. Ecol., 29, 2021, e13339.
Blondel, J., The ‘design’ of Mediterranean landscapes: a millennial story of humans and ecological systems during the historic period. Hum. Ecol. 34 (2006), 713–729.
Bradshaw, G.A., Fortin, M.-J., Landscape heterogeneity effects on scaling and monitoring large areas using remote sensing data. Spatial Sci. 6 (2000), 61–68.
Bulusu, M., Ellsäßer, F., Stiegler, C., Ahongshangbam, J., Marques, I., Hendrayanto, H., et al. UAV-based thermography reveals spatial and temporal variability of evapotranspiration from a tropical rainforest. Front. Forest. Glob. Change, 6, 2023, 1232410.
Buters, T.M., Bateman, P.W., Robinson, T., Belton, D., Dixon, K.W., Cross, A.T., Methodological ambiguity and inconsistency constrain unmanned aerial vehicles as a silver bullet for monitoring ecological restoration. Rem. Sens., 11(10), 2019, 1180.
Chen, J., Yi, S., Qin, Y., Wang, X., Improving estimates of fractional vegetation cover based on UAV in alpine grassland on the Qinghai–Tibetan Plateau. Int. J. Rem. Sens. 37:8 (2016), 1922–1936.
Cimoli, E., Lucieer, A., Malenovský, Z., Woodgate, W., Janoutová, R., Turner, D., Haynes, R.S., Phinn, S., Mapping functional diversity of canopy physiological traits using UAS imaging spectroscopy. Rem. Sens. Environ., 302, 2024, 113958.
Cole, B., McMorrow, J., Evans, M., Spectral monitoring of moorland plant phenology to identify a temporal window for hyperspectral remote sensing of peatland. ISPRS J. Photogrammetry Remote Sens. 90 (2014), 49–58.
Conti, L., Malavasi, M., Galland, T., Komárek, J., Lagner, O., Carmona, C.P., et al. The relationship between species and spectral diversity in grassland communities is mediated by their vertical complexity. Appl. Veg. Sci., 24, 2021, e12600.
Corcoran, E., Winsen, M., Sudholz, A., Hamilton, G., Automated detection of wildlife using drones: synthesis, opportunities and constraints. Methods Ecol. Evol. 12:6 (2021), 1103–1114.
Cromwell, C., Giampaolo, J., Hupy, J., Miller, Z., Chandrasekaran, A., A systematic review of best practices for UAS data collection in forestry-related applications. Forests, 12(7), 2021, 957.
Cunliffe, A.M., Brazier, R.E., Anderson, K., Ultra-fine grain landscape-scale quantification of dryland vegetation structure with drone-acquired structure-from-motion photogrammetry. Rem. Sens. Environ. 183 (2016), 129–143.
Cunliffe, A.M., Anderson, K., Boschetti, F., Brazier, R.E., Graham, H.A., Myers‐Smith, I.H., et al. Global application of an unoccupied aerial vehicle photogrammetry protocol for predicting aboveground biomass in non‐forest ecosystems. Rem. Sens. Ecol. Conserv. 8:1 (2022), 57–71.
Davis, M.B., Range shifts and adaptive responses to quaternary climate change. Science 292 (2001), 673–679.
de Sá, N.C., Castro, P., Carvalho, S., Marchante, E., López-Núñez, F.A., Marchante, H., Mapping the flowering of an invasive plant using unmanned aerial vehicles: is there potential for biocontrol monitoring?. Front. Plant Sci. 9 (2018), 1–13.
Díaz-Delgado, R., Ónodi, G., Kröel-Dulay, G., Kertész, M., Enhancement of ecological field experimental research by means of UAV multispectral sensing. Drones, 3(1), 2019, 7.
Doughty, C., Cavanaugh, K., Mapping coastal wetland biomass from high resolution unmanned aerial vehicle (UAV) imagery. Rem. Sens., 11, 2019, 540.
Dronova, I., Kislik, C., Dinh, Z., Kelly, M., A review of unoccupied aerial vehicle use in wetland applications: emerging opportunities in approach, technology, and data. Drones, 5(2), 2021, 45.
Dudley, K.L., Dennison, P.E., Roth, K.L., Roberts, D.A., Coates, A.R., A multi-temporal spectral library approach for mapping vegetation species across spatial and temporal phenological gradients. Rem. Sens. Environ. 167 (2015), 121–134.
Dufour, A., Gadallah, F., Wagner, H.H., Guisan, A., A, Buttler, A., Plant species richness and environmental heterogeneity in a mountain landscape: effects of variability and spatial configuration. Ecography 29 (2006), 573–584.
Durán, S.M., Martin, R.E., Díaz, S., Maitner, B.S., Malhi, Y., Salinas, N., Shenkin, A., Silman, M.R., Wieczynski, D.J., Asner, G.P., Bentley, L.P., Savage, V.M., Enquist, B.J., Informing trait-based ecology by assessing remotely sensed functional diversity across a broad tropical temperature gradient. Sci. Adv., 5, 2019, eaaw8114.
Elbaz, S., Sheffer, E., Lensky, I.M., Levin, N., The impacts of spatial resolution, viewing angle, and spectral vegetation indices on the quantification of woody mediterranean species seasonality using remote sensing. Rem. Sens., 13(10), 2021, 1958.
Estrany, J., Ruiz, M., Calsamiglia, A., Carriquí, M., García-Comendador, J., Nadal, M., Fortesa, J., López-Tarazón, J.A., Medrano, H., Gago, J., Sediment connectivity linked to vegetation using UAVs: high-resolution imagery for ecosystem management. Sci. Total Environ. 671 (2019), 1192–1205.
Fassnacht, F.E., Müllerová, J., Conti, L., Malavasi, M., Schmidtlein, S., About the link between biodiversity and spectral variation. Appl. Veg. Sci., 25(1), 2022, e12643.
Fawcett, D., Bennie, J., Anderson, K., Monitoring spring phenology of individual tree crowns using drone‐acquired NDVI data. Rem. Sens. Ecol. Conserv. 7:2 (2021), 227–244.
Fenger-Nielsen, R., Hollesen, J., Matthiesen, H., Andersen, E.A.S., Westergaard-Nielsen, A., Harmsen, H., et al. Footprints from the past: the influence of past human activities on vegetation and soil across five archaeological sites in Greenland. Sci. Total Environ. 654 (2019), 895–905.
Francis, R.J., Kingsford, R.T., Moseby, K., Read, J., Pedler, R., Fisher, A., et al. Tracking landscape scale vegetation change in the arid zone by integrating ground, drone and satellite data. Rem. Sens. Ecol. Conserv. 10:3 (2024), 374–387.
Frey, J., Kovach, K., Stemmler, S., Koch, B., UAV photogrammetry of forests as a vulnerable process. A sensitivity analysis for a structure from motion RGB-image pipeline. Rem. Sens., 10(6), 2018, 912.
Gago, J., Douthe, C., Coopman, R.E., Gallego, P.P., Ribas-Carbo, M., Flexas, J., Escalona, J., Medrano, H., UAVs challenge to assess water stress for sustainable agriculture. Agric. Water Manag. 153 (2015), 9–19.
Gamon, J.A., Wang, R., Gholizadeh, H., Zutta, B., Townsend, P.A., Cavender-Bares, J., Consideration of scale in remote sensing of biodiversity. Cavender-Bares, J., et al. (eds.) Remote Sensing of Plant Biodiversity, 2020, Springer, 425–447.
Gonzalez, L., Montes, G., Puig, E., Johnson, S., Mengersen, K., Gaston, K., Unmanned aerial vehicles (UAVs) and artificial intelligence revolutionizing wildlife monitoring and conservation. Sensors, 16, 2016, 97.
Gratani, L., Plant phenotypic plasticity in response to environmental factors. Advan. Botan. 2014 (2014), 1–17.
Guerra-Hernández, J., Díaz-Varela, R.A., Ávarez-González, J.G., Rodríguez-González, P.M., Assessing a novel modelling approach with high resolution UAV imagery for monitoring health status in priority riparian forests. Forest Ecosys., 8, 2021, 61.
Gunton, R.M., Klenke, R.A., Paloniemi, R., Gavish, Y., Marsh, C.J., Kunin, W.E., Henle, K., The meaning of “scale”. Henle, K., et al. (eds.) Scaling in Ecology and Biodiversity Conservation, 2014, Pensoft Publishers, 19–22.
Hamada, Y., Szoldatits, K., Grippo, M., Hartmann, H.M., Remotely sensed spatial structure as an indicator of internal changes of vegetation communities in desert landscapes. Rem. Sens., 11(12), 2019, 1495.
Harris, A., Baird, A.J., Microtopographic drivers of vegetation patterning in blanket peatlands recovering from erosion. Ecosystems 22:5 (2019), 1035–1054.
Henle, K., Kunin, W.E., Schweiger, O., Schmeller, D.S., Grobelnik, V., Matsinos, Y., Pantis, J.D., Penev, L., Potts, S.G., Ring, I., Similä, J., Tzanopoulos, J., van den Hove, S., Baguette, M., Clobert, J., Excoffier, L., Framstad, E., Grodinska-Jurczak, M., Lengyel, S., Marty, P., Moilanen, A., Porcher, E., Storch, D., Steffan-Dewenter, I., Sykes, M.T., Zobel, M., Settele, J., Securing the conservation of biodiversity across administrative levels and spatial, temporal, and ecological scales. Gaia 19:3 (2010), 187–193.
Howell, R.G., Jensen, R.R., Petersen, S.L., Larsen, R.T., Measuring height characteristics of sagebrush (Artemisia sp.) using imagery derived from small unmanned aerial systems (sUAS). Drones, 4(1), 2020, 6.
Husson, E., Reese, H., Ecke, F., Combining spectral data and a DSM from UAS-images for improved classification of non-submerged aquatic vegetation. Rem. Sens., 9(3), 2017, 247.
Huston, M.A., Local processes and regional patterns: appropriate scales for understanding variation in the diversity of plants and animals. Oikos, 86, 1999, 393.
Hyyppä, E., Hyyppä, J., Hakala, T., Kukko, A., Wulder, M.A., White, J.C., et al. Under-canopy UAV laser scanning for accurate forest field measurements. ISPRS J. Photogrammetry Remote Sens. 164 (2020), 41–60.
Ierodiaconou, D., Kennedy, D.M., Pucino, N., Allan, B.M., McCarroll, R.J., Ferns, L.W., et al. Citizen science unoccupied aerial vehicles: a technique for advancing coastal data acquisition for management and research. Continent. Shelf Res., 244, 2022, 104800.
Jayathunga, S., Owari, T., Tsuyuki, S., The use of fixed–wing UAV photogrammetry with LiDAR DTM to estimate merchantable volume and carbon stock in living biomass over a mixed conifer–broadleaf forest. Int. J. Appl. Earth Obs. Geoinf. 73 (2018), 767–777.
Jetz, W., McGeoch, M.A., Guralnick, R., Ferrier, S., Beck, J., Costello, M.J., Turak, E., Essential biodiversity variables for mapping and monitoring species populations. Nat. Ecol. Evol. 3:4 (2019), 539–551.
Jiménez López, J., Mulero-Pázmány, M., Drones for conservation in protected areas: present and future. Drones, 3, 2019, 10.
Jucker, T., Gosper, C.R., Wiehl, G., Yeoh, P.B., Raisbeck-Brown, N., Fischer, F.J., et al. Using multi-platform LiDAR to guide the conservation of the world's largest temperate woodland. Rem. Sens. Environ., 296, 2023, 113745.
Kent, R., Bar-Massada, A., Carmel, Y., Multiscale analyses of mammal species composition – environment relationship in the contiguous USA. PLoS One, 6, 2011, e25440.
Kent, R., Bar-Massada, A., Carmel, Y., Bird and mammal species composition in distinct geographic regions and their relationships with environmental factors across multiple spatial scales. Ecol. Evol. 4 (2014), 1963–1971.
Kerr, J.T., Ostrovsky, M., From space to species: ecological applications for remote sensing. Trends Ecol. Evol. 18 (2003), 299–305.
Khadka, J., Yadav, N.S., Granot, G., Grafi, G., Seasonal growth of Zygophyllum dumosum Boiss.: summer dormancy is associated with loss of the permissive epigenetic marker dimethyl H3K4 and extensive reduction in proteins involved in basic cell functions. Plants, 7(3), 2018, 59.
Kolasa, J., Pickett, S.T.A., (eds.) Ecological Heterogeneity, 1991, Springer, New York, New York, NY.
Kükenbrink, D., Marty, M., Bösch, R., Ginzler, C., Benchmarking laser scanning and terrestrial photogrammetry to extract forest inventory parameters in a complex temperate forest. Int. J. Appl. Earth Obs. Geoinf., 113, 2022, 102999.
Laslier, M., Hubert‐Moy, L., Corpetti, T., Dufour, S., Monitoring the colonization of alluvial deposits using multitemporal UAV RGB ‐imagery. Appl. Veg. Sci. 22 (2019), 561–572.
Lev-Yadun, S., Ne'eman, G., When may green plants be aposematic?. Biol. J. Linn. Soc. 81 (2004), 413–416.
Levin, S.A., The problem of pattern and scale in ecology: the robert H. MacArthur award lecture. Ecology 73 (1992), 1943–1967.
Li, X., Huang, H., Shabanov, N.V., Chen, L., Yan, K., Shi, J., Extending the stochastic radiative transfer theory to simulate BRF over forests with heterogeneous distribution of damaged foliage inside of tree crowns. Rem. Sens. Environ., 250, 2020, 112040.
Linchant, J., Lejeune, P., Quevauvillers, S., Vermeulen, C., Brostaux, Y., Lhoest, S., Michez, A., Evaluation of an innovative rosette flight plan design for wildlife aerial surveys with UAS. Drones, 7(3), 2023, 208.
Lu, B., He, Y., Species classification using Unmanned Aerial Vehicle (UAV)-acquired high spatial resolution imagery in a heterogeneous grassland. ISPRS J. Photogrammetry Remote Sens. 128 (2017), 73–85.
Maes, W.H., Steppe, K., Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture. Trends Plant Sci. 24 (2019), 152–164.
Manfreda, S., Caylor, K.K., Good, S.P., An ecohydrological framework to explain shifts in vegetation organization across climatological gradients. Ecohydrology, 10, 2017, e1809.
Manfreda, S., McCabe, M., Miller, P., Lucas, R., Pajuelo Madrigal, V., Mallinis, G., Ben Dor, E., Helman, D., Estes, L., Ciraolo, G., Müllerová, J., Tauro, F., de Lima, M., de Lima, J., Maltese, A., Frances, F., Caylor, K., Kohv, M., Perks, M., Ruiz-Pérez, G., Su, Z., Vico, G., Toth, B., On the use of unmanned aerial systems for environmental monitoring. Rem. Sens., 10, 2018, 641.
Marceau, D.J., Hay, G.J., Remote sensing contributions to the scale issue. Can. J. Rem. Sens. 25:4 (1999), 357–366.
Martin, F.-M., Müllerová, J., Borgniet, L., Dommanget, F., Breton, V., Evette, A., Using single- and multi-date UAV and satellite imagery to accurately monitor invasive knotweed species. Rem. Sens., 10, 2018, 1662.
Marvin, D.C., Koh, L.P., Lynam, A.J., Wich, S., Davies, A.B., Krishnamurthy, R., et al. Integrating technologies for scalable ecology and conservation. Glob. Ecol. and Conserv. 7 (2016), 262–275.
McDonald, T., Gann, G.D., Jonson, J., Dixon, K.W., Aronson, J., Decleer, K., Wickwire, L., International standards for the practice of ecological restoration–including principles and key concepts, 2016, Society for Ecological Restoration, Washington, D.C.
Merrick, T., Pau, S., Detto, M., Broadbent, E.N., Bohlman, S.A., Still, C.J., Almeyda Zambrano, A.M., Unveiling spatial and temporal heterogeneity of a tropical forest canopy using high-resolution NIRv, FCVI, and NIRvrad from UAS observations. Biogeosciences 18:22 (2021), 6077–6091.
Michelaki, C., Fyllas, N.M., Galanidis, A., Aloupi, M., Evangelou, E., Arianoutsou, M., Dimitrakopoulos, P.G., An integrated phenotypic trait-network in thermo-Mediterranean vegetation describing alternative, coexisting resource-use strategies. Sci. Total Environ. 672 (2019), 583–592.
Michez, A., Piégay, H., Lisein, J., Claessens, H., Lejeune, P., Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system. Environ. Monit. Assess., 188, 2016, 146.
Michez, A., Broset, S., Lejeune, P., Ears in the sky: potential of drones for the bioacoustic monitoring of birds and bats. Drones, 5(1), 2021, 9.
Mienna, I.M., Klanderud, K., Ørka, H.O., Bryn, A., Bollandsås, O.M., Land cover classification of treeline ecotones along a 1100 km latitudinal transect using spectral‐and three‐dimensional information from UAV‐based aerial imagery. Rem. Sens. Ecol. Conserv. 8:4 (2022), 536–550.
Mokroš, M., Výbošťok, J., Merganič, J., Hollaus, M., Barton, I., Koreň, M., Tomaštík, J., Čerňava, J., Early stage forest windthrow estimation based on unmanned aircraft system imagery. Forests, 8, 2017, 306.
Müllerová, J., UAS for nature conservation – monitoring invasive species. Sharma, J.B., (eds.) Applications of Small Unmanned Aircraft Systems Best Practices and Case Studies, 2019, CRC Press, 157–178.
Müllerová, J., Pergl, J., Pyšek, P., Remote sensing as a tool for monitoring plant invasions: testing the effects of data resolution and image classification approach on the detection of a model plant species Heracleum mantegazzianum (giant hogweed). Int. J. Appl. Earth Obs. Geoinf. 25 (2013), 55–65.
Müllerová, J., Brůna, J., Bartaloš, T., Dvořák, P., Vítková, M., Pyšek, P., Timing is important: unmanned aircraft vs. Satellite imagery in plant invasion monitoring. Front. Plant Sci. 8 (2017), 1–13.
Müllerová, J., Bartaloš, T., Brůna, J., Dvořák, P., Vítková, M., Unmanned aircraft in nature conservation: an example from plant invasions. Int. J. Rem. Sens. 38 (2017), 2177–2198.
Müllerová, J., Gago, X., Bučas, M., Company, J., Estrany, J., Fortesa, J., Manfreda, S., Michez, A., Mokroš, M., Paulus, G., Tiškus, E., Tsiafouli, M., Kent, R., Characterizing vegetation complexity with unmanned aerial systems (UAS) – a framework and synthesis. Ecol. Indicat., 131, 2021, 108156.
Müllerová, J., Bartaloš, T., Gago, X., Kent, R., Michez, A., Mokroš, M., Mücher, S., Paulus, G., Vegetation mapping and monitoring by unmanned aerial systems (UAS)—current state and perspectives. Manfreda, S., Dor, E.B., (eds.) Unmanned Aerial Systems for Monitoring Soil, Vegetation, and Riverine Environments, 2023, Elsevier, 93–124.
Müllerová, J., Brundu, G., Große-Stoltenberg, A., Kattenborn, T., Richardson, D.M., Pattern to process, research to practice: remote sensing of plant invasions. Biol. Invasions 25:12 (2023), 3651–3676.
Neumann, C., Behling, R., Schindhelm, A., Itzerott, S., Weiss, G., Wichmann, M., Müller, J., The colors of heath flowering–quantifying spatial patterns of phenology in Calluna life‐cycle phases using high‐resolution drone imagery. Rem. Sens. Ecol. Conserv. 6:1 (2020), 35–51.
Olsoy, P.J., Shipley, L.A., Rachlow, J.L., Forbey, J.S., Glenn, N.F., Burgess, M.A., Thornton, D.H., Unmanned aerial systems measure structural habitat features for wildlife across multiple scales. Methods Ecol. Evol. 9:3 (2018), 594–604.
Paneque-Gálvez, J., McCall, M.K., Napoletano, B.M., Wich, S.A., Koh, L.P., Small drones for community-based forest monitoring: an assessment of their feasibility and potential in tropical areas. Forests 5:6 (2014), 1481–1507.
Pecl, G.T., Araújo, M.B., Bell, J.D., Blanchard, J., Bonebrake, T.C., Chen, I.C., et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science, 355(6332), 2017, eaai9214.
Perrone, M., Di Febbraro, M., Conti, L., Divíšek, J., Chytrý, M., Keil, P., Carranza, M.L., Rocchini, D., Torresani, M., Moudrý, V., Šímová, P., Prajzlerová, D., Müllerová, J., Wild, J., Malavasi, M., The relationship between spectral and plant diversity: disentangling the influence of metrics and habitat types at the landscape scale. Rem. Sens. Environ., 293, 2023, 113591.
Pocock, M.J., Chandler, M., Bonney, R., Thornhill, I., Albin, A., August, T., et al. A vision for global biodiversity monitoring with citizen science. Advances in Ecological Research, vol. 59, 2018, Academic Press, 169–223.
Poley, L.G., McDermid, G.J., A systematic review of the factors influencing the estimation of vegetation aboveground biomass using unmanned aerial systems. Rem. Sens., 12(7), 2020, 1052.
R Core Team. R: A Language and Environment for Statistical Computing. 2023 Vienna, Austria.
Randlkofer, B., Obermaier, E., Hilker, M., Meiners, T., Vegetation complexity—the influence of plant species diversity and plant structures on plant chemical complexity and arthropods. Basic Appl. Ecol. 11 (2010), 383–395.
Räsänen, A., Virtanen, T., Data and resolution requirements in mapping vegetation in spatially heterogeneous landscapes. Rem. Sens. Environ., 230, 2019, 111207.
Reddy, C.S., Kurian, A., Srivastava, G., Singhal, J., Varghese, A.O., Padalia, H., et al. Remote sensing enabled essential biodiversity variables for biodiversity assessment and monitoring: technological advancement and potentials. Biodivers. Conserv. 30 (2021), 1–14.
Resop, J.P., Lehmann, L., Hession, W.C., Quantifying the spatial variability of annual and seasonal changes in riverscape vegetation using drone laser scanning. Drones, 5(3), 2021, 91.
Rocchini, D., Balkenhol, N., Carter, G.A., Foody, G.M., Gillespie, T.W., He, K.S., Kark, S., Levin, N., Lucas, K., Luoto, M., Nagendra, H., Oldeland, J., Ricotta, C., Southworth, J., Neteler, M., Remotely sensed spectral heterogeneity as a proxy of species diversity: recent advances and open challenges. Ecol. Inf. 5 (2010), 318–329.
Rocchini, D., Lenoir, J., Asner, G., Beierkuhnlein, C., Dalponte, M., Feilhauer, H., Foody, G., Geller, G., Gillespie, T., He, K., Kleijn, D., Leitão, P., Malavasi, M., Moudrý, V., Müllerová, J., Nagendra, H., Normand, S., Ricotta, C., Santos, M., Schaepman, M., Schmidtlein, S., Skidmore, A., Šímová, P., Townsend, P., Turner, W., Ustin, S., Vihervaara, P., Wegmann, M., Féret, J.-B., The spectral species concept in living color. J. Geophys. Res.: Biogeosciences, 127, 2022, e2022JG007026.
Röder, M., Latifi, H., Hill, S., Wild, J., Svoboda, M., Brůna, J., Macek, M., Nováková, M.H., Gülch, E., Heurich, M., Application of optical unmanned aerial vehicle-based imagery for the inventory of natural regeneration and standing deadwood in post-disturbed spruce forests. Int. J. Rem. Sens. 39 (2018), 5288–5309.
Roser, A., Enterkine, J., Requena‐Mullor, J.M., Glenn, N.F., Boehm, A., de Graaff, M.A., et al. Drone imagery protocols to map vegetation are transferable between dryland sites across an elevational gradient. Ecosphere, 13(12), 2022, e4330.
Rozenzweig, M.L., Species Diversity in Time and Space. 1995, Cambridge University Press, Cambridge, UK.
Sankaran, S., Majumder, S., Viswanathan, A., Guttal, V., Clustering and correlations: inferring resilience from spatial patterns in ecosystems. Methods Ecol. Evol. 10:12 (2019), 2079–2089.
Schmidt, T., Schuster, C., Kleinschmit, B., Forster, M., Evaluating an intra-annual time series for grassland classification—how many acquisitions and what seasonal origin are optimal?. IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens. 7 (2014), 3428–3439.
Schulze‐Brüninghoff, D., Wachendorf, M., Astor, T., Remote sensing data fusion as a tool for biomass prediction in extensive grasslands invaded by L. polyphyllus. Rem. Sens. Ecol. Conserv. 7:2 (2021), 198–213.
Siewert, M.B., Olofsson, J., Scale-dependency of Arctic ecosystem properties revealed by UAV. Environ. Res. Lett., 15(9), 2020, 094030.
Siewert, M.B., Olofsson, J., UAV reveals substantial but heterogeneous effects of herbivores on Arctic vegetation. Sci. Rep., 11(1), 2021, 19468.
Singh, J., Boucher, P.B., Hockridge, E.G., Davies, A.B., Effects of long‐term fixed fire regimes on African savanna vegetation biomass, vertical structure and tree stem density. J. Appl. Ecol. 60:7 (2023), 1223–1238.
Sotille, M.E., Bremer, U.F., Vieira, G., Velho, L.F., Petsch, C., Auger, J.D., Simões, J.C., UAV-based classification of maritime Antarctic vegetation types using GEOBIA and random forest. Ecol. Inf., 71, 2022, 101768.
Spanhove, T., Borre, J.V., Delalieux, S., Haest, B., Paelinckx, D., Can remote sensing estimate fine-scale quality indicators of natural habitats?. Ecol. Indicat. 18 (2012), 403–412.
Steenvoorden, J., Bartholomeus, H., Limpens, J., Less is more: optimizing vegetation mapping in peatlands using unmanned aerial vehicles (UAVs). Int. J. Appl. Earth Obs. Geoinf., 117, 2023, 103220.
Stöcker, C., Bennett, R., Nex, F., Gerke, M., Zevenbergen, J., Review of the current state of UAV regulations. Rem. Sens., 9(5), 2017, 459.
Tang, L., He, M., Li, X., Verification of fractional vegetation coverage and NDVI of desert vegetation via UAVRS technology. Rem. Sens., 12(11), 2020, 1742.
Tian, F., Brandt, M., Liu, Y.Y., Verger, A., Tagesson, T., Diouf, A.A., Rasmussen, K., Mbow, C., Wang, Y., Fensholt, R., Remote sensing of vegetation dynamics in drylands: evaluating vegetation optical depth (VOD) using AVHRR NDVI and in situ green biomass data over West African Sahel. Rem. Sens. Environ. 177 (2016), 265–276.
Tmušić, G., Manfreda, S., Aasen, H., James, M.R., Gonçalves, G., Ben-Dor, E., Brook, A., Polinova, M., Arranz, J.J., Mészáros, J., Zhuang, R., Johansen, K., Malbeteau, Y., de Lima, I.P., Davids, C., Herban, S., McCabe, M.F., Current practices in UAS-based environmental monitoring. Rem. Sens., 12, 2020, 1001.
Tóth, V.R., Monitoring spatial variability and temporal dynamics of phragmites using unmanned aerial vehicles. Front. Plant Sci. 9 (2018), 1–11.
Treitz, P., Howarth, P., High spatial resolution remote sensing data for forest ecosystem classification: an examination of spatial scale. Rem. Sens. Environ. 72:3 (2000), 268–289.
Turnbull, L., Wilcox, B.P., Belnap, J., Ravi, S., D'Odorico, P., Childers, D., Gwenzi, W., Okin, G., Wainwright, J., Caylor, K.K., Sankey, T., Understanding the role of ecohydrological feedbacks in ecosystem state change in drylands. Ecohydrology 5 (2012), 174–183.
Turner, W., Spector, S., Gardiner, N., Fladeland, M., Sterling, E., Steininger, M., Remote sensing for biodiversity science and conservation. Trends Ecol. Evol. 18 (2003), 306–314.
Tzanopoulos, Mouttet, J.R., Letourneau, A., Vogiatzakis, I.N., Potts, S.G., Henle, K., Mathevet, R., Marty, P., Scale sensitivity of drivers of environmental change across Europe. Global Environ. Change 23 (2013), 167–178.
van Iersel, W., Straatsma, M., Addink, E., Middelkoop, H., Monitoring height and greenness of non-woody floodplain vegetation with UAV time series. ISPRS J. Photogrammetry Remote Sens. 141 (2018), 112–123.
van Iersel, W., Straatsma, M., Addink, E., Middelkoop, H., Monitoring height and greenness of non-woody floodplain vegetation with UAV time series. ISPRS J. Photogrammetry Remote Sens. 141 (2018), 112–123.
Vihervaara, P., Auvinen, A.-P., Mononen, L., Törmä, M., Ahlroth, P., Anttila, S., Böttcher, K., Forsius, M., Heino, J., Heliölä, J., Koskelainen, M., Kuussaari, M., Meissner, K., Ojala, O., Tuominen, S., Viitasalo, M., Virkkala, R., How Essential Biodiversity Variables and remote sensing can help national biodiversity monitoring. Glob. Ecol. and Conserv. 10 (2017), 43–59.
Villoslada Peciña, M.V., Bergamo, T.F., Ward, R.D., Joyce, C.B., Sepp, K., A novel UAV-based approach for biomass prediction and grassland structure assessment in coastal meadows. Ecol. Indicat., 122, 2021, 107227.
Wachendorf, M., Fricke, T., Möckel, T., Remote sensing as a tool to assess botanical composition, structure, quantity and quality of temperate grasslands. Grass Forage Sci. 73 (2017), 1–14.
Wagner, T.C., Uiseb, K., Fischer, C., Rolling pits of Hartmann's mountain zebra (Zebra equus hartmannae) increase vegetation diversity and landscape heterogeneity in the Pre‐Namib. Ecol. Evol. 11:19 (2021), 13036–13051.
Wang, R., Gamon, J.A., Remote sensing of terrestrial plant biodiversity. Rem. Sens. Environ., 231, 2019, 111218.
Wang, S., Garcia, M., Bauer-Gottwein, P., Jakobsen, J., Zarco-Tejada, P.J., Bandini, F., Paz, V.S., Ibrom, A., High spatial resolution monitoring land surface energy, water and CO2 fluxes from an Unmanned Aerial System. Rem. Sens. Environ. 229 (2019), 14–31.
Wang, S., Garcia, M., Ibrom, A., Bauer-Gottwein, P., Temporal interpolation of land surface fluxes derived from remote sensing – results with an unmanned aerial system. Hydrol. Earth Syst. Sci. 24 (2020), 3643–3661.
Watts, A.C., Ambrosia, V.G., Hinkley, E.A., Unmanned aircraft systems in remote sensing and scientific research: classification and considerations of use. Rem. Sens. 4 (2012), 1671–1692.
Whitehead, K., Hugenholtz, C.H., Myshak, S., Brown, O., LeClair, A., Tamminga, A., Barchyn, T.E., Moorman, B., Eaton, B., Remote sensing of the environment with small unmanned aircraft systems (UASs), part 2: scientific and commercial applications. J. Unmanned Veh. Syst. 2 (2014), 86–102.
Wickham, H., ggplot2. 2016, Springer International Publishing, Cham.
Woodcock, C.E., Strahler, A.H., The factor of scale in remote sensing. Rem. Sens. Environ. 21 (1987), 311–332.
Yang, S., Li, C., Lou, H., Wang, P., Wu, X., Zhang, Y., et al. Role of the countryside landscapes for sustaining biodiversity in karst areas at a semi centennial scale. Ecol. Indicat., 123, 2021, 107315.
Yuan, C., Liu, Z., Zhang, Y., UAV-based forest fire detection and tracking using image processing techniques, 2015, 639–643 2015 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE.
Zahawi, R.A., Dandois, J.P., Holl, K.D., Nadwodny, D., Reid, J.L., Ellis, E.C., Using lightweight unmanned aerial vehicles to monitor tropical forest recovery. Biol. Conserv. 186 (2015), 287–295.
Zhang, W., Yi, S., Qin, Y., Sun, Y., Shangguan, D., Meng, B., et al. Effects of patchiness on surface soil moisture of alpine meadow on the Northeastern Qinghai-Tibetan Plateau: implications for grassland restoration. Rem. Sens., 12(24), 2020, 4121.
Zhao, W., Du, S., Spectral–spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach. IEEE Trans. Geosci. Rem. Sens. 54 (2016), 4544–4554.
Zhao, Y., Liu, X., Wang, Y., Zheng, Z., Zheng, S., Zhao, D., Bai, Y., UAV-based individual shrub aboveground biomass estimation calibrated against terrestrial LiDAR in a shrub-encroached grassland. Int. J. Appl. Earth Obs. Geoinf., 101, 2021, 102358.