[en] The gel formation behaviour of four tunisian pomegranate peel powders was investigated at pH 3 in the presence of 30% sucrose and 1 g/L CaCl2. All gels show a rapid formation with G’>G″, which reveals a typically gel-like structure. Since the mechanical properties of pomegranate peel gels are governed mainly by soluble pectins and/or insoluble fibrous material, the rheological properties of pectin and fibrous material gels were individually investigated. Results show that all systems displayed a typical solid-like behaviour, however the profiles obtained for the fibrous material gels (35 g/L fibrous material) were quantitatively higher than those obtained for pectins (7 g/L pectin). Thus, the properties of the peel gels seem then to be mostly governed by fibrous material. However, the G′ and G″ moduli obtained for fibrous material and pectin gels were significantly lower than those of peel suspensions. The rheological properties of peel gels would thus result from a strong synergism between fibrous material and pectins. The mechanical treatment was found to have a significant effect on fibrous material gel strength improvement which could be related to a lower sedimentation of suspensions. The particle size distributions revealed a decrease of fibrous material's particle size, and so an increase in surface area and a decrease of suspension's sedimentation. By heating samples at 82 °C for 1 h, trimodal distributions were obtained for peel samples.
Disciplines :
Food science
Author, co-author :
Abid, Mouna; Laboratoire Analyse, Valorisation et Sécurité des Aliments, Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax (ENIS), Sfax, Tunisia
Cheikhrouhou, S.; Laboratoire Analyse, Valorisation et Sécurité des Aliments, Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax (ENIS), Sfax, Tunisia
Cuvelier, Gérard; UMR Ingénierie Procédés Aliments, AgroParisTech, INRA, Université Paris-Saclay, Massy, France
Leverrier, Cassandre; UMR Ingénierie Procédés Aliments, AgroParisTech, INRA, Université Paris-Saclay, Massy, France
Renard, Catherine M.G.C.; INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, Avignon, France ; Avignon Université, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, Avignon, France
Attia, Hamadi; Laboratoire Analyse, Valorisation et Sécurité des Aliments, Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax (ENIS), Sfax, Tunisia
Ayadi, Mohamed ; Laboratoire Analyse, Valorisation et Sécurité des Aliments, Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax (ENIS), Sfax, Tunisia
Language :
English
Title :
Rheological properties of pomegranate peel suspensions: The effect of fibrous material and low-methoxyl pectin at acidic pH
MHESR - Tunisia. Ministry of Higher Education and Scientific Research
Funding text :
This work was financed by the Ministry of Higher Education and Scientific Research - Tunisia to Mouna Abid for an internship at UMR Ingénierie Procédés Aliments and UMR408.
Agoda-Tandjawa, G., Durand, S., Berot, S., Blassel, C., Gaillard, C., Garnier, C., et al. Rheological characterization of microfibrillated cellulose suspensions after freezing. Carbohydrate Polymers 80 (2010), 677–686.
Agoda-Tandjawa, G., Durand, S., Gaillard, C., Garnier, C., Doublier, J.L., Properties of cellulose/pectins composites: Implication for structural and mechanical properties of cell wall. Carbohydrate Polymers 90 (2012), 1081–1091.
Agoda-Tandjawa, G., Durand, S., Gaillard, C., Garnier, C., Doublier, J.L., Rheological behaviour and microstructure of microfibrillated cellulose suspensions/low-methoxyl pectin mixed systems. Effect of calcium ions. Carbohydrate Polymers 87 (2012), 1045–1057.
Axelos, M.A.V., Thibault, J.F., The chemistry of low-methoxyl pectin gelation. Walter, R.H., (eds.) The chemistry and thechnology of pectin, 1991, Academic Press, New York, 109–118.
Buchholt, H.C., Christensen, T.M.I.E., Fallesen, B., Ralet, M.C., Thibault, J.F., Preparation and properties of enzymatically and chemically modified sugar beet pectins. Carbohydrate Polymers 58 (2004), 149–161.
Cardoso, S., Coimbra, M., Silva, Lopes da, Temperature dependence of the formation and melting of pectin-Ca2+ networks : A rheological study. Food Hydrocolloids 17 (2003), 801–807.
Dhingra, D., Michael, M., Rajput, H., Patil, R.T., Dietary fibre in foods: A review. Journal of Food Science and Technology 49 (2012), 255–266.
Dikeman, C.L., Murphy, M.R., Fahey, G.C. Jr., Dietary fibers affect viscosity of solutions and simulated human gastric and small intestinal digesta. Journal of Nutrition 136 (2006), 913–919.
Espinosa, L., Toa, N., Symoneaux, R., Renard, C.M.G.C., Biau, N., Cuvelier, G., Effect of processing on rheological, structural and sensory properties of apple puree. Procedia Food Science 1 (2011), 513–520.
Fraeye, I., Duvetter, T., Doungla, E., Loey, A.V., Hendrickx, M., Fine-tuning the properties of pectin–calcium gels by control of pectin fine structure, gel composition and environmental conditions. Trends in Food Science & Technology 21 (2010), 219–228.
Gelroth, J., Ranhotra, G.S., Food uses of fibre. Cho, S.S., Dreher, M.L., (eds.) Handbook of dietary fibre, 2001, Marcel Dekker, New York, 435–449.
Guillon, F., Champ, M., Structural and physical properties of dietary fibres, and consequences of processing on human physiology. Food Research International 33 (2000), 233–245.
Hwang, J., Kokini, J.L., Contribution of the side branches to rheological properties of pectins. Carbohydrate Polymers 19 (1992), 41–50.
Imeson, A., Food stabilisers, thickeners, and gelling agents. 2010, Wiley-Blackwell, Chichester (Chapter 10).
Kim, W.J., Rao, V.N.M., Smit, C.J.B., Effect of chemical composition on compressive mechanical properties of low ester pectin gels. Journal of Food Science 43 (1978), 572–575.
Kunzek, H., Muller, S., Vetter, S., Godeck, R., The significance of physico-chemical properties of plant cell wall materials for the development of innovative food products. European Food Research and Technology 214 (2002), 361–376.
Lowys, M.P., Desbrie Áres, J., Rinaudo, M., Rheological characterization of cellulosic microfibril suspensions. Role of polymeric additives. Food Hydrocolloids 15 (2001), 25–32.
Mditshwa, A., Fawole, O.A., Al-Said, F., Al-Yahyai, R., Opara, U.L., Phytochemical content, antioxidant capacity and physicochemical properties of pomegranate grown in different microclimates in South Africa. South African Journal of Plant and Soil 30 (2013), 81–90.
Pereira, P.H., Oliveira, T.Í., Rosa, M.F., Cavalcante, F.L., Moates, G.K., Wellner, N., et al. Pectin extraction from pomegranate peels with citric acid. International Journal of Biological Macromolecules 88 (2016), 373–379.
Poutanen, K., Suirti, T., Aura, A.M., Luikkonen, K., Autio, K., Influence of processing on the cereal dietary fibre complex: What do we know?. Guillon, F., et al. (eds.) Proceedings of the PROFIBRE Symposium, Functional properties of non-digestible carbohydrates, 1998, Imprimeric Parentheses, Nantes, 66–70.
Raghavendra, S.N., Ramachandra Swamy, S.R., Rastogi, N.K., Raghavarao, K.S.M.S., Kumar, S., et al. Grinding characteristics and hydration properties of coconut residue: A source of dietary fibre. Journal of Food Engineering 72 (2006), 281–286.
Rinaudo, M., Physicochemical properties of pectins in solution and gel states. Visser, J., Voragen, A.G.J., (eds.) Pectins and pectinases, 1996, Elsevier, New York, 21–34.
Smidsrod, O., Haug, A., Estimation of relative stiffness of the molecular chain in polyelectrolytes from measurements of viscosity at different ionic strengths. Biopolymers 10 (1971), 1213–1227.
Speiser, R., Copley, M.J., Nutting, G.C., Effect of molecular dissolution and charge distribution on the gelation of pectin. Journal of Physical Chemistry 51 (1947), 117–133.
Srivastava, P., Malviya, R., Sources of pectin, extraction and its applications in pharmaceutical industry − an overview. Indian Journal of Natural Products and Resources 2 (2011), 10–18.
Tatsumi, D., Kourogi, H., Chen, B., Matsumoto, T., Effect of natural additives on the rheological properties of cellulose fiber disperse systems. Colloids and Surfaces A. Physicochemical and Engineering Aspects 316 (2008), 151–158.
Thakur, B.R., Singh, R.K., Handa, A.K., Chemistry and uses of pectin- a review. Critical Reviews in Food Science and Nutrition 37 (1997), 47–73.
Thibault, J.F., Renard, C.M.G.C., Axelos, M.A.V., Roger, P., Crépeau, M.J., Studies on the length of homogalacturonic regions in pectins by acid hydrolysis. Carbohydrate Research 238 (1993), 271–286.
Vaikousi, H., Biliaderis, C.G., Izydorczyk, M.S., Solution flow behavior and gelling properties of water-soluble barley (1→3,1→4)-β-glucans varying in molecular size. Journal of Cereal Science 39 (2004), 119–137.
Vincken, J.P., Schols, H.A., Oomen, R., McCann, M.C., Ulvskov, P., Voragen, A.G.J., et al. If homogalacturonan were a side chain of rhamnogalacturonan I. Implications for cell wall architecture. Plant Physiology 132 (2003), 1781–1789.
Voragen, A.G.J., Pilnik, W., Thibault, J.F., Axelos, M.A.V., Renard, C.M.G.C., Pectins. Sephen, A.M., (eds.) Food polysaccharides and their applications, 1995, Marcel Dekker Inc, NewYork, 287–339.
Zykwinska, A.W., Ralet, M.C.J., Garnier, C.D., Thibault, J.F.J., Evidence for in vitro binding of pectin side chains to cellulose. Plant Physiology 139 (2005), 397–407.