[en] Membrane separation technology, for bioactive compounds separation, gained great attention lately. Our main goal in this work was to produce an oleuropein concentrate. The water extract of olive leaves has been subjected to a screening on the basis of molecular size. First microfiltration process (0.2 μm) allowed large particles removal, a following step of ultrafiltration permitted the removal of molecules larger than 5 kDa, finally a nanofiltration process (300 Da) allowed the concentration of polyphenols mainly oleuropein. Permeate fluxes of ultrafiltration and nanofiltration were investigated and analyzed. Results revealed that a large portion of phenolic compounds were recovered in the permeate fraction of the UF process. The nanofiltration retentate showed high polyphenol and flavonoid contents. Based on the content of solute in feed and retentate fractions of NF membrane, oleuropein was concentrated approximately 10 times to reach 1685 mg/100 g extract. In addition, this fraction demonstrated high antioxidant capacities monitored by total antioxidant capacity and ferric-reducing ability power. High antibacterial activity was observed against S. enterica and K. pneumonieae (25 and 28 mm, respectively).
Disciplines :
Food science
Author, co-author :
Khemakhem, Ibtihel; Laboratoire d'Analyse, Valorisation et Sécurité des Aliments, Ecole Nationale d'Ingénieurs de Sfax (ENIS), Université de Sfax, Sfax, Tunisia ; Laboratoire d'Electrochimie et Environnement, Ecole Nationale d'Ingénieurs de Sfax (ENIS), Université de Sfax, Sfax, Tunisia
Gargouri, Olfa Dridi; Laboratoire d'Electrochimie et Environnement, Ecole Nationale d'Ingénieurs de Sfax (ENIS), Université de Sfax, Sfax, Tunisia
Dhouib, Ali; Univers des Huiles et Extraits Vegetaux (UHEV), Sfax, Tunisia
Ayadi, Mohamed ; Laboratoire d'Analyse, Valorisation et Sécurité des Aliments, Ecole Nationale d'Ingénieurs de Sfax (ENIS), Université de Sfax, Sfax, Tunisia
Bouaziz, Mohamed; Laboratoire d'Electrochimie et Environnement, Ecole Nationale d'Ingénieurs de Sfax (ENIS), Université de Sfax, Sfax, Tunisia
Language :
English
Title :
Oleuropein rich extract from olive leaves by combining microfiltration, ultrafiltration and nanofiltration
MHESR - Tunisie. Ministère de l'Enseignement Supérieur et de la Recherche Scientifique
Funding text :
The authors would like to thank the Ministry of Higher Education and Scientific Research of Tunisia (Laboratories LR14ES08 and LR11ES45 ), for their financial support to this research work.
[1] Ben Othman, N., Roblain, D., Thonart, P., Hamdi, M., Tunisian table olive phenolic compounds and their antioxidant capacity. J. Food Sci. 73 (2008), 235–240, 10.1111/j.1750-3841.2008.00711.x.
[2] Arslan, D., Schreiner, M., Chemical characteristics and antioxidant activity of olive oils from Turkish varieties grown in Hatay province. Sci. Hortic. 144 (2012), 141–152, 10.1016/j.scienta.2012.07.006.
[3] Bouaziz, M., Sayadi, S., Isolation and evaluation of antioxidants from leaves of a Tunisian cultivar olive tree. Eur. J. Lipid Sci. Technol. 107 (2005), 497–504, 10.1002/ejlt.200501166.
[4] Ahmad-Qasem, M.H., Cánovas, J., Barrajón-Catalán, E., Micol, V., Cárcel, J.A., García-Pérez, J.V., Kinetic and compositional study of phenolic extraction from olive leaves (var. Serrana) by using power ultrasound. Innov. Food Sci. Emerg. Technol. 17 (2013), 120–129, 10.1016/j.ifset.2012.11.008.
[5] Bouaziz, M., Fki, I., Jemai, H., Ayadi, M., Sayadi, S., Effect of storage on refined and husk olive oils composition: stabilization by addition of natural antioxidants from Chemlali olive leaves. Food Chem. 108 (2008), 253–262, 10.1016/j.foodchem.2007.10.074.
[6] Hayes, J.E., Stepanyan, V., Allen, P., O'Grady, M.N., Kerry, J.P., Effect of lutein, sesamol, ellagic acid and olive leaf extract on the quality and shelf-life stability of packaged raw minced beef patties. Meat Sci. 84 (2010), 613–620, 10.1016/j.meatsci.2009.10.020.
[7] Visioli, F., Galli, C., Oleuropein protects low density lipoprotein from oxidation. Life Sci. 55 (1994), 1965–1971, 10.1016/0024-3205(94)00529-X.
[8] Micol, V., Caturla, N., Pérez-Fons, L., Más, V., Pérez, L., Estepa, A., The olive leaf extract exhibits antiviral activity against viral haemorrhagic septicaemia rhabdovirus (VHSV). Antiviral Res. 66 (2005), 129–136, 10.1016/j.antiviral.2005.02.005.
[9] Benavente-García, O., Castillo, J., Lorente, J., Ortuño, a., Del Rio, J.a., Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chem. 68 (2000), 457–462, 10.1016/S0308-8146(99)00221-6.
[10] Jemai, H., Bouaziz, M., Fki, I., El Feki, A., Sayadi, S., Hypolipidimic and antioxidant activities of oleuropein and its hydrolysis derivative-rich extracts from Chemlali olive leaves. Chem. Biol. Interact. 176 (2008), 88–98, 10.1016/j.cbi.2008.08.014.
[11] Savournin, C., Baghdikian, B., Elias, R., Dargouth-Kesraoui, F., Boukef, K., Balansard, G., Rapid high-performance liquid chromatography analysis for the quantitative determination of oleuropein in Olea europaea leaves. J. Agric. Food Chem. 49 (2001), 618–621.
[12] Takac, S., Karakaya, A., Recovery of phenolic antioxidants from olive mill wastewater. Recent Patents Chem. Eng. 2 (2009), 230–237, 10.2174/2211334710902030230.
[13] Murakami, A.N.N., Amboni, R.D.D.M.C., Prudêncio, E.S., Amante, E.R., Fritzen-Freire, C.B., Boaventura, B.C.B., Muñoz, I.D.B., Branco, C.D.S., Salvador, M., Maraschin, M., Concentration of biologically active compounds extracted from Ilex paraguariensis St. Hil. by nanofiltration. Food Chem. 141 (2013), 60–65, 10.1016/j.foodchem.2013.02.119.
[14] Cassano, A., Conidi, C., Giorno, L., Drioli, E., Fractionation of olive mill wastewaters by membrane separation techniques. J. Hazard. Mater. 248–249 (2013), 185–193, 10.1016/j.jhazmat.2013.01.006.
[15] Kim, K., Jung, J.-Y., Kwon, J.-H., Yang, J.-W., Dynamic microfiltration with a perforated disk for effective harvesting of microalgae. J. Membr. Sci. 475 (2015), 252–258, 10.1016/j.memsci.2014.10.027.
[16] Díaz-Reinoso, B., Moure, A., Domínguez, H., Parajó, J.C., Ultra- and nanofiltration of aqueous extracts from distilled fermented grape pomace. J. Food Eng. 91 (2009), 587–593, 10.1016/j.jfoodeng.2008.10.007.
[17] Dammak, I., Neves, M.a., Nabetani, H., Isoda, H., Sayadi, S., Nakajima, M., Transport properties of oleuropein through nanofiltration membranes. Food Bioprod. Process. 94 (2015), 342–353, 10.1016/j.fbp.2014.04.002.
[18] Singleton, V.L., Orthofer, R., Lamuela-Raventós, R.M., Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 299 (1998), 152–178, 10.1016/S0076-6879(99)99017-1.
[19] Hajji, M., Jarraya, R., Lassoued, I., Masmoudi, O., Damak, M., Nasri, M., GC/MS and LC/MS analysis, and antioxidant and antimicrobial activities of various solvent extracts from Mirabilis jalapa tubers. Process Biochem. 45 (2010), 1486–1493, 10.1016/j.procbio.2010.05.027.
[20] Kumaran, A., Karunakaran, R. Joel, In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India. LWT – Food Sci. Technol. 40 (2007), 344–352, 10.1016/j.lwt.2005.09.011.
[21] Benzie, I.F., Strain, J.J., The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem. 239 (1996), 70–76, 10.1006/abio.1996.0292.
[22] Balouiri, M., Sadiki, M., Ibnsouda, S.K., Methods for in vitro evaluating antimicrobial activity: a review. J. Ethnopharmacol., 2015, 10.1016/j.jep.2015.07.033.
[23] Benedetti, S., Prudêncio, E.S., Nunes, G.L., Guizoni, K., Fogaça, L.A., Petrus, J.C.C., Antioxidant properties of tofu whey concentrate by freeze concentration and nanofiltration processes. J. Food Eng. 160 (2015), 49–55, 10.1016/j.jfoodeng.2015.03.021.
[24] Sarkar, B., DasGupta, S., De, S., Application of external electric field to enhance the permeate flux during micellar enhanced ultrafiltration. Sep. Purif. Technol. 66 (2009), 263–272, 10.1016/j.seppur.2009.01.003.
[25] Bellona, C., Drewes, J.E., Xu, P., Amy, G., Factors affecting the rejection of organic solutes during NF/RO treatment – a literature review. Water Res. 38 (2004), 2795–2809, 10.1016/j.watres.2004.03.034.
[26] Brás, T., Guerreiro, O., Duarte, M.F., Neves, L.a., Impact of extraction parameters and concentration by nanofiltration on the recovery of phenolic compounds from Cynara cardunculus var. altilis: assessment of antioxidant activity. Ind. Crops Prod. 67 (2015), 137–142, 10.1016/j.indcrop.2015.01.005.
[27] Zhou, S., Shao, Y., Gao, N., Li, L., Deng, J., Tan, C., Zhu, M., Influence of hydrophobic/hydrophilic fractions of extracellular organic matters of Microcystis aeruginosa on ultrafiltration membrane fouling. Sci. Total Environ. 470–471 (2014), 201–207, 10.1016/j.scitotenv.2013.09.052.
[28] Altiok, E., Bayçin, D., Bayraktar, O., Ülkü, S., Isolation of polyphenols from the extracts of olive leaves (Olea europaea L.) by adsorption on silk fibroin. Sep. Purif. Technol. 62 (2008), 342–348, 10.1016/j.seppur.2008.01.022.
[29] Lee, O.H., Lee, B.Y., Antioxidant and antimicrobial activities of individual and combined phenolics in Olea europaea leaf extract. Bioresour. Technol. 101 (2010), 3751–3754, 10.1016/j.biortech.2009.12.052.
[30] Dhanalekshmi, K.I., Meena, K.S., DNA intercalation studies and antimicrobial activity of Ag@ZrO2 core–shell nanoparticles in vitro. Mater. Sci. Eng., C 59 (2016), 1063–1068, 10.1016/j.msec.2015.11.027.