Xue, F., Shan, Z., Yan, L.-j., Fan, C., A improved sequential pattern mining algorithm based on prefixspan. https://doi.org/10.1109/WAC.2016.7583059, 2016 pp. 1–4.
Fournier Viger, P., Gomariz, A., Gueniche, T., Mwamikazi, E., Thomas, R., Tks: efficient mining of top-k sequential patterns. https://doi.org/10.1007/978-3-642-53914-5_10, 2013 pp. 109–120.
Kemmar, A., Lebbah, Y., Loudni, S., Boizumault, P., Charnois, T., Prefix-projection global constraint and top-k approach for sequential pattern mining. Constraints, 22, 2017.
Garofalakis, M., Rastogi, R., Shim, K., Mining sequential patterns with regular expression constraints. IEEE Trans. Knowl. Data Eng. 14 (2002), 530–552.
Oza, K., Kawade, D., Frequent sequential pattern mining with weighted regular expression and length constraint. Int. J. Sci. Res. 4 (2015), 3–7.
Wang, J., Han, J., Bide: efficient mining of frequent closed sequences. https://doi.org/10.1109/ICDE.2004.1319986, 2004 pp. 79–90.
Masseglia, F., Poncelet, P., Teisseire, M., Incremental mining of sequential patterns in large databases. Data Knowl. Eng. 46 (2003), 97–121.
Ayres, J., Flannick, J., Gehrke, J., Yiu, T., Sequential pattern mining using a bitmap representation. https://doi.org/10.1145/775107.775109, 2002 pp. 429–435.
Zaki, M., Spade: an efficient algorithm for mining frequent sequences. Mach. Learn. 42:1 (2001), 31–60.
P. Fournier Viger, Fast vertical sequential pattern mining using co-occurrence information, 2014.
Gomariz, A., Campos, M., Marín, R., Goethals, B., Clasp: an efficient algorithm for mining frequent closed sequences. https://doi.org/10.1007/978-3-642-37453-1_5, 2013 pp. 50–61.
Fournier Viger, P., Wu, C.-W., Gomariz, A., Tseng, V., Vmsp: efficient vertical mining of maximal sequential patterns. https://doi.org/10.1007/978-3-319-06483-3_8, 2014.
Chang, J., Mining weighted sequential patterns in a sequence database with a time-interval weight. Knowl.-Based Syst. 24 (2011), 1–9.
Yu, W., Discovering frequent movement paths from taxi trajectory data using spatially embedded networks and association rules. IEEE Trans. Intell. Transp. Syst. 20 (2019), 855–866.
Ibrahim, R., Shafiq, M.O., Detecting taxi movements using random swap clustering and sequential pattern mining. J. Big Data, 6, 2019, 39.
Wang, Y., Tian, Y., Yang, B., Wang, J., Hu, X., An, S., Planning flexible bus service as an alternative to suspended bicycle-sharing service: a data-driven approach. J. Adv. Transp. 2023 (2023), 1–15.
Hu, S., Liang, Q., Qian, H., Weng, J., Zhou, W., Lin, P., Frequent-pattern growth algorithm based association rule mining method of public transport travel stability. Int. J. Sustain. Transp., 15, 2020.
L. Moreira-Matias, C. Ferreira, J. Gama, J. Moreira, J. Sousa, Bus bunching detection: a sequence mining approach, vol. 960, 2012.
Zhang, H., He, L., Data mining method of sequential patterns for vehicle trajectory prediction in vanet. Wirel. Pers. Commun. 117 (2021), 1–13.
Qi, W., Song, Q., Wang, X., Guo, L., Trajectory data mining-based routing in dtn-enabled vehicular ad hoc networks. IEEE Access, 2017, 1.
Merah, A.F., Samarah, S., Boukerche, A., Mammeri, A., A sequential patterns data mining approach towards vehicular route prediction in vanets. Mob. Netw. Appl. 18 (2013), 788–802.
Merah, A.F., Samarah, S., Boukerche, A., Vehicular movement patterns: a prediction-based route discovery technique for vanets. https://doi.org/10.1109/ICC.2012.6364141, 2012 pp. 5291–5295.
Codeca, L., Härri, J., Monaco SUMO traffic (MoST) scenario: a 3D mobility scenario for cooperative ITS. SUMO 2018, SUMO User Conference, Simulating Autonomous and Intermodal Transport Systems, Berlin, Germany, Berlin, GERMANY, May 14–16, 2018, 2018.