Encarsia sophia; parasitoid behavior; reproductive dynamics; sex allocation; Insect Science
Abstract :
[en] Sex ratio is crucial in the reproductive dynamics of bisexual insects. In the Aphelinidae family, heteronomous hyperparasitoids like Encarsia sophia show distinct behaviors where females (from fertilized eggs) target primary hosts, and males (from unfertilized eggs) parasitize secondary hosts. This sex determination pattern means that host resource abundance significantly impacts sex ratio, affecting population dynamics. However, the sex distribution of these parasitoids remains a topic of debate. This study examined E. sophia targeting Bemisia tabaci, adjusting host densities (30, 50, 70 hosts/9.6 cm²) and secondary host ratios (0.2, 0.5, 0.8). Females were observed for recognition of varying host conditions and adjustments in offspring sex ratio and behavior. When ratio of secondary hosts surpassed that of primary hosts or in cases of low host density (host limitation), E. sophia’s offspring sex ratio adapted according to the relative abundance of primary and secondary hosts. Conversely, with low secondary host ratios (< 0.5) and higher host density, the sex ratio approached 1:1. Observations showed that females quickly perceived host density, increasing oviposition on secondary hosts with higher density, resulting in more males, and increasing feeding on primary hosts, reducing female offspring. Importantly, by examining oviposition and feeding under different host resource conditions, we identified the optimal rearing strategy: a secondary host ratio of 0.2 and a host density of 30 hosts/9.6 cm2. This study not only introduces the sex ratio theory for heteronomous hyperparasitoids but also provides a framework for more accurately assessing their environmental adaptability and for large-scale production.
Disciplines :
Entomology & pest control
Author, co-author :
Man, Xiaoming ; Université de Liège - ULiège > TERRA Research Centre ; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
Sun, Li-Ying; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
Francis, Frédéric ; Université de Liège - ULiège > TERRA Research Centre > Gestion durable des bio-agresseurs
Yang, Nian-Wan; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China ; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Xinjiang, China
Liu, Wan-Xue; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
Language :
English
Title :
Can heteronomous hyperparasitoids recognize host abundance and adjust offspring ratio?
Publication date :
2024
Journal title :
Entomologia Generalis
ISSN :
0171-8177
eISSN :
2363-7102
Publisher :
Schweizerbart Science Publishers
Volume :
44
Issue :
4
Pages :
1017 - 1025
Peer reviewed :
Peer Reviewed verified by ORBi
Funding text :
Acknowledgements: This work was supported by the National Natural Science Foundation of China (32072493).
Abe, J., Iritani, R., Tsuchida, K., Kamimura, Y., & West, S. A. (2021). A solution to a sex ratio puzzle in Melittobia wasps. Proceedings of the National Academy of Sciences of the United States of America, 118(20), e2024656118. https://doi. org/10.1073/pnas.2024656118
Avilla, J., & Copland, M. J. W. (1987). Effects of host stage on the development of the facultative autoparasitoid Encarsia tricolor (Hymenoptera: Aphelinidae). Annals of Applied Biology, 110(2), 381–389. https://doi.org/10.1111/j.1744-7348.1987.tb03269.x
Bon, V. J., Moral, R. D., & Reigada, C. (2022). Influence of intra-and inter-specific competition between egg parasitoids on the effectiveness of biological control of Euschistus heros (Hemiptera: Pentatomidae). Biological Control, 170, 104903. https://doi.org/10.1016/j.biocontrol.2022.104903
Colgan, P., & Taylor, P. (1981). Sex-ratio in autoparasitic Hymenoptera. American Naturalist, 117(4), 564–566. Retrieved from https://www.journals.uchicago.edu/doi/abs/10.1086/2837 38?journalCode=an https://doi.org/10.1086/283738
Favaro, R., Roved, J., Girolami, V., Martinez-Sañudo, I., & Mazzon, L. (2018). Host instar influence on offspring sex ratio and female preference of Neodryinus typhlocybae (Ashmead) (Hymenoptera, Dryinidae) parasitoid of Metcalfa pruinosa (Say) (Homoptera, Flatidae). Biological Control, 125, 113–120. https://doi.org/10.1016/j.biocontrol.2018.05.009
Fisher, R. A. (1930). The genetical theory of natural selection. Clarendon Press; https://doi.org/10.5962/bhl.title.27468
Godfray, H. C. J., & Hunter, M. S. (1994). Heteronomous hyperparasitoids, sex ratios and adaptations: A reply. Ecological Entomology, 19(1), 93–95. https://doi.org/10.1111/j.13652311.1994.tb00397.x
Godfray, H. C. J., & Hunter, M. S. (1992). Sex ratios of heteronomous hyperparasitoids: Adaptive or non‐adaptive? Ecological Entomology, 17(1), 89–90. https://doi.org/10.1111/j.1365-2311.1992.tb01045.x
Godfray, H. C. J., & Waage, J. K. (1990). The Evolution of Highly Skewed Sex Ratios in Aphelinid Wasps. American Naturalist, 136(5), 715–721. https://doi.org/10.1086/285126
Harvey, J. A., Poelman, E. H., & Tanaka, T. (2013). Intrinsic Inter-and Intraspecific Competition in Parasitoid Wasps. Annual Review of Entomology, 58(1), 333–351. https://doi.org/10.1146/annurev-ento-120811-153622
Hougardy, E., & Hogg, B. N. (2022). Factors Affecting Progeny Production and Sex Ratio of Gryon aetherium (Hymenoptera: Scelionidae), a Candidate Biological Control Agent for Bagrada hilaris (Hemiptera: Pentatomidae). Insects, 13(11), 1010. https://doi.org/10.3390/insects13111010
Hu, H. Y., Zhu, X. L., Chen, Z. Z., Niu, L. M., & Fu, Y. G. (2010). Sex allocation of parasitoid wasps. Chinese Bulletin of Entomology, 47(6), 1081–1088.
Huang, Y., Yang, N., Qin, Y., An, F., Li, Z., & Wan, F. (2016). Enhanced stability in host-parasitoid interactions with autoparasitism and parasitoid migration. Journal of Theoretical Biology, 393, 43–50. https://doi.org/10.1016/j.jtbi.2015.12.032
Hunter, M. S., & Godfray, H. C. J. (1995). Ecological determinants of sex sllocation in an autoparasitoid wasp. Journal of Animal Ecology, 64(1), 95–106. https://doi.org/10.2307/5830
Hunter, M. S., Nur, U., & Werren, J. H. (1993). Origin of males by genome loss in an autoparasitoid wasp. Heredity, 70(2), 162– 171. Retrieved from https://nature.dosf.top/articles/hdy199325 https://doi.org/10.1038/hdy.1993.25
Hunter, M. S., & Woolley, J. B. (2001). Evolution and behavioral ecology of heteronomous aphelinid parasitoids. Annual Review of Entomology, 46(1), 251–290. https://doi.org/10.1146/annurev.ento.46.1.251
Hunter, M. S. (1989). Sex allocation and egg distribution of an autoparasitoid, Encarsia pergandiella (Hymenoptera: Aphelinidae). Ecological Entomology, 14(1), 57–67. https://doi. org/10.1111/j.1365-2311.1989.tb00754.x
Hunter, M. S. (1993). Sex allocation in a field population of an autoparasitoid. Oecologia, 93(3), 421–428. https://doi.org/10.1007/BF00317887
Katono, K., Macfadyen, S., Omongo, C. A., Colvin, J., Karungi, J., & Otim, M. H. (2023). Effect of Bemisia tabaci ssa1 host density and cassava genotype on host feeding capacity and parasitism by two hymenoptera parasitoid species. Biocontrol Science and Technology, 33(1), 19–34. https://doi.org/10.1080/0958315 7.2022.2151976
Kidane, D., Ferrante, M., Man, X. M., Liu, W. X., Wan, F. H., & Yang, N. W. (2020). Cold Storage Effects on Fitness of the Whitefly Parasitoids Encarsia sophia and Eretmocerus hayati. Insects, 11(7), 428. https://doi.org/10.3390/insects11070428
Kuenzel, N. T. (1975). A differentialdifference equation model of population dynamics in a natural life system of Trialrurodes packardi (Homoptera: Aleyrodidae) on lmpatienu pallida. Ph.D. thesis. Ithaca, New York: Cornell University; https://www.elibrary.ru/item.asp?id=7158975
Ode, P. J., & Heinz, K. M. (2002). Host-size-dependent sex ratio theory and improving mass-reared parasitoid sex ratios. Biological Control, 24(1), 31–41. https://doi.org/10.1016/S1049-9644(02)00003-8
Shahbazvar, N., Hosseini, R., & Hayat, M. (2022). A new species of Coccobius Ratzeburg (Hymenoptera: Chalcidoidea: Aphelinidae) from Iran, with new host records for two species. Zootaxa, 5134(4), 588–592. https://doi.org/10.11646/zootaxa.5134.4.6
Sun, C. (2014). Reproductive characteristics and sex ratio regulation mechanism of Encarsia sophia (Girault & Dodd) (Hymenoptera: Aphelinidae). Southwest University.
Tize, I., Nukenine, E. N., Fotso, K. A., Doumtsop, F. A., Nanga, N. S., Ajebesone, F. N., … Hanna, R. (2023). Parasitism of the whitefly bemisia tabaci by aphelinid parasitoids on cassava across five agro-ecological zones of cameroon. Crop Protection (Guildford, Surrey), 168, 106241. https://doi.org/10.1016/j. cropro.2023.106241
Walter, G. H., & Donaldson, J. S. (1994). Heteronomous hyperparasitoids, sex ratios and adaptations. Ecological Entomology, 19(1), 89–92. https://doi.org/10.1111/j.1365-2311.1994.tb003 96.x
Walter, G. H. (1983). ‘Divergent male ontogenies’ in Aphelinidae (Hymenoptera: Chalcidoidea): a simplified classification and a suggested evolutionary sequence. Biological Journal of the Linnean Society. Linnean Society of London, 19(1), 63–82. https://doi.org/10.1111/j.1095-8312.1983.tb00777.x
Warsi, S., Chicas-Mosier, A. M., Balusu, R. R., Jacobson, A. L., & Fadamiro, H. Y. (2023). Effects of Food Source Availability, Host Egg:Parasitoid Ratios, and Host Exposure Times on the Developmental Biology of Megacopta cribraria Egg Parasitoids. Insects, 14(9), 755. https://doi.org/10.3390/insects14090755
Williams, J. R. (1977). Some features of sex-linked hyperparasitism in Aphelinidae (Hymenoptera). Entomophaga, 22(4), 345–350. https://doi.org/10.1007/BF02373258
Xu, H. Y., Yang, N. W., Chi, H., Ren, G. D., & Wan, F. H. (2018). Comparison of demographic fitness and biocontrol effectiveness of two parasitoids, Encarsia sophia and Eretmocerus hayati (Hymenoptera: Aphelinidae), against Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Management Science, 74(9), 2116–2124. https://doi.org/10.1002/ps.4908
Yang, N. W., Ji, L. L., Lövei, G. L., & Wan, F. H. (2012). Shifting preference between oviposition vs. host-feeding under changing host densities in two aphelinid parasitoids. PLoS One, 7(7), e41189. https://doi.org/10.1371/journal.pone.0041189
Yang, S., Dou, W., Li, M., Wang, Z., Chen, G., & Zhang, X. (2022). Flowering agricultural landscapes enhance parasitoid biological control to Bemisia tabaci on tomato in south China. PLoS One, 17(8), e0272314. https://doi.org/10.1371/journal.pone.0272314
Zhang, L. W., Hu, H. Y., & Zhang, Y. Z. (2023). Two new species of Coccophagus Westwood (Hymenoptera: Aphelinidae) from China. Zootaxa, 5258(3), 342–350. https://doi.org/10.11646/zootaxa.5258.3.7
Zhao, Y., Zhu, L., Ramirez-Romero, R., Dai, P., Yang, X., Ruan, C. C., … Zang, L. S. (2022). Mating status of an autoparasitoid and sex of the secondary host impact the outcome of heteronomous hyperparasitism. Entomologia Generalis, 42(1), 87–99. https://doi.org/10.1127/entomologia/2021/1324