Co-developing an international TLS network for the 3D ecological understanding of global trees: System architecture, remote sensing models, and functional prospects.
Lin, Yi; Filin, Sagi; Billen, Rolandet al.
2023 • In Environmental Science and Ecotechnology, 16, p. 100257
3D global tree structural ecology; 3D macroecology; Global trees; International TLS network; Terrestrial laser scanning (TLS); Three-dimensional (3D) ecotechnology; Environmental Engineering; Ecology; Environmental Science (miscellaneous)
Abstract :
[en] Trees are spread worldwide, as the watchmen that experience the intricate ecological effects caused by various environmental factors. In order to better understand such effects, it is preferential to achieve finely and fully mapped global trees and their environments. For this task, aerial and satellite-based remote sensing (RS) methods have been developed. However, a critical branch regarding the apparent forms of trees has significantly fallen behind due to the technical deficiency found within their global-scale surveying methods. Now, terrestrial laser scanning (TLS), a state-of-the-art RS technology, is useful for the in situ three-dimensional (3D) mapping of trees and their environments. Thus, we proposed co-developing an international TLS network as a macroscale ecotechnology to increase the 3D ecological understanding of global trees. First, we generated the system architecture and tested the available RS models to deepen its ground stakes. Then, we verified the ecotechnology regarding the identification of its theoretical feasibility, a review of its technical preparations, and a case testification based on a prototype we designed. Next, we conducted its functional prospects by previewing its scientific and technical potentials and its functional extensibility. Finally, we summarized its technical and scientific challenges, which can be used as the cutting points to promote the improvement of this technology in future studies. Overall, with the implication of establishing a novel cornerstone-sense ecotechnology, the co-development of an international TLS network can revolutionize the 3D ecological understanding of global trees and create new fields of research from 3D global tree structural ecology to 3D macroecology.
Lin, Yi; School of Earth and Space Sciences, Peking University, Beijing, 100871, China
Filin, Sagi; Technion - Israel Institute of Technology, Haifa IL, 32000, Israel
Billen, Roland ; Université de Liège - ULiège > Département de géographie > Geospatial Data Science and City Information Modelling (GeoScITY)
Mizoue, Nobuya; Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
Language :
English
Title :
Co-developing an international TLS network for the 3D ecological understanding of global trees: System architecture, remote sensing models, and functional prospects.
Publication date :
October 2023
Journal title :
Environmental Science and Ecotechnology
eISSN :
2666-4984
Publisher :
Editorial Board, Research of Environmental Sciences, Netherlands
NSCF - National Natural Science Foundation of China
Funding text :
The work was financially supported by the National Key Research and Development Program of China (No. 2022YFE0112700 ) and the National Natural Science Foundation of China (No. 32171782 and 31870531 ).
Wilmking, M., van der Maaten-Theunissen, M., van der Maaten, E., et al. Global assessment of relationships between climate and tree growth. Global Change Biol. 26 (2020), 3212–3220.
Ricklefs, R.E., Latham, R.E., Qian, H., Global patterns of tree species richness in moist forests: distinguishing ecological influences and historical contingency. Oikos 86 (1999), 369–373.
Achache, J., Keeping track of the Earth's carbon-cycle components. Nature, 461, 2009, 340.
Alessandrini, A., Biondi, F., Di F Ricklefsilippo, A., et al. Tree size distribution at increasing spatial scales converges to the rotated sigmoid curve in two old-growth beech stands of the Italian Apennines. For. Ecol. Manag. 262 (2011), 1950–1962.
Cavender, N., Westwood, M., Bechtoldt, C., et al. Strengthening the conservation value of ex situ tree collections. Oryx 49 (2015), 416–424.
Qian, H., Deng, T., Sun, H., Global and regional tree species diversity. J. Plant Ecol. 12 (2019), 210–215.
Corvalan, C.F., Patz, J.A., Global warming kills trees, and people. Bull. World Health Organ., 82, 2004 481–481.
Körner, C., Basler, D., Phenology under global warming. Science 327 (2010), 1461–1462.
Ramirez, F., Kallarackal, J., Tree Pollination under Global Climate Change Introduction. 2018, Springer Briefs in Agriculture, 1–5.
Tejedor, E., Serrano-Notivoli, R., de Luis, M., et al. A global perspective on the climate-driven growth synchrony of neighbouring trees. Global Ecol. Biogeogr. 29 (2020), 1114–1125.
Manzanedo, R.D., HilleRisLambers, J., Rademacher, T.T., Pederson, N., Evidence of unprecedented rise in growth synchrony from global tree ring records. Nat. Ecol. Evol. 4 (2020), 1622–1629.
Brundu, G., Pauchard, A., Pysek, P., et al. Global guidelines for the sustainable use of non-native trees to prevent tree invasions and mitigate their negative impacts. NeoBiota 61 (2020), 65–116.
Kendal, D., Dobbs, C., Gallagher, R.V., et al. A global comparison of the climatic niches of urban and native tree populations. Global Ecol. Biogeogr. 27 (2018), 629–637.
Bastin, J.F., Finegold, Y., Garcia, C., et al. The global tree restoration potential. Science, 369, 2019 1066–1066.
Han, J., Singh, V.P., Forecasting of droughts and tree mortality under global warming: a review of causative mechanisms and modeling methods. J. Water Clim. Chang. 11 (2020), 600–632.
Adams, M.A., Pfautsch, S., Grand challenges: forests and global change. Front. For. Glob. Chang., 1, 2018, 1.
Hartmann, H., Schuldt, B., Sanders, T.G.M., et al. Monitoring global tree mortality patterns and trends. New Phytol. 217 (2018), 984–987.
Ratnam, J., Owuor, M.A., Greve, M., Trees as nature-based solutions: a global south perspective. One Earth 3 (2020), 140–144.
Nascimbene, J., Marini, L., Motta, R., Nimis, P.L., Influence of tree age, tree size and crown structure on lichen communities in mature Alpine spruce forests. Biodivers. Conserv. 18 (2009), 1509–1522.
Barker, S.B., Cumming, G., Horsfield, K., Quantitative morphometry of branching structure of trees. J. Theor. Biol. 40 (1973), 33–43.
Ingram, J.C., Whittaker, R.J., Dawson, T.P., Tree structure and diversity in human-impacted littoral forests, Madagascar. Environ. Manag. 35 (2005), 779–798.
Boyden, S., Montgomery, R., Reich, P.B., Palik, B., Seeing the forest for the heterogeneous trees: stand-scale resource distributions emerge from tree-scale structure. Ecol. Appl. 22 (2012), 1578–1588.
Bastin, J.F., Rutishauser, E., Kellner, J.R., et al. Pan-tropical prediction of forest structure from the largest trees. Global Ecol. Biogeogr. 27 (2018), 1366–1383.
Herrero-Jauregui, C., Sist, P., Casado, M.A., Population structure of two low-density neotropical tree species under different management systems. For. Ecol. Manag. 280 (2012), 31–39.
Guilherme, F.A.G., Nakajima, J.N., Vanini, A., Ressel, K., Tree community structure in a neotropical swamp forest in southeastern Brazil. Biosci. J. 29 (2013), 1007–1016.
Wang, D.W., Guo, Q.X., Do smaller trees easily form a ring structure around larger trees in temperate forests. Can. J. For. Res. 50 (2020), 542–548.
Paine, C.E.T., Beck, H., Terborgh, J., How mammalian predation contributes to tropical tree community structure. Ecol. 97 (2016), 3326–3336.
Majasalmi, T., Rautiainen, M., The impact of tree canopy structure on understory variation in a boreal forest. For. Ecol. Manag., 466, 2020, 118100.
Tanaka, N., Sato, H., Igarashi, Y., Kimiwada, Y., Torita, H., Effective tree distribution and stand structures in a forest for tsunami mitigation considering the different tree-breaking patterns of tree species. J. Environ. Manag. 223 (2018), 925–935.
Osazuwa-Peters, O.L., Chapman, C.A., Zanne, A.E., Selective logging: does the imprint remain on tree structure and composition after 45 years. Conserv. Physiol., 3, 2015, cov012.
Nascimbene, J., Marini, L., Carrer, M., Motta, R., Nimis, P.L., Influences of tree age and tree structure on the macrolichen Letharia vulpina: a case study in the Italian Alps. Ecosci 15 (2008), 423–428.
Rogers, B.M., Soja, A.J., Goulden, M.L., et al. Influence of tree species on continental differences in boreal fires and climate feedbacks. Nat. Geosci. 8 (2015), 228–234.
Lutz, J.A., Furniss, T.J., Johnson, D.J., et al. Global importance of large-diameter trees. Global Ecol. Biogeogr. 27 (2018), 849–864.
Newton, A., Oldfield, S., Rivers, M., et al. Towards a global tree assessment. Oryx 49 (2015), 410–415.
Vicente-Serrano, S.M., Camarero, J.J., Olano, J.M., et al. Diverse relationships between forest growth and the Normalized Difference Vegetation Index at a global scale. Remote Sens. Environ. 187 (2016), 14–29.
Lin, Y., Wei, T., Yang, B., et al. TLS-bridged co-prediction of tree-level multifarious stem structure variables from Worldview-2 panchromatic imagery: a case study of the boreal forest. Int. J. Digit. Earth 10 (2017), 701–718.
Estoque, R.C., Johnson, B.A., Gao, Y., et al. Remotely sensed tree canopy cover-based indicators for monitoring global sustainability and environmental initiatives. Environ. Res. Lett., 16, 2021, 044047.
Jucker, T., Caspersen, J., Chave, J., et al. Allometric equations for integrating remote sensing imagery into forest monitoring programmes. Global Change Biol. 23 (2017), 177–190.
Chadwick, K.D., Asner, G.P., Landscape evolution and nutrient rejuvenation reflected in Amazon forest canopy chemistry. Ecol. Lett. 21 (2018), 978–988.
Lin, Y., Jiang, M., Pellikka, P., Heiskanen, J., Recruiting conventional tree architecture models into state-of-the-art LiDAR mapping for investigating tree growth habits in structure. Front. Plant Sci., 9, 2018, 220.
Schneider, F.D., Ferraz, A.A., Hancock, S., et al. Towards mapping the diversity of canopy structure from space with GEDI. Environ. Res. Lett., 15, 2020, 115006.
Hansen, M.C., DeFries, R.S., Townshend, J.R.G., et al. Global percent tree cover at a spatial resolution of 500 meters: first results of the MODIS vegetation continuous fields algorithm. Earth Interact., 7, 2003, 10.
Funk, V.A., Specht, C.D., Meta-trees: grafting for a global perspective. Proc. Biol. Soc. Wash. 120 (2007), 232–240.
Crowther, T.W., Glick, H.B., Covey, K.R., et al. Mapping tree density at a global scale. Nature, 532, 2016 268–268.
Kobayashi, T., Tsend-Ayush, J., Tateishi, R., A new global tree-cover percentage map using MODIS data. Int. J. Rem. Sens. 37 (2016), 969–992.
Beech, E., Rivers, M., Oldfield, S., Smith, P.P., GlobalTreeSearch: the first complete global database of tree species and country distributions. J. Sustain. For. 36 (2017), 454–489.
Hewson, J., Crema, S.C., Gonzalez-Roglich, M., Tabor, K., Harvey, C.A., New 1 km resolution datasets of global and regional risks of tree cover loss. Land, 8, 2019, 14.
Stovall, A.E.L., Shugart, H., Yang, X., Tree height explains mortality risk during an intense drought. Nat. Commun., 10, 2019, 4385.
Cáceres, M.D., Legendre, P., Valencia, R., et al. The variation of tree beta diversity across a global network of forest plots. Global Ecol. Biogeogr. 21 (2012), 1191–1202.
Verheyen, K., Vanhellemont, M., Auge, H., et al. Contributions of a global network of tree diversity experiments to sustainable forest plantations. Ambio 45 (2016), 29–41.
Prevedello, J.A., Almeida-Gomes, M., Lindenmayer, D.B., The importance of scattered trees for biodiversity conservation: a global meta-analysis. J. Appl. Ecol. 55 (2018), 205–214.
Brazhnik, K., Shugart, H.H., 3D simulation of boreal forests: structure and dynamics in complex terrain and in a changing climate. Environ. Res. Lett., 10, 2019, 105006.
Hanan, N.P., Anchang, J.Y., Satellites could soon map every tree on Earth. Nature 587 (2020), 42–43.
Disney, M., Terrestrial LiDAR: a three-dimensional revolution in how we look at trees. New Phytol. 222 (2019), 1736–1741.
Lin, Y., Herold, M., Tree species classification based on explicit tree structure feature parameters derived from static terrestrial laser scanning data. Agric. For. Meteorol. 216 (2016), 105–114.
Malhi, Y., Jackson, T., Bentley, L.P., et al. New perspectives on the ecology of tree structure and tree communities through terrestrial laser scanning. Interface Focus, 8(2), 2018, 20170052.
Latifi, H., Valbuena, R., Current trends in forest ecological applications of three-dimensional remote sensing: transition from experimental to operational solutions?. Forests, 10(10), 2019, 891.
Ashton, P.S., A global network of plots for understanding tree species diversity in tropical forests. Forest Biodiver. Res. Monit. Modeling: Conceptual Background and Old World Case Studies 20 (1998), 47–62.
Schneider, F.D., Kükenbrink, D., Schaepman, M.E., Schimel, D.S., Morsdorf, F., Quantifying 3D structure and occlusion in dense tropical and temperate forests using close-range LiDAR. Agric. For. Meteorol. 268 (2019), 249–257.
Maas, H.G., Bienert, A., Scheller, S., Keane, E., Automatic forest inventory parameter determination from terrestrial laser scanner data. Int. J. Rem. Sens. 29:5 (2008), 1579–1593.
Moorthy, I., Miller, J.R., Berni, J.A.J., et al. Field characterization of olive (Olea europaea L.) tree crown architecture using terrestrial laser scanning data. Agric. For. Meteorol. 151:2 (2011), 204–214.
Lau, A., Martius, C., Bartholomeus, H., et al. Estimating architecture-based metabolic scaling exponents of tropical trees using terrestrial LiDAR and 3D modelling. For. Ecol. Manag. 439 (2019), 132–145.
Zhu, X., Wang, T., Darvishzadeh, R., Skidmore, A.K., Niemann, K.O., 3D leaf water content mapping using terrestrial laser scanner backscatter intensity with radiometric correction. ISPRS J. Photogrammetry Remote Sens. 110 (2015), 14–23.
Deere, N.J., Guillera-Arroita, G., Swinfield, T., Milodowski, D.T., Coomes, D.A., et al. Maximizing the value of forest restoration for tropical mammals by detecting three-dimensional habitat associations. Proc. Natl. Acad. Sci. U.S.A. 117 (2020), 26254–26262.
Lin, Y., LiDAR: an important tool for next-generation phenotyping technology of high potential for plant phenomics?. Comput. Electron. Agric. 119 (2015), 61–73.
Cabo, C., Ordonez, C., Lopez-Sanchez, C.A., Armesto, J., Automatic dendrometry: tree detection, tree height and diameter estimation using terrestrial laser scanning. Int. J. Appl. Earth Obs. Geoinf. 69 (2018), 164–174.
Liang, X., Hyyppä, J., Automatic stem mapping by merging several terrestrial laser scans at the feature and decision levels. Sensors 13:2 (2013), 1614–1634.
de Tanago, J.G., Lau, A., Bartholomeus, H., et al. Estimation of above-ground biomass of large tropical trees with terrestrial LiDAR. Methods Ecol. Evol. 9:2 (2018), 223–234.
Calders, K., Newnham, G., Burt, A., et al. Nondestructive estimates of above-ground biomass using terrestrial laser scanning. Methods Ecol. Evol. 6:2 (2015), 198–208.
Zheng, G., Ma, L., He, W., et al. Assessing the contribution of woody materials to forest angular gap fraction and effective leaf area index using terrestrial laser scanning data. IEEE Trans. Geosci. Rem. Sens. 54:3 (2016), 1475–1487.
Hancock, S., Anderson, K., Disney, M., Gaston, K.J., Measurement of fine-spatial-resolution 3D vegetation structure with airborne waveform lidar: calibration and validation with voxelised terrestrial lidar. Remote Sens. Environ. 188 (2017), 37–50.
Pueschel, P., Newnham, G., Rock, G., et al. The influence of scan mode and circle fitting on tree stem detection, stem diameter and volume extraction from terrestrial laser scans. ISPRS J. Photogrammetry Remote Sens. 77 (2013), 44–56.
Saarinen, N., Kankare, V., Vastaranta, M., et al. Feasibility of terrestrial laser scanning for collecting stem volume information from single trees. ISPRS J. Photogrammetry Remote Sens. 123 (2017), 140–158.
Kankare, V., Holopainen, M., Vastaranta, M., et al. Individual tree biomass estimation using terrestrial laser scanning. ISPRS J. Photogrammetry Remote Sens. 75 (2013), 64–75.
Cote, J.F., Fournier, R.A., Egli, R., An architectural model of trees to estimate forest structural attributes using terrestrial LiDAR. Environ. Model. Software 26:6 (2011), 761–777.
Bayer, D., Seifert, S., Pretzsch, H., Structural crown properties of Norway spruce (Picea abies L. Karst.) and European beech (Fagus sylvatica L.) in mixed versus pure stands revealed by terrestrial laser scanning. Trees Struct. Funct. 27:4 (2013), 1035–1047.
Bayer, D., Reischl, A., Rotzer, T., Pretzsch, H., Structural response of black locust (Robinia pseudoacacia L.) and small-leaved lime (Tilia cordata Mill.) to varying urban environments analyzed by terrestrial laser scanning: implications for ecological functions and services. Urban For. Urban Green. 35 (2018), 129–138.
Hackenberg, J., Morhart, C., Sheppard, J., Spiecker, H., Disney, M., Highly accurate tree models derived from terrestrial laser scan data: a method description. Forests 5:5 (2014), 1069–1105.
Zhao, K., García, M., Liu, S., et al. Terrestrial lidar remote sensing of forests: maximum likelihood estimates of canopy profile, leaf area index, and leaf angle distribution. Agric. For. Meteorol. 209 (2015), 100–113.
Zheng, G., Moskal, M., Computational-geometry-based retrieval of effective leaf area index using terrestrial laser scanning. IEEE Trans. Geosci. Rem. Sens. 50:10 (2012), 3958–3969.
Sanz, R., Rosell, J.R., Llorens, J., Gil, E., Planas, S., Relationship between tree row LIDAR-volume and leaf area density for fruit orchards and vineyards obtained with a LIDAR 3D Dynamic Measurement System. Agric. For. Meteorol. 171 (2013), 153–162.
Béland, M., Widlowski, J.-L., Fournier, R.A., Côté, J.-F., Verstraete, M.M., Estimating leaf area distribution in savanna trees from terrestrial LiDAR measurements. Agric. For. Meteorol. 151:9 (2011), 1252–1266.
Srinivasan, S., Popescu, S.C., Eriksson, M., Sheridan, R.D., Ku, N.-W., Multi-temporal terrestrial laser scanning for modeling tree biomass change. For. Ecol. Manag. 318 (2014), 304–317.
Jung, S.E., Kwak, D.A., Park, T., et al. Estimating crown variables of individual trees using airborne and terrestrial laser scanners. Rem. Sens. 3:11 (2011), 2346–2363.
Hackenberg, J., Spiecker, H., Calders, K., Disney, M., Raumonen, P., SimpleTree-An efficient open source tool to build tree models from TLS clouds. Forests 6:11 (2015), 4245–4294.
Grau, E., Durrieu, S., Fournier, R., Gastellu-Etchegorry, J.-P., Yin, T., Estimation of 3D vegetation density with Terrestrial Laser Scanning data using voxels. A sensitivity analysis of influencing parameters. Remote Sens. Environ. 191 (2017), 373–388.
Takeda, T., Oguma, H., Sano, T., Yone, Y., Fujinuma, Y., Estimating the plant area density of a Japanese larch (Larix kaempferi Sarg.) plantation using a ground-based laser scanner. Agric. For. Meteorol. 148:3 (2008), 428–438.
Garcia, M., Gajardo, J., Riaño, D., et al. Canopy clumping appraisal using terrestrial and airborne laser scanning. Remote Sens. Environ. 161 (2015), 78–88.
Ferrara, R., Virdis, S.G.P., Ventura, A., et al. An automated approach for wood-leaf separation from terrestrial LIDAR point clouds using the density based clustering algorithm DBSCAN. Agric. For. Meteorol. 262 (2018), 434–444.
Danson, F.M., Hetherington, D., Morsdorf, F., Koetz, B., Allgower, B., Forest canopy gap fraction from terrestrial laser scanning. Geosci. Rem. Sens. Lett. IEEE 4:1 (2007), 157–160.
Calders, K., Schenkels, T., Bartholomeus, H., et al. Monitoring spring phenology with high temporal resolution terrestrial LiDAR measurements. Agric. For. Meteorol. 203 (2015), 158–168.
Li, Y., Guo, Q., Su, Y., et al. Retrieving the gap fraction, element clumping index, and leaf area index of individual trees using single-scan data from a terrestrial laser scanner. ISPRS J. Photogrammetry Remote Sens. 130 (2017), 308–316.
Kattge, J., Díaz, S., Lavorel, S., et al. TRY – a global database of plant traits. Global Change Biol. 17 (2011), 2905–2935.
Zellweger, F., de Frenne, P., Lenoir, J., Rocchini, D., Coomes, D., Advances in microclimate ecology arising from remote sensing. Trends Ecol. Evol. 34 (2019), 327–341.
Xu, Y., Iida, Y., Huang, H., et al. Linkages between tree architectural designs and life-history strategies in a subtropical montane moist forest. For. Ecol. Manag. 438 (2019), 1–9.
Jackson, T., Shenkin, A., Wellpott, A., et al. Finite element analysis of trees in the wind based on terrestrial laser scanning data. Agric. For. Meteorol. 265 (2019), 137–144.
Heinzel, J., Ginzler, C., A single-tree processing framework using terrestrial laser scanning data for detecting forest regeneration. Rem. Sens., 11(1), 2019, 60.
Singh, J., Levick, S.R., Guderle, M., Schmullius, C., Trumbore, S.E., Variability in fire-induced change to vegetation physiognomy and biomass in semi-arid savanna. Ecosphere, 9(12), 2018, e02514.
Decuyper, M., Mulatu, K.A., Brede, B., et al. Assessing the structural differences between tropical forest types using terrestrial laser scanning. For. Ecol. Manag. 429 (2018), 327–335.
Georgi, L., Kunz, M., Fichtner, A., et al. Long-term abandonment of forest management has a strong impact on tree morphology and wood volume allocation pattern of European Beech (Fagus sylvatica L.). Forests, 9(11), 2018, 704.
Lau, A., Bentley, L.P., Martius, C., et al. Quantifying branch architecture of tropical trees using terrestrial LiDAR and 3D modelling. Trees (Berl.) 32:5 (2018), 1219–1231.
Li, Z., Schaefer, M., Strahler, A., Schaaf, C., Jupp, D., On the utilization of novel spectral laser scanning for three-dimensional classification of vegetation elements. Interface Focus, 8(2), 2018, 20170039.
Wagner, B., Ginzler, C., Bürgi, A., Santini, S., Gärtner, H., An annually-resolved stem growth tool based on 3D laser scans and 2D tree-ring data. Trees (Berl.) 32:1 (2018), 125–136.
Nölke, N., Fehrmann, L., Nengah, S.J.I., et al. On the geometry and allometry of big-buttressed trees - a challenge for forest monitoring: new insights from 3D-modeling with terrestrial laser scanning. iForest, 8(5), 2015, 574.
Smith, A., Astrup, R., Raumonen, P., et al. Tree root system characterization and volume estimation by terrestrial laser scanning and quantitative structure modeling. Forests 5:12 (2014), 3274–3294.
Liu, W., Atherton, J., Gastellu-Etchegorry, J.-P., et al. Simulating solar-induced chlorophyll fluorescence in a boreal forest stand reconstructed from terrestrial laser scanning measurements. Remote Sens. Environ., 232, 2019, 111274.
Martin-Sanz, R.C., San-Martin, R., Poorter, H., Vazquez, A., Climent, J., How does water availability affect the allocation to bark in a Mediterranean conifer?. Front. Plant Sci., 10, 2019, 607.
Jacquemoud, S., Ustin, S.L., Verdebout, J., et al. Estimating leaf biochemistry using the PROSPECT leaf optical properties model. Remote Sens. Environ. 56 (1996), 194–202.
Bye, I.J., North, P.R.J., Los, S.O., et al. Estimating forest canopy parameters from satellite waveform LiDAR by inversion of the FLIGHT three-dimensional radiative transfer model. Remote Sens. Environ. 188 (2017), 177–189.
Iglhaut, J., Cabo, C., Puliti, S., Piermattei, L., O'Connor, J., Rosette, J., Structure from motion photogrammetry in forestry: a review. Curr. For. Rep. 5 (2019), 155–168.
Ciesielski, M., Sterenczak, K., Accuracy of determining specific parameters of the urban forest using remote sensing. iForest 12 (2019), 498–510.
Woodgate, W., Jones, S.D., Suarez, L., et al. Understanding the variability in ground-based methods for retrieving canopy openness, gap fraction, and leaf area index in diverse forest systems. Agric. For. Meteorol. 205 (2015), 83–95.
Tang, H., Song, X.-P., Zhao, F., et al. Definition and measurement of tree cover: a comparative analysis of field-, lidar- and landsat-based tree cover estimations in the Sierra national forests, USA. Agric. For. Meteorol. 268 (2019), 258–268.
Ilangakoon, N.T., Gorsevski, P.V., Milas, A.S., Estimating leaf area index by bayesian linear regression using terrestrial LiDAR, LAI-2200 plant canopy analyzer, and Landsat TM spectral indices. Can. J. Rem. Sens. 41:4 (2015), 315–333.
Stovall, A.E.L., Shugart, H.H., Improved biomass calibration and validation with terrestrial LiDAR: implications for future LiDAR and SAR missions. IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens. 11 (2018), 3527–3537.
Bazezew, M.N., Hussin, Y.A., Kloosterman, E.H., Integrating airborne LiDAR and terrestrial laser scanner forest parameters for accurate above-ground biomass/carbon estimation in Ayer Hitam tropical forest, Malaysia. Int. J. Appl. Earth Obs. Geoinf. 73 (2018), 638–652.
Iizuka, K., Hayakawa, Y., Ogura, T., et al. Integration of multi-sensor data to estimate plot-level stem volume using machine learning algorithms – case study of evergreen conifer planted forests in Japan. Rem. Sens., 12, 2020, 1649.
Wu, D., Johansen, K., Phinn, S., Robson, A., Tu, Y.H., Inter-comparison of remote sensing platforms for height estimation of mango and avocado tree crowns. Int. J. Appl. Earth Obs. Geoinf., 89, 2020, 102091.
Mulatu, K.A., Decuyper, M., Brede, B., et al. Linking terrestrial LiDAR scanner and conventional forest structure measurements with multi-modal satellite data. Forests, 10, 2019, 291.
Kato, A., Moskal, L.M., Batchelor, J.L., Thau, D., Hudak, A.T., Relationships between satellite-based spectral burned ratios and terrestrial laser scanning. Forests, 10, 2019, 444.
Urban, M., Berger, C., Mudau, T.E., et al. Surface moisture and vegetation cover analysis for drought monitoring in the Southern Kruger national Park using sentinel-1, sentinel-2, and landsat-8. Rem. Sens., 10, 2018, 1482.
Lin, Y., Hyyppä, J., Multiecho-recording mobile laser scanning for enhancing individual tree crown reconstruction. IEEE Trans. Geosci. Rem. Sens. 50:11 (2012), 4323–4332.
Elseberg, J., Borrmann, D., Nuchter, A., One billion points in the cloud - an octree for efficient processing of 3D laser scans. ISPRS J. Photogrammetry Remote Sens. 76 (2013), 76–88.
Calders, K., Adams, J., Armston, J., et al. Terrestrial laser scanning in forest ecology: expanding the horizon. Remote Sens. Environ., 251, 2020, 112102.
Krooks, A., Kaasalainen, S., Kankare, V., et al. Predicting tree structure from tree height using terrestrial laser scanning and quantitative structure models. Silva Fenn., 48(2), 2014, 1125.
Wilkes, P., Shenkin, A., Disney, M., et al. Terrestrial laser scanning to reconstruct branch architecture from harvested branches. Methods Ecol. Evol. 12 (2021), 2487–2500.
Bentley, L.P., Stegen, J.C., Savage, V.M., et al. An empirical assessment of tree branching networks and implications for plant allometric scaling models. Ecol. Lett. 16 (2013), 1069–1078.
Brummer, A., Savage, V., A general model for metabolic scaling in self-similar asymmetric networks. PLoS Comput. Biol., 13, 2017, e1005394.
Craine, J.M., Dybzinski, R., Mechanisms of plant competition for nutrients, water and light. Funct. Ecol. 27 (2013), 833–840.
Hale, S., Gardiner, B., Peace, A., et al. Comparison and validation of three versions of a forest wind model. Environ. Model. Software 67 (2015), 27–41.
Pivato, D., Dupont, S., Brunet, Y., A simple tree swaying model for forest motion in windstorm conditions. Trees (Berl.) 28 (2014), 281–293.
Jackson, T., Shenkin, A., Moore, J., et al. An architectural understanding of natural sway frequencies in trees. J. R. Soc. Interface, 16, 2019, 20190116.
Muller-Landau, H.C., Condit, R.S., Chave, J., et al. Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecol. Lett. 9 (2006), 575–588.
Coomes, D.A., Challenges to the generality of WBE theory. Trends Ecol. Evol. 21 (2006), 593–596.
Malhi, Y., Doughty, C.E., Goldsmith, G.R., et al. The linkages between photosynthesis, productivity, growth and biomass in lowland Amazonian forests. Global Change Biol. 21 (2015), 2283–2295.
Metcalfe, D., Eisele, B., Hasselquist, N., Effects of nitrogen fertilization on the forest floor carbon balance over the growing season in a boreal pine forest. Biogeosciences 10 (2013), 8223–8231.
Sánchez-Robles, J.M., García-Castaño, J.L., Balao, F., et al. Effects of tree architecture on pollen dispersal and mating patterns in Abies pinsapo Boiss., Pinaceae). Mol. Ecol. 23 (2014), 6165–6178.
Lin, Y., Hyyppä, J., Towards 3D basic theories of plant forms. Commun. Biol., 5, 2022, 703.