[en] Muscle diseases cover a diverse group of disorders that in most cases are hereditary. The rarity of the individual muscle diseases provides a challenge for researchers when wanting to establish natural history of the conditions and when trying to develop diagnostic tools, therapies, and outcome measures to evaluate disease progression. With emerging molecular therapies in many genetic muscle diseases, as well as biological therapies for the immune-mediated ones, biological biomarkers play an important role in both drug development and evaluation. In this review, we focus on the role of biological biomarkers in muscle diseases and discuss their utility as surrogate endpoints in therapeutic trials. We categorise these as either 1) disease unspecific markers, 2) markers of specific pathways that may be used for more than one disease or 3) disease-specific markers. We also propose that evaluation of specific therapeutic interventions benefits from biological markers that match the intervention.
Disciplines :
Pediatrics
Author, co-author :
Stemmerik, Mads G ; Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
Tasca, Giorgio; John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trusts, Newcastle Upon Tyne NE1 3BZ, UK
Gilhus, Nils Erik; Department of Clinical Medicine, University of Bergen, 5007 Bergen, Norway ; Department of Neurology, Haukeland University Hospital, 5009 Bergen, Norway
Servais, Laurent ; Université de Liège - ULiège > Département des sciences cliniques ; Department of Paediatrics, MDUK Oxford Neuromuscular Centre & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX1 3PT, UK
Vicino, Alex; Nerve-Muscle Unit, Neurology Service, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, 1005 Lausanne, Switzerland
Maggi, Lorenzo; Neuroimmunology and Neuromuscular Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan MI, Italy
Sansone, Valeria; The NEMO Clinical Center in Milan, Neurorehabilitation Unit, University of Milan- ERN for Neuromuscular Diseases, 20162 Milan MI, Italy
Vissing, John; Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
Language :
English
Title :
Biological biomarkers in muscle diseases relevant for follow-up and evaluation of treatment.
Manolis E, Vamvakas S, Isaac M. New pathway for qualification of novel methodologies in the European Medicines Agency. Proteomics Clin Appl. 2011;5:248-255.
Center for Drug Evaluation and Research. Qualification process for drug development tools guidance for industry and FDA staff. U.S. Food and Drug Administration; 2020.
De Wel B, Huysmans L, Peeters R, et al. Prospective natural history study in 24 adult patients with LGMDR12 over 2 years of follow-up: Quantitative MRI and clinical outcome measures. Neurology. 2022;99:e638-e649.
Dijkstra JN, Goselink RJM, van Alfen N, et al. Natural history of facioscapulohumeral dystrophy in children: A 2-year follow- up. Neurology. 2021;97:e2103-e2113.
Miller NF, Alfano LN, Iammarino MA, et al. Natural history of steroid-treated young boys with Duchenne muscular dystrophy using the NSAA, 100m, and timed functional tests. Pediatr Neurol. 2020;113:15-20.
Holm-Yildiz S, Krag T, Witting N, et al. Hypokalemic periodic paralysis: A 3-year follow-up study. J Neurol. 2023;270: 6057-6063.
Petri H, Mohammad BJY, Kristensen AT, et al. Natural history of cardiac involvement in myotonic dystrophy type 1- Emphasis on the need for lifelong follow-up. Int J Cardiol. 2024;406:132070.
Murphy AP, Morrow J, Dahlqvist JR, et al. Natural history of limb girdle muscular dystrophy R9 over 6 years: Searching for trial endpoints. Ann Clin Transl Neurol. 2019;6:1033-1045.
Moore U, Fernández-Simón E, Schiava M, et al. Myostatin and follistatin as monitoring and prognostic biomarkers in dysferlinopathy. Neuromuscul Disord. 2023;33:199-207.
Virginia Commonwealth University. GRASP-LGMD: Defining Clinical Endpoints in LGMD. clinicaltrials.govidentifier: NCT03981289. Updated 4 November 2024. Accessed 17 October 2022. https://clinicaltrials.gov/ct2/show/NCT03981289
Genethon. Natural History of Duchenne Muscular Dystrophy. clinicaltrials.govidentifier: NCT03882827. Updated 9 September 2022. Accessed 17 October 2022. https://clinicaltrials.gov/ct2/show/NCT03882827
Genethon. Natural History Study of Patients With Limb-Girdle Muscular Dystrophy 2I. clinicaltrials.govidentifier: NCT03842878. Updated 4 April 2023. Accessed 17 October 2022. https://clinicaltrials.gov/ct2/show/NCT03842878
FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and Other Tools) Resource. Food and Drug Administration (US); 2016. Accessed 26 July 2022. http://www. ncbi.nlm.nih.gov/books/NBK326791/
McDonald CM, Shieh PB, Abdel-Hamid HZ, et al. Open-label evaluation of eteplirsen in patients with Duchenne muscular dystrophy amenable to exon 51 skipping: PROMOVI trial. J Neuromuscul Dis. 1001;8:989-1001.
Voit T, Topaloglu H, Straub V, et al. Safety and efficacy of drisapersen for the treatment of Duchenne muscular dystrophy (DEMAND II): An exploratory, randomised, placebo-controlled phase 2 study. Lancet Neurol. 2014;13:987-996.
Clemens PR, Rao VK, Connolly AM, et al. Safety, tolerability, and efficacy of Viltolarsen in boys with Duchenne muscular dystrophy amenable to exon 53 skipping. JAMA Neurol. 2020; 77:982-991.
De Serres-Bérard T, Ait Benichou S, Jauvin D, Boutjdir M, Puymirat J, Chahine M. Recent progress and challenges in the development of antisense therapies for myotonic dystrophy type 1. Int J Mol Sci. 2022;23:13359.
Tawil R, Wagner KR, Hamel JI, et al. Safety and efficacy of losmapimod in facioscapulohumeral muscular dystrophy (ReDUX4): A randomised, double-blind, placebo-controlled phase 2b trial. Lancet Neurol. 2024;23:477-486.
Dahlqvist JR, Widholm P, Leinhard OD, Vissing J. MRI in neuromuscular diseases: An emerging diagnostic tool and biomarker for prognosis and efficacy. Ann Neurol. 2020;88:669-681.
McNeil PL, Khakee R. Disruptions of muscle fiber plasma membranes. Role in exercise-induced damage. Am J Pathol. 1992;140: 1097-1109.
Aljuani F, Tournadre A, Cecchetti S, Soubrier M, Dubost JJ. Macro-creatine kinase: A neglected cause of elevated creatine kinase. Intern Med J. 2015;45:457-459.
Zygmunt AM, Wong BL, Horn PS, et al. A longitudinal study of creatine kinase and creatinine levels in Duchenne muscular dystrophy. Muscle Nerve. 2023;67:138-145.
Jackson MJ, Round JM, Newham DJ, Edwards RH. An examination of some factors influencing creatine kinase in the blood of patients with muscular dystrophy. Muscle Nerve. 1987; 10:15-21.
Barp A, Ferrero A, Casagrande S, Morini R, Zuccarino R. Circulating biomarkers in neuromuscular disorders: What is known, what is new. Biomolecules. 2021;11:1246.
van de Velde NM, Koeks Z, Signorelli M, et al. Longitudinal assessment of creatine kinase, creatine/creatinineratio, and myostatin as monitoring biomarkers in becker muscular dystrophy. Neurology. 2023;100:e975-e984.
Barthel BL, Cox D, Barbieri M, et al. Elevation of fast but not slow troponin I in the circulation of patients with Becker and Duchenne muscular dystrophy. Muscle Nerve. 2021;64: 43-49.
Chapman DW, Simpson JA, Iscoe S, Robins T, Nosaka K. Changes in serum fast and slow skeletal troponin I concentration following maximal eccentric contractions. J Sci Med Sport. 2013;16:82-85.
Spitali P, Hettne K, Tsonaka R, et al. Cross-sectional serum metabolomic study of multiple forms of muscular dystrophy. J Cell Mol Med. 2018;22:2442-2448.
Boca SM, Nishida M, Harris M, et al. Discovery of metabolic biomarkers for Duchenne muscular dystrophy within a natural history study. PLoS One. 2016;11:e0153461.
Statland J, Donlin-Smith CM, Tapscott SJ, van der Maarel S, Tawil R. Multiplex screen of serum biomarkers in facioscapulohumeral muscular dystrophy. J Neuromuscul Dis. 2014;1: 181-190.
Petek LM, Rickard AM, Budech C, et al. A cross sectional study of two independent cohorts identifies serum biomarkers for facioscapulohumeral muscular dystrophy (FSHD). Neuromuscul Disord. 2016;26:405-413.
Hathout Y, Brody E, Clemens PR, et al. Large-scale serum protein biomarker discovery in Duchenne muscular dystrophy. Proc Natl Acad Sci U S A. 2015;112:7153-7158.
Strandberg K, Ayoglu B, Roos A, et al. Blood-derived biomarkers correlate with clinical progression in Duchenne muscular dystrophy. J Neuromuscul Dis. 2020;7:231-246.
Ayoglu B, Chaouch A, Lochmüller H, et al. Affinity proteomics within rare diseases: A BIO-NMD study for blood biomarkers of muscular dystrophies. EMBO Mol Med. 2014;6:918-936.
Stemmerik M, Barthel B, Andersen N, Skriver S, Russell A, Vissing J. FP.06 use of an exercise challenge system to define a universal proteomic signature of muscle injury in a diverse set of adults with inherited myopathy. Neuromuscul Dis. 2022;32:S55.
Meng Q, Zhang J, Zhong J, Zeng D, Lan D. Novel miRNA biomarkers for patients with Duchenne muscular dystrophy. Front Neurol. 2022;13:921785.
Zhang J, Meng Q, Zhong J, et al. Serum MyomiRs as biomarkers for female carriers of Duchenne/Becker muscular dystrophy. Front Neurol. 2020;11:563609.
Catapano F, Domingos J, Perry M, et al. Downregulation of miRNA-29, -23 and -21 in urine of Duchenne muscular dystrophy patients. Epigenomics. 2018;10:875-889.
Gagliardi D, Rizzuti M, Brusa R, et al. MicroRNAs as serum biomarkers in Becker muscular dystrophy. J Cell Mol Med. 2022;26: 4678-4685.
Zaharieva IT, Calissano M, Scoto M, et al. Dystromirs as serum biomarkers for monitoring the disease severity in Duchenne muscular dystrophy. PLoS One. 2013;8:e80263.
Li X, Li Y, Zhao L, et al. Circulating muscle-specific miRNAs in Duchenne muscular dystrophy patients. Mol Ther Nucleic Acids. 2014;3:e177.
Cacchiarelli D, Legnini I, Martone J, et al. miRNAs as serum biomarkers for Duchenne muscular dystrophy. EMBO Mol Med. 2011;3:258-265.
Chwalenia K, Oieni J, Zemła J, et al. Exon skipping induces uniform dystrophin rescue with dose-dependent restoration of serum miRNA biomarkers and muscle biophysical properties. Mol Ther Nucleic Acids. 2022;29:955-968.
Sanson M, Vu Hong A, Massourides E, et al. miR-379 links glucocorticoid treatment with mitochondrial response in Duchenne muscular dystrophy. Sci Rep. 2020;10:9139.
Muñoz-Braceras S, Pinal-Fernandez I, Casal-Dominguez M, et al. Identification of unique microRNA profiles in different types of idiopathic inflammatory myopathy. Cells. 2023;12: 2198.
Perfetti A, Greco S, Cardani R, et al. Validation of plasma microRNAs as biomarkers for myotonic dystrophy type 1. Sci Rep. 2016;6:38174.
Koutsoulidou A, Kyriakides TC, Papadimas GK, et al. Elevated muscle-specific miRNAs in serum of myotonic dystrophy patients relate to muscle disease progress. PLoS One. 2015;10: e0125341.
Colangelo V, François S, Soldà G, et al. Next-generation sequencing analysis of miRNA expression in control and FSHD myogenesis. PLoS One. 2014;9:e108411.
Tarallo A, Carissimo A, Gatto F, et al. microRNAs as biomarkers in Pompe disease. Genet Med. 2019;21:591-600.
Malacarne C, Galbiati M, Giagnorio E, et al. Dysregulation of muscle-specific MicroRNAs as common pathogenic feature associated with muscle atrophy in ALS, SMA and SBMA: Evidence from animal models and human patients. Int J Mol Sci. 2021;22:5673.
Wang H, Davison M, Wang K, et al. MicroRNAs as biomarkers of Charcot-Marie-Tooth disease type 1A. Neurology. 2021;97: e489-e500.
Bonanno S, Marcuzzo S, Malacarne C, et al. Circulating MyomiRs as potential biomarkers to monitor response to nusinersen in pediatric SMA patients. Biomedicines. 2020;8:21.
Li D, Xia L, Chen M, et al. miR-133b, a particular member of myomiRs, coming into playing its unique pathological role in human cancer. Oncotarget. 2017;8:50193-50208.
Mitchelson KR, Qin WY. Roles of the canonical myomiRs miR-1, -133 and -206 in cell development and disease. World J Biol Chem. 2015;6:162-208.
Iannone F, Montesanto A, Cione E, et al. Expression patterns of muscle-specific miR-133b and miR-206 correlate with nutritional Status and sarcopenia. Nutrients. 2020;12:297.
Chalchat E, Charlot K, Garcia-Vicencio S, et al. Circulating microRNAs after a 24-h ultramarathon run in relation to muscle damage markers in elite athletes. Scand J Med Sci Sports. 2021;31:1782-1795.
Danese E, Benati M, Sanchis-Gomar F, et al. Influence of middle-distance running on muscular micro RNAs. Scand J Clin Lab Invest. 2018;78:165-170.
Bolko L, Jiang W, Tawara N, et al. The role of interferons type I, II and III in myositis: A review. Brain Pathol. 2021;31: e12955.
Greenberg SA, Higgs BW, Morehouse C, et al. Relationship between disease activity and type 1 interferon- and other cytokine-inducible gene expression in blood in dermatomyositis and polymyositis. Genes Immun. 2012;13:207-213.
Richards TJ, Eggebeen A, Gibson K, et al. Characterization and peripheral blood biomarker assessment of anti-Jo-1 antibody- positive interstitial lung disease. Arthritis Rheum. 2009;60: 2183-2192.
Pinal-Fernandez I, Casal-Dominguez M, Derfoul A, et al. Identification of distinctive interferon gene signatures in different types of myositis. Neurology. 2019;93:e1193-e1204.
Oda F, Uzawa A, Ozawa Y, Yasuda M, Kuwabara S. Serum cytokine and chemokine profiles in patients with immune- mediated necrotizing myopathy. J Neuroimmunol. 2022;365: 577833.
Cowling BS, Chevremont T, Prokic I, et al. Reducing dynamin 2 expression rescues X-linked centronuclear myopathy. J Clin Invest. 2014;124:1350-1363.
Kojima C, Hashimoto A, Yabuta I, et al. Regulation of Bin1 SH3 domain binding by phosphoinositides. EMBO J. 2004;23: 4413-4422.
Royer B, Hnia K, Gavriilidis C, Tronchère H, Tosch V, Laporte J. The myotubularin-amphiphysin 2 complex in membrane tubulation and centronuclear myopathies. EMBO Rep. 2013;14: 907-915.
Silva-Rojas R, Nattarayan V, Jaque-Fernandez F, et al. Mice with muscle-specific deletion of Bin1 recapitulate centronuclear myopathy and acute downregulation of dynamin 2 improves their phenotypes. Mol Ther. 2022;30: 868-880.
Buono S, Ross JA, Tasfaout H, et al. Reducing dynamin 2 (DNM2) rescues DNM2-related dominant centronuclear myopathy. Proc Natl Acad Sci U S A. 2018;115:11066-11071.
Dynacure. A phase 1/2 trial on the safety, tolerability, pharmacokinetics, pharmacodynamics and exploratory efficacy of DYN101 in patients ≥ 16 years of age with centronuclear myopathies caused by mutations in DNM2 or MTM1. clinicaltrials.govidentifier: NCT04033159. Updated 27 June 2023. Accessed 8 November 2022. https://clinicaltrials.gov/ct2/show/NCT04033159
Liu N, Bezprozvannaya S, Shelton JM, et al. Mice lacking microRNA 133a develop dynamin 2-dependent centronuclear myopathy. J Clin Invest. 2011;121:3258-3268.
Djeddi S, Reiss D, Menuet A, et al. Multi-omics comparisons of different forms of centronuclear myopathies and the effects of several therapeutic strategies. Mol Ther. 2021;29:2514-2534.
Koch C, Buono S, Menuet A, et al. Myostatin: A circulating biomarker correlating with disease in myotubular myopathy mice and patients. Mol Ther Methods Clin Dev. 2020;17: 1178-1189.
Lehtonen JM, Auranen M, Darin N, et al. Diagnostic value of serum biomarkers FGF21 and GDF15 compared to muscle sample in mitochondrial disease. J Inherit Metab Dis. 2021;44: 469-480.
Davis RL, Liang C, Edema-Hildebrand F, Riley C, Needham M, Sue CM. Fibroblast growth factor 21 is a sensitive biomarker of mitochondrial disease. Neurology. 2013;81:1819-1826.
Forsström S, Jackson CB, Carroll CJ, et al. Fibroblast growth factor 21 drives dynamics of local and systemic stress responses in mitochondrial myopathy with mtDNA deletions. Cell Metab. 2019;30:1040-1054.e7.
Poulsen NS, Madsen KL, Hornsyld TM, et al. Growth and differentiation factor 15 as a biomarker for mitochondrial myopathy. Mitochondrion. 2019;50:35-41.
Fujita Y, Ito M, Kojima T, Yatsuga S, Koga Y, Tanaka M. GDF15 is a novel biomarker to evaluate efficacy of pyruvate therapy for mitochondrial diseases. Mitochondrion. 2015;20:34-42.
Montano V, Gruosso F, Carelli V, et al. Primary mitochondrial myopathy: Clinical features and outcome measures in 118 cases from Italy. Neurol Genet. 2020;6:e519.
Domínguez-González C, Madruga-Garrido M, Mavillard F, et al. Deoxynucleoside therapy for thymidine kinase 2-deficient myopathy. Ann Neurol. 2019;86:293-303.
Koga Y, Povalko N, Inoue E, Nashiki K, Tanaka M. Biomarkers and clinical rating scales for sodium pyruvate therapy in patients with mitochondrial disease. Mitochondrion. 2019;48: 11-15.
Madsen KL, Buch AE, Cohen BH, et al. Safety and efficacy of omaveloxolone in patients with mitochondrial myopathy: MOTOR trial. Neurology. 2020;94:e687-e698.
Pirinen E, Auranen M, Khan NA, et al. Niacin cures systemic NAD+ deficiency and improves muscle performance in adult-onset mitochondrial myopathy. Cell Metab. 2020;31: 1078-1090.e5.
Stone KB, Oddis CV, Fertig N, et al. Anti-Jo-1 antibody levels correlate with disease activity in idiopathic inflammatory myopathy. Arthritis Rheum. 2007;56:3125-3131.
Aggarwal R, Bandos A, Reed AM, et al. Predictors of clinical improvement in rituximab-treated refractory adult and juvenile dermatomyositis and adult polymyositis. Arthritis Rheumatol. 2014;66:740-749.
Aggarwal R, Oddis CV, Goudeau D, et al. Autoantibody levels in myositis patients correlate with clinical response during B cell depletion with rituximab. Rheumatology (Oxford). 2016;55: 991-999.
Werner JL, Christopher-Stine L, Ghazarian SR, et al. Antibody levels correlate with creatine kinase levels and strength in anti-3-hydroxy- 3-methylglutaryl-coenzyme A reductase-associated autoimmune myopathy. Arthritis Rheum. 2012;64:4087-4093.
Julien S, van der Woning B, De Ceuninck L, et al. Efgartigimod restores muscle function in a humanized mouse model of immune-mediated necrotizing myopathy. Rheumatology (Oxford). 2023;62:4006-4011.
Julien S, Vadysirisack D, Sayegh C, et al. Prevention of anti-HMGCR immune-mediated necrotising myopathy by C5 complement inhibition in a humanised mouse model. Biomedicines. 2022;10:2036.
Benveniste O, Drouot L, Jouen F, et al. Correlation of anti-signal recognition particle autoantibody levels with creatine kinase activity in patients with necrotizing myopathy. Arthritis Rheum. 2011;63:1961-1971.
Le Gall L, Sidlauskaite E, Mariot V, Dumonceaux J. Therapeutic strategies targeting DUX4 in FSHD. J Clin Med. 2020;9:2886.
Wang LH, Friedman SD, Shaw D, et al. MRI-informed muscle biopsies correlate MRI with pathology and DUX4 target gene expression in FSHD. Hum Mol Genet. 2019;28:476-486.
Tasca G, Pescatori M, Monforte M, et al. Different molecular signatures in magnetic resonance imaging-staged facioscapulohumeral muscular dystrophy muscles. PLoS One. 2012;7:e38779.
van den Heuvel A, Lassche S, Mul K, et al. Facioscapulohumeral dystrophy transcriptome signatures correlate with different stages of disease and are marked by different MRI biomarkers. Sci Rep. 2022;12:1426.
Jiang S, Williams K, Kong X, et al. Single-nucleus RNA-seq identifies divergent populations of FSHD2 myotube nuclei. PLoS Genet. 2020;16:e1008754.
van den Heuvel A, Mahfouz A, Kloet SL, et al. Single-cell RNA sequencing in facioscapulohumeral muscular dystrophy disease etiology and development. Hum Mol Genet. 2019;28: 1064-1075.
Tassin A, Laoudj-Chenivesse D, Vanderplanck C, et al. DUX4 expression in FSHD muscle cells: How could such a rare protein cause a myopathy? J Cell Mol Med. 2013;17:76-89.
Snider L, Geng LN, Lemmers RJLF, et al. Facioscapulohumeral dystrophy: Incomplete suppression of a retrotransposed gene. PLoS Genet. 2010;6:e1001181.
Yao Z, Snider L, Balog J, et al. DUX4-induced gene expression is the major molecular signature in FSHD skeletal muscle. Hum Mol Genet. 2014;23:5342-5352.
Tasca G, Monforte M, Corbi M, et al. Muscle microdialysis to investigate inflammatory biomarkers in facioscapulohumeral muscular dystrophy. Mol Neurobiol. 2018;55:2959-2966.
Corasolla Carregari V, Monforte M, Di Maio G, et al. Proteomics of muscle microdialysates identifies potential circulating biomarkers in facioscapulohumeral muscular dystrophy. Int J Mol Sci. 2021;22:290.
Heier CR, Zhang A, Nguyen NY, et al. Multi-omics identifies circulating miRNA and protein biomarkers for facioscapulohumeral dystrophy. J Pers Med. 2020;10:236.
Wong CJ, Wang L, Holers VM, et al. Elevated plasma complement components in facioscapulohumeral dystrophy. Hum Mol Genet. 2022;31:1821-1829.
Gros M, Nunes AM, Daoudlarian D, et al. Identification of serum interleukin 6 levels as a disease severity biomarker in facioscapulohumeral muscular dystrophy. J Neuromuscul Dis. 2022;9:83-93.
Banerji CRS, Greco A, Joosten LAB, van Engelen BGM, Zammit PS. The FSHD muscle-blood biomarker: A circulating transcriptomic biomarker for clinical severity in facioscapulohumeral muscular dystrophy. Brain Commun. 2023;5:fcad221.
Monforte M, Attarian S, Vissing J, Diaz-Manera J, Tasca G; 265th ENMC workshop participants. 265th ENMC international workshop: Muscle imaging in facioscapulohumeral muscular dystrophy (FSHD): Relevance for clinical trials. 22-24 April 2022, hoofddorp, The Netherlands. Neuromuscul Disord. 2023; 33:65-75.
Duan D. Systemic AAV micro-dystrophin gene therapy for Duchenne muscular dystrophy. Mol Ther. 2018;26:2337-2356.
de Feraudy Y, Ben Yaou R, Wahbi K, et al. Very low residual dystrophin quantity is associated with milder dystrophinopathy. Ann Neurol. 2021;89:280-292.
Wang RT, Barthelemy F, Martin AS, et al. DMD genotype correlations from the Duchenne Registry: Endogenous exon skipping is a factor in prolonged ambulation for individuals with a defined mutation subtype. Hum Mutat. 2018;39:1193-1202.
Anthony K, Cirak S, Torelli S, et al. Dystrophin quantification and clinical correlations in Becker muscular dystrophy: Implications for clinical trials. Brain. 2011;134(Pt 12):3547-3559.
Markati T, Oskoui M, Farrar MA, Duong T, Goemans N, Servais L. Emerging therapies for Duchenne muscular dystrophy. Lancet Neurol. 2022;21:814-829.
Le Guiner C, Servais L, Montus M, et al. Long-term microdystrophin gene therapy is effective in a canine model of Duchenne muscular dystrophy. Nat Commun. 2017;8:16105.
Boehler JF, Brown KJ, Beatka M, et al. Clinical potential of microdystrophin as a surrogate endpoint. Neuromuscul Disord. 2023;33:40-49.
Kanagawa M, Kobayashi K, Tajiri M, et al. Identification of a post-translational modification with ribitol-phosphate and its defect in muscular dystrophy. Cell Rep. 2016;14:2209-2223.
Praissman JL, Willer T, Sheikh MO, et al. The functional O-mannose glycan on α-dystroglycan contains a phospho-ribitol primed for matriglycan addition. Elife. 2016;5:e14473.
Xu L, Lu PJ, Wang CH, et al. Adeno-associated virus 9 mediated FKRP gene therapy restores functional glycosylation of α-dystroglycan and improves muscle functions. Mol Ther. 2013;21:1832-1840.
Alhamidi M, Brox V, Stensland E, Liset M, Lindal S, Nilssen Ø. Limb girdle muscular dystrophy type 2I: No correlation between clinical severity, histopathology and glycosylated α-dystroglycan levels in patients homozygous for common FKRP mutation. Neuromuscul Disord. 2017;27:619-626.
Cataldi MP, Lu P, Blaeser A, Lu QL. Ribitol restores functionally glycosylated α-dystroglycan and improves muscle function in dystrophic FKRP-mutant mice. Nat Commun. 2018;9:3448.
Awano H, Blaeser A, Keramaris E, et al. Restoration of functional glycosylation of α-dystroglycan in FKRP mutant mice is associated with muscle regeneration. Am J Pathol. 2015;185:2025-2037.
Sarepta Therapeutics, Inc. A single-center, open-label, systemic gene delivery study to evaluate the safety, tolerability, and efficacy of SRP-9003 administered by systemic infusion in subjects with LGMD2E (β-sarcoglycan deficiency). clinicaltrials.govidentifier: NCT03652259. Updated 13 February 2024. Accessed 8 November 2022. https://clinicaltrials.gov/ct2/show/NCT03652259
Mendell JR, Rodino-Klapac LR, Rosales-Quintero X, et al. Limb-girdle muscular dystrophy type 2D gene therapy restores alpha-sarcoglycan and associated proteins. Ann Neurol. 2009; 66:290-297.
Herson S, Hentati F, Rigolet A, et al. A phase I trial of adeno-associated virus serotype 1-γ-sarcoglycan gene therapy for limb girdle muscular dystrophy type 2C. Brain. 2012;135:483-492.
Rouillon J, Poupiot J, Zocevic A, et al. Serum proteomic profiling reveals fragments of MYOM3 as potential biomarkers for monitoring the outcome of therapeutic interventions in muscular dystrophies. Hum Mol Genet. 2015;24:4916-4932.
ML Bio Solutions, Inc. Biomarker Development in LGMD2i. clinicaltrials.govidentifier: NCT04202627. Updated 29 March 2023. Accessed 8 November 2022. https://clinicaltrials.gov/ct2/show/NCT04202627
Sarepta Therapeutics, Inc. Journey: A global, multicenter, longitudinal study of the natural history of subjects with limb girdle muscular dystrophy (LGMD) type 2E (LGMD2E/R4), type 2D (LGMD2D/R3), type 2C (LGMD2C/R5), and type 2A (LGMD2A/R1). clinicaltrials.govidentifier: NCT04475926. Updated 18 October 2024. Accessed 8 November 2022. https://clinicaltrials.gov/ct2/show/NCT04475926
Nakamori M, Sobczak K, Puwanant A, et al. Splicing biomarkers of disease severity in myotonic dystrophy. Ann Neurol. 2013;74:862-872.
Dyne Therapeutics. A randomized, placebo-controlled, multiple ascending dose study assessing safety, tolerability, pharmacodynamics, efficacy, and pharmacokinetics of DYNE-101 administered to participants with myotonic dystrophy type 1. clinicaltrials.govidentifier: NCT05481879. Updated 31 October 2024. Accessed 17 October 2022. https://clinicaltrials.gov/ct2/show/NCT05481879
Thornton CA, Moxley RT III, Eichinger K, et al. Antisense oligonucleotide targeting DMPK in patients with myotonic dystrophy type 1: A multicentre, randomised, dose-escalation, placebo- controlled, phase 1/2a trial. Lancet Neurol. 2023;22:218-228.
Klein AF, Varela MA, Arandel L, et al. Peptide-conjugated oligonucleotides evoke long-lasting myotonic dystrophy correction in patient-derived cells and mice. J Clin Invest. 2019;129:4739-4744.
Nakamori M, Taylor K, Mochizuki H, Sobczak K, Takahashi MP. Oral administration of erythromycin decreases RNA toxicity in myotonic dystrophy. Ann Clin Transl Neurol. 2016;3:42-54.
Kurkiewicz A, Cooper A, McIlwaine E, et al. Towards development of a statistical framework to evaluate myotonic dystrophy type 1 mRNA biomarkers in the context of a clinical trial. PLoS One. 2020;15:e0231000.
Virginia Commonwealth University. Establishing biomarkers and clinical endpoints in myotonic dystrophy type 1 (END-DM1). clinicaltrials.govidentifier: NCT03981575. Updated 14 November 2024. Accessed 1 January 2024. https://clinicaltrials.gov/study/NCT03981575
Avidity Biosciences, Inc. A randomized, double-blind, placebo- controlled, phase 1/2 study to evaluate the safety, tolerability, pharmacokinetics and pharmacodynamics of single and multiple-doses of AOC 1001 administered intravenously to adult myotonic dystrophy type 1 (DM1) patients. clinicaltrials.govidentifier: NCT05027269. Updated 5 February 2024. Accessed 1 January 2024. https://clinicaltrials.gov/study/NCT05027269
Vertex Pharmaceuticals Incorporated. A phase 1/2, randomized, double-blind, placebo-controlled single- and multiple- dose escalation study evaluating the safety, tolerability, pharmacokinetics, and pharmacodynamics of VX-670 in adult subjects with myotonic dystrophy type 1. clinicaltrials.govidentifier: NCT06185764. Updated 29 August 2024. Accessed 1 January 2024. https://clinicaltrials.gov/study/NCT06185764
Salabarria SM, Nair J, Clement N, et al. Advancements in AAV-mediated gene therapy for Pompe disease. J Neuromuscul Dis. 2020;7:15-31.
Kishnani PS, Koeberl DD. Liver depot gene therapy for Pompe disease. Ann Transl Med. 2019;7:288.
Borie-Guichot M, Tran ML, Génisson Y, Ballereau S, Dehoux C. Pharmacological chaperone therapy for Pompe disease. Molecules. 2021;26:7223.
Coutinho MF, Santos JI, Matos L, Alves S. Genetic substrate reduction therapy: A promising approach for lysosomal storage disorders. Diseases. 2016;4:33.
Schoser B, Laforet P. Therapeutic thoroughfares for adults living with Pompe disease. Curr Opin Neurol. 2022;35:645-650.
An Y, Young SP, Kishnani PS, et al. Glucose tetrasaccharide as a biomarker for monitoring the therapeutic response to enzyme replacement therapy for Pompe disease. Mol Genet Metab. 2005; 85:247-254.
Schoser B, Roberts M, Byrne BJ, et al. Safety and efficacy of cipaglucosidase alfa plus miglustat versus alglucosidase alfa plus placebo in late-onset Pompe disease (PROPEL): An international, randomised, double-blind, parallel-group, phase 3 trial. Lancet Neurol. 2021;20:1027-1037.
Diaz-Manera J, Kishnani PS, Kushlaf H, et al. Safety and efficacy of avalglucosidase alfa versus alglucosidase alfa in patients with late-onset Pompe disease (COMET): A phase 3, randomised, multicentre trial. Lancet Neurol. 2021;20: 1012-1026.
Raben N, Wong A, Ralston E, Myerowitz R. Autophagy and mitochondria in Pompe disease: Nothing is so new as what has long been forgotten. Am J Med Genet C Semin Med Genet. 2012;160C:13-21.
Spampanato C, Feeney E, Li L, et al. Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease. EMBO Mol Med. 2013;5:691-706.
Chien YH, Han DS, Hwu WL, Thurberg BL, Yang WS. Myostatin and insulin-like growth factor I: Potential therapeutic biomarkers for Pompe disease. PLoS One. 2013;8:e71900.
van der Ploeg A, Carlier PG, Carlier RY, et al. Prospective exploratory muscle biopsy, imaging, and functional assessment in patients with late-onset Pompe disease treated with alglucosidase alfa: The EMBASSY study. Mol Genet Metab. 2016;119: 115-123.
Figueroa-Bonaparte S, Llauger J, Segovia S, et al. Quantitative muscle MRI to follow up late onset Pompe patients: A prospective study. Sci Rep. 2018;8:10898.
Nuñez-Peralta C, Alonso-Pérez J, Llauger J, et al. Follow-up of late-onset Pompe disease patients with muscle magnetic resonance imaging reveals increase in fat replacement in skeletal muscles. J Cachexia Sarcopenia Muscle. 2020;11:1032-1046.
Beha G, Stemmerik M, Boer V, et al. FP.19 quantification of glycogen distribution in late-onset Pompe patients using 7 Tesla C13 NMR spectroscopy. Neuromuscul Dis. 2022;32:S73.
Vissing J, Haller RG. A diagnostic cycle test for McArdle's disease. Ann Neurol. 2003;54:539-542.
Ørngreen MC, Jeppesen TD, Taivassalo T, et al. Lactate and energy metabolism during exercise in patients with blocked glycogenolysis (McArdle disease). J Clin Endocrinol Metab. 2015; 100:E1096-E1104.
Villarreal-Salazar M, Brull A, Nogales-Gadea G, et al. Preclinical research in McArdle disease: A review of research models and therapeutic strategies. Genes (Basel). 2021;13:74.
Vissing J, Haller RG. The effect of oral sucrose on exercise tolerance in patients with McArdle's disease. N Engl J Med. 2003; 349:2503-2509.
Løkken N, Nielsen MR, Stemmerik MG, et al. Can a modified ketogenic diet be a nutritional strategy for patients with McArdle disease? Results from a randomized, single-blind, placebo- controlled, cross-over study. Clin Nutr. 2023;42:2124-2137.
Hanna MG, Badrising UA, Benveniste O, et al. Safety and efficacy of intravenous bimagrumab in inclusion body myositis (RESILIENT): A randomised, double-blind, placebo-controlled phase 2b trial. Lancet Neurol. 2019;18:834-844.
Machado PM, McDermott MP, Blaettler T, et al. Safety and efficacy of arimoclomol for inclusion body myositis: A multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2023;22:900-911.
Lucchini M, De Arcangelis V, Santoro M, Morosetti R, Broccolini A, Mirabella M. Serum-Circulating microRNAs in sporadic inclusion body myositis. Int J Mol Sci. 2023;24:11139.
Badrising UA, Tsonaka R, Hiller M, et al. Cytokine profiling of Serum allows monitoring of disease progression in inclusion body myositis. J Neuromuscul Dis. 2017;4:327-335.
De Paepe B, Bracke KR, De Bleecker JL. An exploratory study of circulating cytokines and chemokines in patients with muscle disorders proposes CD40L and CCL5 represent general disease markers while CXCL10 differentiates between patients with an autoimmune myositis. Cytokine X. 2022;4:100063.
Naddaf E. Inclusion body myositis: Update on the diagnostic and therapeutic landscape. Front Neurol. 2022;13:1020113.
Oikawa Y, Izumi R, Koide M, et al. Mitochondrial dysfunction underlying sporadic inclusion body myositis is ameliorated by the mitochondrial homing drug MA-5. PLoS One. 2020;15: e0231064.
Nadarajah VD, van Putten M, Chaouch A, et al. Serum matrix metalloproteinase-9 (MMP-9) as a biomarker for monitoring disease progression in Duchenne muscular dystrophy (DMD). Neuromuscul Disord. 2011;21:569-578.
Zocevic A, Rouillon J, Wong B, Servais L, Voit T, Svinartchouk F. Evaluation of the serum matrix metalloproteinase-9 as a biomarker for monitoring disease progression in Duchenne muscular dystrophy. Neuromuscul Disord. 2015;25:444-446.
Lourbakos A, Yau N, de Bruijn P, et al. Evaluation of serum MMP-9 as predictive biomarker for antisense therapy in Duchenne. Sci Rep. 2017;7:17888