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Biological biomarkers in muscle diseases relevant for follow-2 

up and evaluation of treatment 3 

Mads G. Stemmerik,1 Giorgio Tasca,2 Nils Erik Gilhus,3,4 Laurent Servais,5,6 Alex Vicino,7 4 

Lorenzo Maggi,8 Valeria Sansone9 and John Vissing1 5 

Abstract  6 

Muscle diseases cover a diverse group of disorders that in most cases are hereditary. The rarity of 7 

the individual muscle diseases provides a challenge for researchers when wanting to establish 8 

natural history of the conditions and when trying to develop diagnostic tools, therapies, and 9 

outcome measures to evaluate disease progression. With emerging molecular therapies in many 10 

genetic muscle diseases, as well as biological therapies for the immune-mediated ones, biological 11 

biomarkers play an important role in both drug development and evaluation.  12 

In this review, we focus on the role of biological biomarkers in muscle diseases and discuss their 13 

utility as surrogate endpoints in therapeutic trials. We categorise these as either 1) disease 14 

unspecific markers, 2) markers of specific pathways that may be used for more than one disease 15 

or 3) disease-specific markers. We also propose that evaluation of specific therapeutic 16 

interventions benefits from biological markers that match the intervention. 17 
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3 

Introduction  1 

Muscle diseases cover a diverse group of disorders that in most cases are hereditary. The rarity of 2 

the individual muscle diseases provides a challenge for researchers when wanting to establish 3 

natural history of the conditions and when trying to develop diagnostic tools, therapies, and 4 

outcome measures to evaluate disease progression. The last decades have shown major diagnostic 5 

improvements for muscle diseases, largely driven by improvements in genetic testing. With 6 

emerging molecular therapies in many muscle diseases, targeting the genetic defects or abnormal 7 

proteins, biological biomarkers play an important role in both drug development and evaluation. 8 

This has been a focus for the European Medical Agency through the “Qualification of Novel 9 

Methodologies for Medicine Development”,1 as well as the American Food and Drug 10 

Administration (FDA) through the “Biomarker Qualification Program”.2 To advance 11 

understanding of the utility of biological biomarkers, natural history studies in muscle diseases are 12 

needed to better understand the natural progression of the diseases and the corresponding changes 13 

in biological biomarkers. To that end, several natural history studies have been carried out 3–9 or 14 

are under way,10–12 but natural history data are still insufficient for most muscle diseases. 15 

 16 

The FDA and NIH co-authored “Biomarkers, Endpoints and Other Tools (BEST)”, which is a 17 

resource that defines a biomarker as “a defined characteristic that is measured as an indicator of 18 

normal biological processes, pathogenic processes, or responses to an exposure or intervention, 19 

including therapeutic interventions”.13 This resource categorises biomarkers into 7 groups.  20 

1) Diagnostic biomarkers used to detect or confirm the presence of a (subtype of) disease. 21 

An example is the disease-specific antibodies in myasthenia gravis.  22 

2) Monitoring biomarkers measured repeatedly over time to evaluate the rate of disease 23 

progression. These biomarkers are valuable tools in trials of progressive diseases such as 24 

the muscular dystrophies, where a change in the rate of disease progression might be used 25 

to evaluate treatment response.  26 

3) Response biomarker is used to show that a biological response has occurred in an 27 

individual after an exposure. These biomarkers can be used as surrogate endpoints in 28 

clinical trials when sufficient scientific evidence supports their ability to predict future 29 
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4 

clinical outcomes. An example is the direct demonstration of a gene product after gene 1 

therapy in monogenic diseases.  2 

4) Predictive biomarkers are used to predict if an individual is more or less likely to gain an 3 

effect from an exposure such as antibodies against the vector used in a gene therapy.  4 

5) Prognostic biomarkers are used to identify the likelihood of a specified clinical event in 5 

patients with a specific disease. An example could be antibodies indicative for a risk of 6 

cancer in myositis. 7 

6) Safety biomarker measured before/after exposure are used to indicate the extent of an 8 

adverse effect. An example is the monitoring of liver transaminases to measure liver 9 

toxicity after an exposure such as for instance gene therapy.  10 

7) Susceptibility biomarkers indicate the potential for developing a condition in a healthy 11 

individual. In muscle diseases, this could be elevated serum creatine kinase (CK) in an 12 

asymptomatic carrier of an inherited myopathy.  13 

Currently, biological biomarkers are rarely used as primary endpoints in clinical trials for muscle 14 

diseases. A few phase 2 trials have used different biological biomarkers as primary endpoints, such 15 

as DUX4 activity in Facioscapulohumeral Muscular Dystrophy , splice correction in Myotonic 16 

dystrophy type 1 and dystrophin levels in Duchenne muscular dystrophy .14–18 However, biological 17 

biomarkers used as surrogate endpoints could be used to either 1) detect disease progression or 18 

improvement before this can be detected clinically, 2) used instead of a clinical observation 19 

because it is easier, quicker, or less expensive to measure, or 3) used to give a more exact 20 

quantitative estimate. For a response biomarker to be useful, change in the biomarker must parallel 21 

changes in the disease state within a reasonable timeframe. Ideally, measurements of the biomarker 22 

can be done across different laboratories with high reproducibility and little variability among labs, 23 

secured by participation in an ongoing quality control program.13 A deeper understanding of 24 

biological biomarkers could pave the way for their use as surrogate endpoints in therapeutic trials 25 

in muscle diseases.  26 

 27 

In this position review, we limit our coverage and discussion strictly to muscle diseases. We will 28 

not discuss MRI as a biomarker, as this has been done in a recent review by Dahlqvist et al.19 For 29 
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5 

muscle diseases, biological response biomarkers can be categorised as either 1) disease unspecific 1 

markers, 2) markers of specific pathways that may be used for more than one disease or 3) markers 2 

of specific diseases. An overview of the muscle-derived biomarkers discussed in this paper is seen 3 

in figure 1.  4 

Biological biomarkers common to more than one disease 5 

These biomarkers typically reflect similar pathomechanisms, for instance leakage of intracellular 6 

proteins with muscle damage.  7 

 8 

Biological biomarkers of muscle damage 9 

Most trials use the well-known markers creatine kinase and/or myoglobin as a biomarker for 10 

muscle damage. Both CK and myoglobin are mainly found in the cytosol of striated muscle cells. 11 

Elevation of these biomarkers is seen when there is a leakage through the damaged cell 12 

membrane.20 CK and myoglobin exhibit qualities of good biomarkers in the form of ease of 13 

measurement, low testing costs, and reproducibility among laboratories. However, they have 14 

several shortcomings. CK is found not only in skeletal muscle, but also in other tissues with high 15 

energy demand such as heart and brain. CK from these tissues can be distinguished by measuring 16 

the isoform of the CK-dimer (MM found in skeletal muscle, BB in the brain, and MB in heart 17 

muscle, and macro-CK type 1 and 2),21 though the standard measurements of CK are not 18 

isoenzyme specific. In a similar way, myoglobin is not specific to skeletal muscles, but is also 19 

found in heart muscle. CK and myoglobin depend on total muscle mass (in Duchenne muscular 20 

dystrophy, CK is very elevated in young boys, but can reach normal limits in adults when residual 21 

muscle mass is low),22 recent exercise, and muscle trauma, which collectively lead to a significant 22 

inter-subject variability.23 Thus, a single measurement of CK and myoglobin is unreliable as a 23 

biomarker for disease state.24,25 As CK and myoglobin are primarily located in the cytosol, an 24 

increase of plasma levels primarily indicates increased cell membrane permeability. By contrast, 25 

troponin I is a predominantly structural protein connected to the thin contractile filament of the 26 

sarcomeric structure. Troponin I is a more specific marker for muscle damage, as it is connected 27 

to the contractile filaments in striated muscles and allows differentiation between skeletal and 28 

cardiac isoforms as well as distinguishing between different fiber types by measuring the slow-29 
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6 

twitch (TNNI1) or fast-twitch (TNNI2) isoforms. Elevated skeletal troponin I indicates structural 1 

damage to the muscle fiber in addition to disruption of the cell membrane. This has been used to 2 

show that mainly TNNI2 is elevated in both the exercise response of healthy persons, and in 3 

baseline samples of Becker Muscular Dystrophy patients.26,27 An ideal biomarker for disease state 4 

would be independent of recent muscle strain and show disease progression independent of or 5 

relative to muscle mass. In Duchenne muscular dystrophy, disease severity has shown a direct 6 

correlation with plasma creatine/creatinine ratio and an inverse relationship with plasma myostatin 7 

levels.28,29 A similar pattern was seen in Limb-Girdle type R1 (Calpain-3-related) and Limb-Girdle 8 

type R2 (Dysferlin-related), and as such could possibly be used as a response marker in trials and 9 

could potentially be applied to other muscle dystrophies as well.28 CK level does not represent a 10 

good biomarker of treatment response as a decrease (outside of physiological fluctuations) can be 11 

caused by either progression of the disease with a decrease of muscle mass, or by a treatment 12 

response and thus less muscle injury and leakage to the blood. 13 

Large scale biomarker discovery 14 

Circulating biomarkers have been examined in a few unbiased large-scale studies of muscle 15 

diseases, summed up in table 1. Although both methodology and the specific disease differ, the 16 

biomarker candidates show a large degree of overlap, with CK, carbonic anhydrase III (CA3), 17 

Myosin Light Chain 3 (MYL3), and TNNI2 being the standouts. The large overlap between 18 

different muscular dystrophies suggests that these are not markers of the unique diseases, but rather 19 

common circulating biomarkers for the pathology of striated muscle tissue.  20 

 21 

MicroRNAs 22 

A group of muscle-specific microRNAs, named myomiRs have been investigated across several 23 

myopathies.   24 

 25 

In the dystrophinopathies, both Duchenne muscular dystrophy, Becker Muscular Dystrophy as 26 

well as female carriers show elevated levels of myomiRs compared to healthy controls.36–38 While 27 

Duchenne muscular dystrophy -patients seem to have higher levels of all myomiRs than Becker 28 
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7 

Muscular Dystrophy, the levels of miR-133b correlated with disease severity in both groups, and 1 

were age-dependent.39–41 Cacchiarelli et al42 found increasing levels of miR-133 with higher age 2 

in young Duchenne muscular dystrophy patients (age 3-6 years). The opposite age correlation was 3 

found by Zaharieva et al40 where lower levels of miR-133 were found in those who had lost 4 

ambulation in a cohort of older Duchenne muscular dystrophy patients (age 4-13 years). 5 

Restoration of myomiRs in response to treatment show some promise, as exon-skipping in 6 

dystrophin-deficient mdx mice caused a dose-dependent lowering of both myomiR levels (1a, 7 

miR-133a, miR-206, miR-483) and CK.43 A single study has showed a trend towards normaliation 8 

of miR-1, miR-206, miR-133a and miR-133b levels with exon skipping therapy in Duchenne 9 

muscular dystrophy patients, though this failed to reach statistical significance, possibly due to 10 

low sample size (12 subjects) and a short follow up period (12 weeks).40 Lastly, miR-379 has been 11 

shown to be modulated by glucocorticoid treatment in Duchenne muscular dystrophy patients and 12 

could constitute a biomarker of response to steroid treatment.44  13 

 14 

A recent study analysed miRNA transcriptomic profiles in muscle biopsies from well identified 15 

Idiopathic Inflammatory Myopathy subtypes and compared them to healthy controls.45 Their 16 

findings showed that specific groups of miRNA are exclusively expressed in dermatomyositis, 17 

anti-synthetase syndrome and inclusion body myositis. This corresponds to a subtype signature, 18 

which can be potentially interesting in a research setting, to understand the epigenetic regulation 19 

of immunological pathways related to different Idiopathic Inflammatory Myopathy subtypes’ 20 

pathogenesis. Interestingly, the study found no specific miRNA profile associated to immune-21 

mediated necrotizing myopathy.  22 

 23 

In Myotonic dystrophy type 1, elevated miR-133a/b levels as well as a compound miRNA score 24 

averaging levels of miR-1,-133a, -133b and -206 have been shown to be inversely correlated with 25 

muscle strength and the Muscular Impairment Rating Scale,46 while levels of miR-1, miR-133a, 26 

miR133b and miR-206 were higher in Myotonic dystrophy type 1 patients with progressive muscle 27 

wasting compared to stable patients.47  28 

 29 
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Besides Duchenne muscular dystrophy, Idiopathic Inflammatory Myopathy and Myotonic 1 

dystrophy type 1, elevated myomiR levels have also been found in Facioscapulohumeral Muscular 2 

Dystrophy (miR-1, -133a, -133b and -206)48 and Pompe disease (miR-133a, with a normalisation 3 

in response to enzyme replacement therapy).49 Besides these myopathies, dysregulated myomiR 4 

levels are also seen with muscle denervation in patients with Amyotrophic lateral sclerosis 5 

(elevated levels of miR-206), Spinal-Bulbar Muscular Atrophy (elevated levels of miR-206),50 6 

Charcot-Marie-Tooth disease type 1A (eleveated levels of miR-1, miR-133a/b and miR-206),51 7 

and Spinal muscular atrophy (in which miR-133a reduction predicted  response to therapy),52 and 8 

also in non-muscle cancer (both reduced and elevated levels are seen)53,54 and sarcopenia (reduced 9 

levels of miR-133b and miR-206 associated with sarcopenia).55 As the same set of myomiRs 10 

(mainly miR-1, miR-133a, miR-133b and miR-206) are elevated across a range of both muscle- 11 

and non-muscle diseases, we categorise these myomiRs as unspecific markers of a common 12 

muscle pathomechanism in the same way as CK/myoglobin and their usefulness as biomarkers 13 

should be discusses in this context. The main advantage of myomiRs compared to more established 14 

biomarkers is that both individual myomiRs and myomiRs panels seem to correlate better with 15 

disease state and/or treatment response across several diseases. A major disadvantage of CK is the 16 

intra-subject variability. Such variability can also occur for microRNAs. Extreme changes were 17 

seen in elite athletes after a 24 hours run, in which circulating myomiRs increased 18 to 124,723 18 

fold from baseline to the end of the run,56 while other studies report a 2-7-fold increase dependent 19 

on the type of acute exercise.57,58 This variability is probably linked to the sarcolemmal rupture 20 

caused by the extreme exercise, and will most likely also be present in muscle diseases where 21 

sustained rupture is happening. Investigations of the intra-subject variability of myomiR levels in 22 

myopathic subjects would be an important step before they can be fully used as trial endpoints. 23 

 24 

Markers of specific pathways 25 

These biomarkers are specific to diseases sharing a common pathogenic pathway.  26 

 27 
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Acquired myopathies: idiopathic inflammatory myopathies 1 

In the last decade, clinico-biological correlations have revolutionised the field of idiopathic 2 

inflammatory myopathies, stratifying phenotypes into four main disease groups: dermatomyositis, 3 

anti-synthetase syndrome, immune-mediated necrotising myopathies and sporadic inclusion body 4 

myositis. The latter will be treated in a separate paragraph. Overlap myositis (myositis with another 5 

systemic rheumatic disease) is not usually treated by neuro-myologists and will not be considered 6 

in this paper. “Polymyositis” is a poorly defined phenotype, widely overlapping with the 7 

aforementioned entities and in particular anti-synthetase syndrome, rendering this term 8 

progressively obsolete in modern scientific literature. Different biological mechanisms are 9 

involved in Idiopathic Inflammatory Myopathy pathogenesis, impacting follow-up and treatment, 10 

especially with new strategies such as complement inhibition. Interferon (IFN) activation plays a 11 

key role in Idiopathic Inflammatory Myopathy.59 In blood samples from dermatomyositis and 12 

polymyositis patients, IFN-1 signature has been shown to correlate with disease activity and 13 

decrease in response to immunomodulatory treatment. The levels of the highest differently 14 

expressed IFN-1 transcripts, IFI44L and RSAD2, could easily be analysed with quantitative real-15 

time PCR and become accessible biomarkers of disease progression and response to treatment in 16 

clinical trials.60 In anti-Jo1 anti-synthetase syndrome, the IFNγ-induced chemokines CXCL9 and 17 

IP-10 are increased in serum, although any correlation with muscle disease activity remains to be 18 

defined.61 Expression of IFN2-inducible genes seems to be more important in immune-mediated 19 

necrotizing myopathies pathogenesis,62 although studies focusing on measurable blood transcripts 20 

are lacking. A study focusing on immune-mediated necrotizing myopathies found a group of 21 

upregulated cytokines and chemokines. Among these molecules, the levels of the cytokines IP-10 22 

and MIP-1α have been shown to significantly decrease after immunosuppressive treatment,63 thus 23 

representing potential biomarkers for future pharmacological trials. 24 

 25 

Centronuclear Myopathy 26 

Centronuclear myopathies are a group of congenital disorders characterised by an increased 27 

centralisation of the nuclei of muscle cells, where mutations in several genes can lead to either X-28 

linked, autosomal recessive, or dominant inheritance. Several studies have suggested a common 29 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/advance-article/doi/10.1093/brain/aw

ae323/7820621 by U
N

IV LEIG
E FAC

 PSYC
H

 SC
IEN

C
ES L'ED

U
C

ATIO
N

 user on 02 D
ecem

ber 2024



10 

pathway for centronuclear myopathies caused by variants in MTM1 (X-linked), DNM2 (autosomal 1 

dominant) and BIN1 (autosomal recessive) that are all involved in membrane remodeling and -2 

trafficking.64–66 All three myopathies share elevated DNM2 expression in muscles. Antisense 3 

oligonucleotide (ASO) therapy targeting DNM2 mRNA has shown promising results in preclinical 4 

studies of both DNM2, MTM1 and BIN1 deficient mice.64,67,68 Using ASO therapy in patients was 5 

attempted in the DYN101 phase 1/2 trial, however, the trial was discontinued due to tolerability 6 

issues prior to dose escalation.69(p101) Potential biomarkers common for this pathway could be 7 

either mRNA (as used in the DYN101 trial) or protein levels of DNM2 in muscle. No studies have 8 

yet investigated the correlation between DNM2 levels and clinical state of the disease. Another 9 

potential biomarker for this pathway could be miR-133a, a regulator of DNM2 expression in 10 

skeletal muscle of mice.70 A large-scale multi-omics approach was done by Djeddi et al,71 who 11 

explored both the disease and therapeutic signatures of DNM2, MTM1, and BIN1 deficient mice. 12 

They found both a disease and a therapy-sensitive signature shared among the three mouse models, 13 

suggesting plasma levels of MSTN and ANXA2 as potential biomarkers for disease progression. 14 

In addition to these biomarkers showing promising potential in pre-clinical models, the levels of 15 

circulating myostatin has also been correlated with a better clinical condition in X-linked 16 

centronuclear myopathy patients.72  17 

 18 

Mitochondrial myopathies 19 

Mitochondrial myopathies are caused by many different genetic variants in mitochondrial or 20 

nuclear DNA, and they give rise to a diverse range of phenotypes. Elevated levels of Growth 21 

differentiation factor-15 (GDF15) and Fibroblast growth factor-21 (FGF21), along with the lactate 22 

and pyruvate concentrations and ratios in serum have been used as diagnostic biomarkers.73–77 23 

Several studies have explored them as potential response/monitoring biomarkers, with conflicting 24 

findings. Montano et al78 found no relation between FGF21 or GDF15 and disease severity, and 25 

no relation between lactate levels and functional test scores in 118 patients. Domínguez-González 26 

et al79 measured GDF15 in 7 patients with Thymidine Kinase 2–Deficient Myopathy undergoing 27 

deoxynucleoside treatment, and found a decline in GDF15 in parallel with the clinical 28 

improvement during the treatment. Koga et al80 found that pyruvate therapy lowered plasma levels 29 

of lactate, pyruvate, alanine and GDF15, but not FGF21 in 11 patients with various myopathies. 30 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/advance-article/doi/10.1093/brain/aw

ae323/7820621 by U
N

IV LEIG
E FAC

 PSYC
H

 SC
IEN

C
ES L'ED

U
C

ATIO
N

 user on 02 D
ecem

ber 2024



11 

Madsen et al81 used lactate as an exploratory endpoint in the evaluation of omaveloxolone 1 

treatment, showing a significant reduction of lactate levels with treatment despite no effect on 2 

oxidative capacity. Pirinen et al82 found restoration of elevated plasma alanine, but no change in 3 

FGF21, GDF15 or their RNA levels in skeletal muscles in 5 patients with adult -onset 4 

mitochondrial myopathy when treated with niacin, despite an improvement in muscle 5 

performance. In conclusion, no suitable response biomarkers have yet emerged for the 6 

mitochondrial myopathies. A challenge in finding biomarkers in the mitochondrial myopathies, it 7 

their large heterogeinity caused by differences in genetic variants, heteroplasmia and involvement 8 

of other tissues which might lead to a broader range of biomarkers that potentially can respond 9 

differently to treatments. 10 

 11 

Markers of specific diseases 12 

These biomarkers are unique for a single disease and often relate directly to the pathogenic 13 

mechanisms of the disease. They are typically used in follow-up of disease-modifying therapies 14 

that target the primary defect of the disease. For most of the above-mentioned biomarkers, a high 15 

correlation between the level of the biomarker and the evolution of disease severity is desirable. 16 

This is not necessarily the case in specific inherited myopathies, where a biomarker might be 17 

persistently missing (as the lack of dystrophin in Duchenne Muscular Dystrophy) or focally and 18 

transiently increased (as the misexpression of DUX4 and its targets in Facioscapulohumeral 19 

Muscular Dystrophy) throughout the progressive disease course. In trials aiming to express 20 

dystrophin in Duchenne muscular dystrophy-muscles or supress DUX4 expression in 21 

Facioscapulohumeral Muscular Dystrophy, direct measures of these would be relevant response 22 

biomarkers and have indeed been used in such trials. 23 

 24 

Idiopathic inflammatory myopathies 25 

Myositis-specific and myositis-associated antibodies are immune biomarkers especially useful 26 

for diagnosis and phenotype stratification. Emerging evidence has shown a correlation between 27 

some antibodies and disease progression, turning them into potential biomarkers for 28 
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12 

pharmacological trials. In anti-synthetase syndrome, a correlation between anti-Jo1 antibodies 1 

and disease activity has been demonstrated.83 Furthermore, the antibody levels decreased after 2 

rituximab treatment,84 highlighting its potential role in clinical trials. In dermatomyositis, both 3 

anti-transcription intermediary factor 1 γ and anti-Mi-2 antibodies levels correlated with clinical 4 

severity (albeit weaker then anti-Jo1) and decreased after rituximab treatment.85 However, since 5 

all IgG antibodies decrease after anti-CD20 treatment, this does not prove either the 6 

pathogenicity of these myositis-specific antibodies related to dermatomyositis nor their validity 7 

as response biomarkers. Hence, more studies are needed for this subgroup of Idiopathic 8 

Inflammatory Myopathy. In immune-mediated necrotizing myopathies, anti-3-hydroxy-3-9 

methylglutaryl-coenzyme A reductase (HMGCR) antibodies are pathogenic and correlate with 10 

clinical severity and CK levels.86 Hence, they represent a useful biomarker for monitoring 11 

clinical progression and response to treatment, as demonstrated in recent studies evaluating the 12 

effect of modified human IgG1 antibody Fc-fragment (Efgartigimod)87 and C5 complement 13 

inhibitors,88 in an animal model of immune-mediated necrotizing myopathies. Similarly, anti-14 

signal recognition particle (SRP) antibody levels correlated with clinical severity and CK levels, 15 

and  coherently decreased after immunosuppressive treatment.89 16 

 17 

Facioscapulohumeral muscular dystrophy 18 

Facioscapulohumeral Muscular Dystrophy is caused by misexpression of the double homeobox 4 19 

(DUX4) transcription factor in skeletal muscle. Most of the current therapeutic strategies for 20 

Facioscapulohumeral Muscular Dystrophy are targeting DUX4 suppression.90 Measuring the 21 

change in muscle DUX4 expression in response to an intervention may serve as a biomarker to 22 

predict clinical benefit. In support of this, several studies have provided a link between 23 

upregulation of DUX4 target genes and early myodegenerative changes identified on muscle 24 

MRI.91–93 However, DUX4 expression has some limitations as a biomarker in that  25 

1) It requires a muscle biopsy.  26 

2) DUX4 is expressed dynamically in bursts in cultured cells of Facioscapulohumeral 27 

Muscular Dystrophy patients, where a small population of DUX4-positive nuclei (around 28 

1/200-1000 nuclei expressing DUX4 transcripts) are thought to drive pathogenesis for the 29 
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whole muscle.94–97 This transient and sporadic distribution of DUX4-inappropriate 1 

transcription makes acquiring predictive measures in a single biopsy challenging and 2 

potentially not representative of the overall status.  3 

3) Detection of DUX4  is not trivial and several studies have failed to reliably detect DUX4 4 

expression in biopsies98 or single cell RNA sequencing experiments in cell culture,95 5 

therefore assessing the expression of its targets is thought to be a  preferable option. 6 

4) A newly conducted phase II trial using losmapimod, which is supposed to repress DUX4 7 

expression, failed to show changes in DUX4 target gene expression, despite some changes 8 

in functional assessments and patient-reported outcomes,18 further highlighting the 9 

difficulties in performing such an assay.  10 

 11 

Besides tissue-derived biomarkers, research is devoted to the identification of less invasive blood -12 

based (circulating) biomarkers that reflect the status of the affected muscles as well as disease 13 

pathophysiology. Along with the unbiased approaches listed above, targeted approaches have been 14 

undertaken mostly focusing on inflammatory mediators upregulated in Facioscapulohumeral 15 

Muscular Dystrophy patients’ muscles showing early signs of muscle degeneration. Pilot studies 16 

have identified possible candidate molecules such as chemokines,99 mediators linked to specific 17 

inflammatory response pathways such as S100-A8100,101 and complement factors.102 Interestingly, 18 

interleukin-6, which is a cytokine used as a non-disease specific biomarker in several systemic 19 

inflammatory conditions, was elevated in Facioscapulohumeral Muscular Dystrophy sera 20 

compared with controls and correlated with disease severity in a single cohort,103 thus holding 21 

some promise as a monitoring biomarker. Recently, a refined transcriptomic signature based on of 22 

PAX7 target gene repression was identified in Facioscapulohumeral Muscular Dystrophy muscles 23 

as a possible circulating biomarker correlating with disease severity.104 Notably, all these 24 

circulating molecules are at the current stage candidates requiring validation in multicentric studies 25 

and linkage with other more established prognostic and monitoring biomarkers, such as those 26 

derived from muscle imaging studies,105 before being implemented as surrogate endpoints in 27 

clinical trials.   28 

 29 
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Dystrophinopathies  1 

The DMD gene exceeds the packaging capacity of viral vectors currently used for gene therapy, 2 

which has led to the use of truncated versions of the gene in what is called micro-dystrophin gene 3 

therapy.106 In the Duchenne muscular dystrophy population, the expression of even small amounts 4 

of truncated dystrophin seems to be associated with a milder phenotype.107 Duchenne muscular 5 

dystrophy patients with exon 44 skippable mutations, who present with a milder phenotype, 6 

express a higher level of truncated dystrophin than other Duchenne muscular dystrophy patients.108 7 

In Becker Muscular Dystrophy, mild or asymptomatic patients express more truncated dystrophin 8 

than severe patients.109 Truncated dystrophin can be expressed in revertant fibers by naturally 9 

occurring exon skipping or driven by ASO or AAV-mediated gene therapy. The expression of 10 

truncated dystrophin either naturally expressed by the patients or secondary to treatment has been 11 

used or considered as an acceptable biomarker. Recently the FDA has approved 4 ASO-therapies 12 

based on the exon skipping principle for skipping exons 45 (Casimersen), 51 (Eteplirsen) and 53 13 

(Golodirsen and Viltolarsen).110 The approvals were all based on the expression of small amount 14 

of truncated dystrophin, considered by US regulators as an acceptable surrogate endpoint. 15 

However, the relationship between micro-dystrophin and functional improvement is weak both in 16 

animals111 and in humans. Indeed, micro-dystrophin or truncated dystrophin have several flaws as 17 

a response biomarker. First, the function of micro-dystrophin depends on the structure of the 18 

truncated protein.112,113 In studies with micro-dystrophin gene therapy, all subjects will have the 19 

same micro-dystrophin for a single therapy, whereas in exon-skipping trials, the structure of the 20 

protein depends on the subject-specific mutation. This makes the biomarker difficult to compare 21 

between studies and for exon skipping therapy, also among participants in the same trial. In 22 

addition, it is unknown how much truncated dystrophin is needed for a clinical effect; the amount 23 

most likely differs for the various micro-dystrophins, the different muscles, and the functional 24 

status of the patient. There is also a time-sensitive issue in the possible relation between dystrophin 25 

expression and functional improvement. Restoring truncated dystrophin in already damaged 26 

muscles may differ from having truncated dystrophin from birth, such as in Becker Muscular 27 

Dystrophy. Finally, the effect of truncated or mini-dystrophin is entirely dependent on a correct 28 

localisation within the muscle. To that end, micro-dystrophin has a non-homogeneous expression 29 

across muscle fibers, which makes a single muscle biopsy unreliable as a marker for the total 30 

expression of the whole muscle.113 Thus, a combination score including both the quality, amount, 31 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/advance-article/doi/10.1093/brain/aw

ae323/7820621 by U
N

IV LEIG
E FAC

 PSYC
H

 SC
IEN

C
ES L'ED

U
C

ATIO
N

 user on 02 D
ecem

ber 2024



15 

and localisation of dystrophin should be optimal. Studies of the correlation of such a marker to 1 

clinical changes are needed to assess dystrophin expression as a clinically meaningful endpoint. 2 

 3 

Limb Girdle Muscular Dystrophies  4 

Limb-Girdle Muscular Dystrophy type R9is caused by mutations in the fukutin-related protein 5 

(FKRP) gene, which contributes to glycosylation of α-dystroglycan in skeletal muscles. The effect 6 

of introducing FKRP to skeletal muscles by gene therapy can be evaluated by measuring FKRP 7 

expression and glycosylation of α-dystroglycan in muscle biopsies, which inform about successful 8 

grafting and transcription of the gene. Another therapeutic strategy is to give ribitol, which acts as 9 

a substrate for FKRP.114–116 Potential biomarkers for this approach would be to assess functional 10 

glycosylation of α-dystroglycan in muscle. Alhamidi et al117 found no clear correlation between 11 

self-reported walking ability and α-dystroglycan glycosylation levels in vastus lateralis biopsies of 12 

25 Limb-Girdle Muscular Dystrophy type R9patients. On the other hand, animal studies have 13 

found that restoration of functionally glycosylated α-dystroglycan is associated with muscle 14 

regeneration and functional improvement in FKRP-mice.118,119 Sarcoglycanopathy is caused by 15 

deficiency of either α-, β-, λ-, or δ-sarcoglycan (corresponding to Limb-Girdle Muscular 16 

Dystrophy types R3, R4, R5 and R6), which are transmembrane proteins of the dystrophin-17 

glycoprotein-complex acting as a link between the muscle cytoskeleton and the extracellular 18 

matrix. In gene therapy trials of the sarcoglycanopathies, measures of gene expression along 19 

muscle levels of the specific sarcoglycan have been used as secondary outcomes.120–122 20 

Unfortunately, none of these studies evaluated relevant functional outcomes. Thus, the relationship 21 

between biomarker and disease outcomes remains unknown. A potential serum marker was 22 

explored by Rouillon et al,123 who found that elevated MYOM3 levels was restored in mice in 23 

parallel with restoration of α-sarcoglycan. Limb-Girdle Muscular Dystrophy type R2 is caused by 24 

deficiency of the dysferlin protein, which is linked to membrane repair of muscle cells. A large 25 

natural history study investigated 76 Limb-Girdle Muscular Dystrophy type R2 patients.9 Cross-26 

sectional analysis of these patients found lower myostatin levels to correlate with lower functional 27 

ability as well as higher fat-fraction and lower contractile cross-sectional area measured on MRI. 28 

The following longitudinal assessment found no correlation between change in myostatin and 29 

change in functional and MRI-assessments, which indicate a limited use of myostatin as a response 30 
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biomarker. Further exploration of biological biomarkers and functional outcomes in Limb-Girdle 1 

Muscular Dystrophies are currently being explored.124,125 In general, the use of either the protein 2 

or the product of a relevant enzymatic process are likely biomarkers in inherited diseases with loss 3 

of function. 4 

 5 

Myotonic Dystrophy type 1 6 

Myotonic Dystrophy type 1 is caused by a CTG-expansion in the dystrophia myotonica protein 7 

kinase (DMPK) gene, which results in abnormal splicing of several genes.126 An aim is to correct 8 

this spliceopathy by ASO therapy directed towards DMPK.127,128 The level of missplicing may 9 

function as a biomarker for Myotonic dystrophy type 1 severity and also as a response biomarker 10 

in therapeutic trials, and is currently set as the primary outcome in phase I studies.126 Measures of 11 

splicing reversal have been used in both patient-derived cell cultures and mice showing splicing 12 

reversal and improvement of myotonia in the mouse model.129,130 Kurkiewicz et al131 used machine 13 

learning to create a model for treatment effect based on alternate splicing in muscle tissue. A 14 

supporting power analysis was used to estimate the required size of a clinical trial using this model 15 

as outcome. Using splicing biomarkers of disease severity in Myotonic dystrophy type 1 can 16 

therefore be used to correlate disease severity and progression and to monitor treatment effects of 17 

drug interventions quantifying multiple splicing reversal effects. However, to measure splicing 18 

reversal in myotonic dystrophy, a muscle biopsy is necessary at multiple time points. A needle 19 

biopsy is the preferred choice, and this is usually obtained from the tibialis anterior muscle, one of 20 

the early and most affected muscles in the disease. As disease progresses, and with multiple 21 

biopsies being required, repeated needle biopsies may not provide sufficient muscle tissue and 22 

adipose tissue may be found limiting the biomolecular analysis. How the splicing index in the 23 

tibialis anterior correlates to muscle weakness in this muscle and in other muscles involved in the 24 

disease is being explored in both natural history trials and ongoing randomized controlled trials 25 

using ASOs targeting the abnormal splicing pathways.132–134 26 

 27 
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Pompe disease 1 

Enzyme replacement therapy (ERT) has been used to treat Pompe disease for 16 years. Besides 2 

recent advancement in ERTs, other therapeutic strategies involve gene therapy of skeletal muscle 3 

and liver as well as chaperone therapy and substrate reduction therapy.135–139 Several biomarkers 4 

are used in therapeutic trials, including levels of ⍺-glucosidase activity in muscle and urine levels 5 

of Glc4, all shown to correlate with glycogen levels and response to treatment.140–142 Another 6 

potential biomarker in Pompe disease is linked to the secondary accumulation of autophagic build -7 

up in the skeletal muscle fibers of these patients.143 Spampanato et al144 found transcription factor 8 

EB to trigger lysosomal exocytosis and promote cellular clearance in both isolated muscle fibers 9 

and whole muscle of a Pompe mouse model, thereby decreasing the glycogen levels. Thus, either 10 

direct measurements of autophagic bodies or indirect measurements of transcription factor EB 11 

could be a promising response biomarker in Pompe disease. Chien et al145 measured serum levels 12 

of MSTN, IGF1, and CK in 10 patients with Pompe disease and 10 gender- and age-matched 13 

controls. The participants were retested after an average of 12 months, in Pompe patients on ERT-14 

treatment. The levels of IGF1 and MSTN were lower in the pre-treatment Pompe samples than in 15 

the controls but were within the normal range after treatment. The biomarkers may reflect muscle 16 

regeneration after ERT and might be used as response biomarkers in future trials. An understudied 17 

biomarker in Pompe disease is the muscle glycogen. The primary target of ERT is to increase the 18 

degradation of glycogen, but how muscle glycogen content changes in response to therapy has 19 

only been examined in a single study using muscle biopsies.146 They used muscle biopsies, in 20 

which a small sample of tissue is evaluated, which may not be representative of the whole muscle, 21 

and most biopsies were from vastus lateralis, which is relatively unaffected in Pompe disease.147,148 22 

A recent study by Beha et al149 used high field carbon-13 magnetic resonance spectroscopy to 23 

show that glycogen levels in the hamstrings and lumbar muscles, muscles, which are prone to 24 

degeneration, were much higher in young Pompe patients compared to controls. Muscles that are 25 

preserved for a long time in Pompe disease, such as the calf and anterior thigh muscles, had 26 

glycogen content comparable to healthy controls. The benefit of this approach is the evaluation of 27 

whole muscle groups in a non-invasive way as opposed to a small, and maybe not representative, 28 

needle biopsy procured invasively. Evaluating how glycogen levels in hamstrings and lumbar 29 
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muscles change in response to ERT may provide evidence for the use of glycogen content as a 1 

biomarker for treatment response in Pompe disease.  2 

 3 

McArdle disease 4 

McArdle disease is caused by deficiency of the muscle-specific enzyme myophosphorylase, which 5 

causes patients to experience exercise intolerance and the pathognomonic second wind 6 

phenomenon in which the exercise intolerance improves after 8-10 minutes of continued 7 

exercise.150 Patients are unable to increase blood lactate levels in response to exercise.151 Potential 8 

therapies involve gene therapy, read-through of the common R50X* mutation or activation of the 9 

liver/brain isoform (Pygb/Pygl).152 These therapies can be evaluated by measuring 10 

myophosphorylase activity in muscle biopsies. Other biomarkers measure restored metabolic 11 

effects, such as the lactate response to exercise or abolishment of the second wind has beed used 12 

in a few trials153,154.  13 

 14 

Inclusion Body Myositis  15 

No effective treatment is available for Inclusion Body Myositis. In recent years, some therapies, 16 

such as bimagrumab and arimoclomol, have been explored but phase 3 clinical trials failed to 17 

demonstrate drug efficacy.155,156 Specific biological biomarkers were not included in these two 18 

studies. However, a few serum biomarkers have been proposed over the years, although most of 19 

them have focused on diagnostic purposes, without investigating correlation with disease severity. 20 

As discussed before, some miRNA, such as miR-206 and -133b, are known to be increased in 21 

muscular and non-muscular conditions. Data on these unspecific miRNAs in the sera of Inclusion 22 

Body Myositis patients are contrasting, with one study showing normal157 and another upregulated 23 

expression.45 Moreover, other miRNAs where found to be specifically changed in the sera of 24 

Inclusion Body Myositis patients compared to controls, as miR-299-5p and miR-150-5p were 25 

upregulated in one study45 while another study found decreased levels of hsa-miR-192-5p and 26 

increased levels of hsa-miR-372-3p.157 All these miRNAs are probably related to the degenerative 27 

and inflammatory pathways of Inclusion Body Myositis. Serum cytokines were investigated in a 28 

cohort including 59 Inclusion Body Myositis patients; 10 cytokines (TRAIL, IL-8, MIF, MCP-1, 29 
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LIF, IP-10, IFN-2, MIG, bNGF and IL-3) were able to discriminate Inclusion Body Myositis 1 

patients from healthy controls.158 More interestingly to the purposes of our review, specific 2 

cytokines appeared to be useful as biomarkers of disease severity or response to treatment. Indeed, 3 

IP-10 and Eotaxin decreased significantly upon methotrexate treatment and development of 4 

muscle weakness was negatively associated with changes in IL-8 and SDF1A levels.158 5 

Conversely, IFN- levels correlated with survival of Inclusion Body Myositis patients, but only 6 

before correction for multiple comparisons. A further study159 including acquired and genetic 7 

muscle disorders, showed that interferon gamma-protein 10 (IP-10) induced chemokine, was 8 

significantly elevated in the sera of Inclusion Body Myositis patients compared to healthy controls, 9 

hereditary myopathies, and immune-mediated necrotizing myopathy; furthermore, mononuclear 10 

cells  surrounding and invading nonnecrotic muscle fibers in Inclusion Body Myositis patients 11 

markedly expressed IP-10, suggesting that the increased circulating levels reflect inflammatory 12 

activity in the muscle tissue. Mitochondrial dysfunction is one of the main pathways in Inclusion 13 

Body Myositis.160 In this regard, increased level of GDF-15, a biomarker of mitochondrial disease, 14 

was increased in a small cohort of Inclusion Body Myositis patients.161  In the same study, a new 15 

mitochondria-homing drug, mitochonic acid-5 (MA-5), was able to ameliorate mitochondrial 16 

dysfunction in Inclusion Body Myositis myoblasts and reduced the expression of GDF-15, which 17 

was suggested as possible biomarker for drug efficacy. Overall, circulating biomarkers have been 18 

poorly investigated in Inclusion Body Myositis and further studies are needed to establish serum 19 

biomarkers for Inclusion Body Myositis disease activity and therapeutic effects.  20 

 21 

The future of biological biomarkers in muscle diseases 22 

Therapies in muscle diseases aim to stop or even improve disease progression, but clinical changes 23 

are not always noticeable within a reasonable timeframe. Biomarkers have the potential to show 24 

relevant changes in disease state long before any clinically detectable change. Therefore, they are 25 

of high value in the evaluation of therapies. Validation of surrogate endpoints is needed across the 26 

whole spectrum of muscle diseases to improve therapeutic trial design, as the current biological 27 

biomarkers have yet to be accepted by regulatory bodies. As discussed in this review, there are 28 

many promising biomarkers within the field of muscle diseases that show correlation between 29 

serum levels and functional status. The most important knowledge gap is to understand the 30 
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correlation between levels of a biological biomarker and changes in disease state, whether it be 1 

naturally or after an intervention. Many studies have shown a correlation between biomarker levels 2 

and disease severity, but lowering of CK, correct splicing in Myotonic dystrophy type 1, 3 

suppression of DUX4 expression in Facioscapulohumeral Muscular Dystrophy, etc. do not 4 

necessarily translate into future clinical stabilisation or improvements. An example is the matrix 5 

metallopeptidase 9 (MMP-9) enzyme, that was found to be elevated in Duchenne muscular 6 

dystrophy and with an increased concentration over time,162 thus being a potential marker of 7 

disease progression.163 However, Lourbakos et al164 performed further exploration of this enzyme 8 

in 1704 samples by combining data from two natural history studies and 3 independent clinical 9 

trials, and found no support of MMP-9 as a predictive biomarker in Duchenne muscular dystrophy. 10 

Large studies with longitudinal evaluations are needed to verify potential biomarkers as clinically 11 

relevant surrogate endpoints. Combining biological biomarkers with functional, and/or imaging 12 

biomarkers into panels could potentially give better information. Most of the biological biomarkers 13 

for specific diseases have clear links to the disease mechanism, which add to their validity as 14 

biomarkers. An important aspect of biomarker development of the biomarkers shared between 15 

several diseases, is to better understand the link between the biomarkers and the 16 

pathophysiological mechanisms of the diseases. 17 

 18 

We propose that evaluation of specific therapeutic interventions would benefit from biological 19 

biomarkers that match the intervention. For therapies that specifically target the pathogenic 20 

mechanism of a disease (e.g., gene therapy), biological biomarkers are of particular value. For 21 

therapies targeting general mechanisms of muscle damage, evaluation benefits from less specific 22 

markers of muscle damage.  23 
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 18 

Figure legend 19 

Figure 1 Muscle derived biomarkers. α-DG = α-Dystroglycan, β-DG = β-Dystroglycan, MYL3 20 

= Myosin Light Chain 3, MTM1 = Myotubularin 1, DNM2 = Dynamin 2, BIN1 = Bridging 21 

Integrator-1, CA3 = Carbonic Anhydrase III, Glc4 = Glucose Tetrasaccharide, LDHB = Lactate 22 

Dehydrogenase B, MDH2 = Malate Ddehydrogenase 2, EFTA = Electron Transfer Flavoprotein 23 

A, TFEB = Transcription factor EB, DUX4 = Double Homeobox 4.  24 

 25 
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Table 1 Summary of large-scale biomarkers studies 1 
Subjects Method (number of testet 

proteins) 
Main findings Study 

22 FSHD patients and 23 

matched controls 

Myriad, Human Discovery MAP 

250, v2.0 (243) 

A moderate correlation between FSHD 

severity and CKMB, PLAT and EGF 

Statland et al30 

Two independent cohorts. Total 
of 42 FSHD patients and 35 

controls. 

SOMAScan 1K (1129) CKMB, CKMM, CA3 and TNNI2 could 
reliably predict disease state and correlated 

with STIR brightness on MRI.  

Petek et al31 

Two independent DMD 
cohorts. Total of 93 patients 
and 45 controls. 

SOMAScan 1K (1125) 44 proteins significantly different between 
DMD and healthy including TNNI2, CA3, 
CKMM. 

Hathout et al32 

285 DMD, 30 asymptomatic 

female carriers and 37 healthy 
individuals. 

Bead array platform (118) CA3, MDH2, MYL3, TNNT3, ETFA, NES, 

LDHB, COL1A1 and MAP4 together with 
CK founds to be associated with disease 

progression. 

Strandberg et al33 

130 DMD, 33 BMD, 16 female 
carriers and 66 healthy 
individuals. 

Bead array platform (384) Nine protein profiles were found to 
correlate with disease severity. Proteins in 
these profiles include CA3, MYL3, MDH2, 

EFTA, TNNT3 and CK. 

Ayoglu et al34 

9 BMD, 9 LGMDR12, 8 
LGMDR9 and 9 healthy 
controls. 

SOMAScan 7K (7288) 34 proteins found to be significantly 
different in all three myopathies compared 
to controls. This includes CKMM, CA3, 

MYL3 and TNNI2. 

Stemmerik et al35 

BMD = Becker Muscular Dystrophy, CA3 = Carbonic Anhydrase III, CK = Creatine Kinase, CKMB = Creatine kinase M:Creatine kinase B 2 
heterodimer, CKMM = Creatine Kinase M-type, COL1A1 = Collagen Alpha-1(I) chain, DMD = Duchenne Muscular Dystrophy, ETFA = 3 
Electron Transfer Flavoprotein A, EGF = Epidermal Growth Factor, FSHD = Facioscapulohumeral Muscular Dystrophy, LDHB = Lactat e 4 
Dehydrogenase B, LGMDR9 = Limb-Girdle Muscular Dystrophy R9, LGMDR12 = Limb-Girdle Muscular Dystrophy R9, MAP4 = Microtubule 5 
Associated Protein 4, MDH2 = Malate Dehydrogenase 2, MYL3 = Myosin Light Chain 3, NES = Nestin, PLAT = Tissue-type Plasminogen 6 
Activator, TNNI2 = Fast-Myofiber Troponin I, TNNT3 = Troponin T Type 3. 7 
  8 
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Figure 1 2 
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