Analytical solution; Bar vibrations; Frequency response; Friction damping; Nonlinear force; Axial motions; Bar vibration; Dry friction; Nonlinear dynamic behaviors; Torsional motion; Vibration characteristics; Vibration modeling; Condensed Matter Physics; Mechanics of Materials; Acoustics and Ultrasonics; Mechanical Engineering
Abstract :
[en] The present study introduces a novel analytical solution to predict the nonlinear dynamic behaviour of bars under frictional clamping in axial and torsional motions. It investigates the vibration characteristics of straight bars with imperfect supports, which introduce dry friction at their contact interfaces. The bars are tightly clamped between rigid fixtures, with the tightening load acting as a normal load that induces friction, thus adding nonlinearity to the system. The model simplifies contact forces to point loads and utilises both the Jenkins and velocity-dependent friction models for simulating contact friction. These frictional forces are represented as solution-dependent external forces in the governing differential equation for bar vibration, which also includes appropriate boundary conditions. The equation is solved both analytically and through the numerical method of alternating frequency–time harmonic balance, to explore the influence of contact parameters on the bar's support system behaviour. Comparisons between the numerical and analytical results demonstrate strong agreement, confirming the model's accuracy and validity.
Disciplines :
Mechanical engineering
Author, co-author :
Tüfekci, Mertol ; Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
Sun, Yekai; Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
Yuan, Jie; Computation Engineering Design Group, Department of Aeronautics and Astronautics, University of Southampton, United Kingdom
Maharaj, Chris; Department of Mechanical and Manufacturing Engineering, The University of the West Indies, Trinidad and Tobago
Liu, Haibao; School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
Dear, John P. ; Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
Salles, Loïc ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Mechanical aspects of turbomachinery and aerospace propulsion
Language :
English
Title :
Analytical vibration modelling and solution of bars with frictional clamps
Scientific and Technological Research Council of Turkey CSC - China Scholarship Council
Funding text :
The authors would also like to acknowledge computational resources and support provided by the Imperial College Research Computing Service ( https://doi.org/10.14469/hpc/2232 ). For the purpose of open access, the authors have applied a Creative Commons Attribution (CC BY) license to any Author Accepted Manuscript version. Jie Yuan acknowledges the funding support of the Royal Academy of Engineering/Leverhulme Trust Research Fellowship ( LTRF2223-19-150 ).Mertol Tüfekci would like to acknowledge the support of the Scientific and Technological Research Council of Turkey (TUBITAK) (fund BİDEB 2213 2016/2 ) that makes this research possible. Yekai Sun is grateful to China Scholarship Council (File NO. 201708060239 ) for providing the financial support.Mertol Tüfekci would like to acknowledge the support of the Scientific and Technological Research Council of Turkey (TUBITAK) (fund BİDEB 2213 2016/2) that makes this research possible. Yekai Sun is grateful to China Scholarship Council (File NO. 201708060239) for providing the financial support. The authors would like to thank Alessandra Vizzaccaro for her valuable contributions to this research. The authors would also like to acknowledge computational resources and support provided by the Imperial College Research Computing Service ( https://doi.org/10.14469/hpc/2232). For the purpose of open access, the authors have applied a Creative Commons Attribution (CC BY) license to any Author Accepted Manuscript version. Jie Yuan acknowledges the funding support of the Royal Academy of Engineering/Leverhulme Trust Research Fellowship (LTRF2223-19-150).
Genel, Ö.E., Tüfekci, M., Tüfekci, E., Free vibrations of spatial frame structures: Analytical modelling and solution. J. Vib. Control 29:19–20 (2023), 4492–4502, 10.1177/10775463221122086 URL: http://journals.sagepub.com/doi/10.1177/10775463221122086.
Albas, Ş.D., Ersoy, H., Akgöz, B., Civalek, Ö., Dynamic analysis of a fiber-reinforced composite beam under a moving load by the ritz method. Mathematics, 9, 2021, 10.3390/math9091048.
Koc, H., Tufekci, E., A novel approach of bending behavior of carbon nanotubes by combining the effects of higher-order boundary conditions and coupling through doublet mechanics. Mech. Adv. Mater. Struct., 2023, 10.1080/15376494.2023.2263767.
Eroglu, U., Tufekci, E., Small-Amplitude free vibrations of straight beams subjected to large displacements and rotation. Appl. Math. Model. 53 (2018), 223–241, 10.1016/j.apm.2017.08.028.
Tufekci, E., Exact solution of free in-plane vibration of shallow circular arches. Int. J. Struct. Stab. Dyn. 01:03 (2001), 409–428, 10.1142/s0219455401000226.
Yucel, A., Arpaci, A., Tufekci, E., Coupled axial-flexural-torsional vibration of Timoshenko frames. JVC/J. Vibr. Control 20:15 (2014), 2366–2377, 10.1177/1077546313484348.
Senthil Kumar, K., Siva, I., Jeyaraj, P., Winowlin Jappes, J., Amico, S., Rajini, N., Synergy of fiber length and content on free vibration and damping behavior of natural fiber reinforced polyester composite beams. Mater. Des. (1980-2015) 56 (2014), 379–386, 10.1016/j.matdes.2013.11.039 https://linkinghub.elsevier.com/retrieve/pii/S0261306913010881.
Crandall, S.H., The role of damping in vibration theory. J. Sound Vib. 11:1 (1970), 3–18, 10.1016/S0022-460X(70)80105-5.
Feeny, B., Guran, A., Hinrichs, N., Popp, K., A historical review on dry friction and stick-slip phenomena. Appl. Mech. Rev. 51:5 (1998), 321–341, 10.1115/1.3099008 URL: https://asmedigitalcollection.asme.org/appliedmechanicsreviews/article/51/5/321/401371/A-Historical-Review-on-Dry-Friction-and-StickSlip.
Brake, M., The Mechanics of Jointed Structures: Recent Research and Open Challenges for Developing Predictive Models for Structural Dynamics. 2018, 10.1007/978-3-319-56818-8.
Mabuchi, Y., Hanazato, T., Watabe, M., Static shear friction tests on the model marble columns of the Parthenon for the aseismic retrofitting. Trans. Built Environ. 4 (1993), 475–482, 10.2495/STR930461 URL: https://www.witpress.com/elibrary/wit-transactions-on-the-built-environment/4/13587.
Psycharis, I.N., Lemos, J.V., Papastamatiou, D.Y., Zambas, C., Papantonopoulos, C., Numerical study of the seismic behaviour of a part of the Parthenon Pronaos. Earthq. Eng. Struct. Dyn. 32:13 (2003), 2063–2084, 10.1002/eqe.315 https://onlinelibrary.wiley.com/doi/abs/10.1002/eqe.315?casa_token=Et9vCVFGlB8AAAAA:oxvg1Cf1nmutjjh_VbRogqCdilIRdjm8nN0UYVLwKQFKaViL0kZ4fph1c2DiUdqeGw7e5SDgapBvL5U. https://onlinelibrary.wiley.com/doi/abs/10.1002/eqe.315?casa.
Ferris, M., Tin-Loi, F., Limit analysis of frictional block assemblies as a mathematical program with complementarity constraints. Int. J. Mech. Sci. 43:1 (2001), 209–224, 10.1016/S0020-7403(99)00111-3 URL: https://linkinghub.elsevier.com/retrieve/pii/S0020740399001113.
Esteban, J., Rogers, C.A., Energy dissipation through joints: theory and experiments. Comput. Struct. 75:4 (2000), 347–359, 10.1016/S0045-7949(99)00096-6 URL: https://www.sciencedirect.com/science/article/pii/S0045794999000966.
Gagnon, L., Morandini, M., Ghiringhelli, G.L., A review of friction damping modeling and testing. Arch. Appl. Mech. 90:1 (2020), 107–126, 10.1007/s00419-019-01600-6.
Barlek, P., Ambrosini, D., Luccioni, B., Generalized friction panel: An innovative passive energy dissipation device for structures subjected to seismic loading. Eng. Struct., 283, 2023, 115898, 10.1016/j.engstruct.2023.115898 URL: https://www.sciencedirect.com/science/article/pii/S0141029623003127.
Karnopp, D., Computer simulation of stick-slip friction in mechanical dynamic systems. J. Dyn. Syst. Meas. Control 107:1 (1985), 100–103, 10.1115/1.3140698 arXiv:https://asmedigitalcollection.asme.org/dynamicsystems/article-pdf/107/1/100/5492329/100_1.pdf.
Couch, L., Tehrani, F.M., Naghshineh, A., Frazao, R., Shake Table response of a dual system with inline friction damper. Eng. Struct., 281, 2023, 115776, 10.1016/j.engstruct.2023.115776 URL: https://www.sciencedirect.com/science/article/pii/S0141029623001906.
Xie, Q., Liu, Y., Zhang, B., Wu, Y., Hu, F., Seismic performance of glulam frame with friction damper and column shoe: Experimental investigation and simplified numerical model. Eng. Struct., 298, 2024, 117036, 10.1016/j.engstruct.2023.117036 URL: https://www.sciencedirect.com/science/article/pii/S0141029623014517.
Shaw, S.W., On the dynamic response of a system with dry friction. J. Sound Vib. 108:2 (1986), 305–325, 10.1016/S0022-460X(86)80058-X.
Ahn, Y.J., Barber, J., Response of frictional receding contact problems to cyclic loading. Int. J. Mech. Sci. 50:10–11 (2008), 1519–1525, 10.1016/j.ijmecsci.2008.08.003 URL: https://linkinghub.elsevier.com/retrieve/pii/S0020740308001203.
Natsiavas, S., Analytical modeling of discrete mechanical systems involving contact, impact, and friction. Appl. Mech. Rev., 71(5), 2019, 10.1115/1.4044549.
Ibrahim, R.A., Friction-induced vibration, chatter, squeal, and chaos part I: Mechanics of contact and friction. Appl. Mech. Rev. 47:7 (1994), 209–226, 10.1115/1.3111079.
Berger, E.J.E.J., Friction modeling for dynamic system simulation. Appl. Mech. Rev., 55(6), 2002, 535, 10.1115/1.1501080.
Sinou, J.J., Dereure, O., Mazet, G.B., Thouverez, F., Jezequel, L., Friction-induced vibration for an aircraft brake system - Part 1: Experimental approach and stability analysis. Int. J. Mech. Sci. 48:5 (2006), 536–554, 10.1016/j.ijmecsci.2005.12.002.
Pennestrì, E., Rossi, V., Salvini, P., Valentini, P.P., Review and comparison of dry friction force models. Nonlinear Dynam. 83:4 (2016), 1785–1801, 10.1007/s11071-015-2485-3.
Marín, F., Alhama, F., Moreno, J., Modelling of stick-slip behaviour with different hypotheses on friction forces. Internat. J. Engrg. Sci. 60 (2012), 13–24, 10.1016/j.ijengsci.2012.06.002 URL: https://linkinghub.elsevier.com/retrieve/pii/S002072251200122X.
Ionescu, I.R., Paumier, J.-C., On the contact problem with slip displacement dependent friction in elastostatics. Internat. J. Engrg. Sci. 34:4 (1996), 471–491, 10.1016/0020-7225(95)00109-3 URL: https://linkinghub.elsevier.com/retrieve/pii/0020722595001093.
Xu, L., Lu, M.W., Cao, Q., Nonlinear vibrations of dynamical systems with a general form of piecewise-linear viscous damping by incremental harmonic balance method. Phys. Lett. A 301:1–2 (2002), 65–73, 10.1016/S0375-9601(02)00960-X URL: http://linkinghub.elsevier.com/retrieve/pii/S037596010200960X.
Tan, X., Rogers, R.J., Equivalent viscous damping models of coulomb friction in multi-degree-of-freedom vibration systems. J. Sound Vib. 185:1 (1995), 33–50, 10.1006/jsvi.1994.0362.
Leech, C., The modelling of friction in polymer fibre ropes. Int. J. Mech. Sci. 44:3 (2002), 621–643, 10.1016/S0020-7403(01)00095-9 URL: https://linkinghub.elsevier.com/retrieve/pii/S0020740301000959.
Kang, B., Tan, C.A., Nonlinear response of a beam under distributed moving contact load. Commun. Nonlinear Sci. Numer. Simul. 11:2 (2006), 203–232, 10.1016/j.cnsns.2004.08.002.
Lee, Y., Feng, Z.C., Dynamic responses to sinusoidal excitations of beams with frictional joints. Commun. Nonlinear Sci. Numer. Simul. 9:6 (2004), 571–581, 10.1016/S1007-5704(03)00060-1.
Friis, T., Tarpø, M., Katsanos, E.I., Brincker, R., Equivalent linear systems of nonlinear systems. J. Sound Vib., 469(January), 2020, 10.1016/j.jsv.2019.115126.
Klarbring, A., Mikelić, A., Shillor, M., Frictional contact problems with normal compliance. Internat. J. Engrg. Sci. 26:8 (1988), 811–832, 10.1016/0020-7225(88)90032-8.
Ferri, A.A., Bindemann, A.C., Damping and vibration of beams with various types of frictional support conditions. J. Vib. Acoust. 114:3 (1992), 289–296, 10.1115/1.2930260 URL: https://asmedigitalcollection.asme.org/vibrationacoustics/article/114/3/289/454427/Damping-and-Vibration-of-Beams-With-Various-Types.
Wright, G.P., O'Connor, J.J., Finite-element analysis of alternating axial loading of an elastic plate pressed between two elastic rectangular blocks with finite friction. Internat. J. Engrg. Sci. 9:6 (1971), 555–570, 10.1016/0020-7225(71)90038-3.
Ramsey, H., Analysis of interwire friction in multilayered cables under uniform extension and twisting. Int. J. Mech. Sci. 32:8 (1990), 709–716, 10.1016/0020-7403(90)90011-7 URL: https://linkinghub.elsevier.com/retrieve/pii/0020740390900117.
Frýba, L., Nakagiri, S., Yoshikawa, N., Stochastic finite elements for a beam on a random foundation with uncertain damping under a moving force. J. Sound Vib. 163:1 (1993), 31–45, 10.1006/jsvi.1993.1146 URL: https://linkinghub.elsevier.com/retrieve/pii/S0022460X83711466.
Cicirello, A., Langley, R.S., The vibro-acoustic analysis of built-up systems using a hybrid method with parametric and non-parametric uncertainties. J. Sound Vib. 332:9 (2013), 2165–2178, 10.1016/j.jsv.2012.05.040 https://linkinghub.elsevier.com/retrieve/pii/S0022460X12004701.
Cherki, A., Plessis, G., Lallemand, B., Tison, T., Level, P., Fuzzy behavior of mechanical systems with uncertain boundary conditions. Comput. Methods Appl. Mech. Engrg. 189:3 (2000), 863–873, 10.1016/S0045-7825(99)00401-6.
Ritto, T.G., Sampaio, R., Cataldo, E., Timoshenko beam with uncertainty on the boundary conditions. J. Braz. Soc. Mech. Sci. Eng. 30:4 (2009), 295–303, 10.1590/s1678-58782008000400005.
Li, S., Reynders, E., Maes, K., De Roeck, G., Vibration-based estimation of axial force for a beam member with uncertain boundary conditions. J. Sound Vib. 332:4 (2013), 795–806, 10.1016/j.jsv.2012.10.019 https://linkinghub.elsevier.com/retrieve/pii/S0022460X12008206.
Ahmadian, H., Jalali, H., Pourahmadian, F., Nonlinear model identification of a frictional contact support. Mech. Syst. Signal Process. 24:8 (2010), 2844–2854, 10.1016/j.ymssp.2010.06.007 https://linkinghub.elsevier.com/retrieve/pii/S0888327010001998.
Asadi, K., Ahmadian, H., Jalali, H., Micro/macro-slip damping in beams with frictional contact interface. J. Sound Vib. 331:21 (2012), 4704–4712, 10.1016/j.jsv.2012.05.026 https://linkinghub.elsevier.com/retrieve/pii/S0022460X12004117.
Won, H.-I., Chung, J., Numerical analysis for the stick-slip vibration of a transversely moving beam in contact with a frictional wall. J. Sound Vib. 419 (2018), 42–62, 10.1016/j.jsv.2017.12.037 https://linkinghub.elsevier.com/retrieve/pii/S0022460X17308969.
Jrad, H., Dion, J.L., Renaud, F., Tawfiq, I., Haddar, M., Non-linear generalized Maxwell model for dynamic characterization of viscoelastic components and parametric identification techniques. Proceedings of the ASME Design Engineering Technical Conference, Vol. 1, 2012, 291–300, 10.1115/DETC2012-70264.
Tufekci, M., Gunes-Durak, S., Ormanci-Acar, T., Tufekci, N., Effects of geometry and PVP addition on mechanical behavior of PEI membranes for use in wastewater treatment. J. Appl. Polym. Sci., 47073(7), 2018, 47073, 10.1002/app.47073 URL: http://doi.wiley.com/10.1002/app.47073.
Riddoch, D.J., Cicirello, A., Hills, D.A., Response of a mass-spring system subject to Coulomb damping and harmonic base excitation. Int. J. Solids Struct. 193–194 (2020), 527–534, 10.1016/j.ijsolstr.2020.02.037.
Marino, L., Cicirello, A., Hills, D.A., Displacement transmissibility of a Coulomb friction oscillator subject to joined base-wall motion. Nonlinear Dynam. 98:4 (2019), 2595–2612, 10.1007/s11071-019-04983-x URL: http://link.springer.com/10.1007/s11071-019-04983-x.
Marino, L., Cicirello, A., Experimental investigation of a single-degree-of-freedom system with Coulomb friction. Nonlinear Dynam. 99:3 (2020), 1781–1799, 10.1007/s11071-019-05443-2.
Marino, L., Cicirello, A., Multi-degree-of-freedom systems with a Coulomb friction contact: analytical boundaries of motion regimes. Nonlinear Dynam. 104:1 (2021), 35–63, 10.1007/s11071-021-06278-6 https://link.springer.com/10.1007/s11071-021-06278-6.
Won, H.I., Lee, B., Chung, J., Stick-slip vibration of a cantilever beam subjected to harmonic base excitation. Nonlinear Dynam. 92:4 (2018), 1815–1828, 10.1007/s11071-018-4164-7.
Acarer, S., Pir, I., Tüfekci, M., Türkoğlu Demirkol, G., Tüfekci, N., Manufacturing and characterisation of polymeric membranes for water treatment and numerical investigation of mechanics of nanocomposite membranes. Polymers, 13(10), 2021, 10.3390/polym13101661 URL: https://www.mdpi.com/2073-4360/13/10/1661.
Tüfekci, M., Durak, S.G., Pir, I., Acar, T.O., Demirkol, G.T., Tüfekci, N., Manufacturing, characterisation and mechanical analysis of polyacrylonitrile membranes. Polymers 12:10 (2020), 1–21, 10.3390/polym12102378.
Krack, M., Gross, J., Harmonic Balance for Nonlinear Vibration Problems. 2019, 159.
Sun, Y., Yuan, J., Denimal, E., Salles, L., Nonlinear modal analysis of frictional ring damper for compressor blisk. J. Eng. Gas Turbines Power, 143(3), 2021, 10.1115/1.4049761.
Sun, Y., Yuan, J., Pesaresi, L., Denimal, E., Salles, L., Parametric Study and Uncertainty Quantification of the Nonlinear Modal Properties of Frictional Dampers. J. Vib. Acoust., 142(5), 2020, 10.1115/1.4046953 https://asmedigitalcollection.asme.org/vibrationacoustics/article/doi/10.1115/1.4046953/1082704/Parametric-Study-and-Uncertainty-Quantification-of.
Sun, Y., Yuan, J., Pesaresi, L., Salles, L., Parametric study and uncertainty quantification of the nonlinear modal properties of frictional dampers parametric study and uncertainty quantification of the nonlinear modal properties of frictional dampers. J. Vibr. Acoust.(August), 2020.
Sun, Y., Yuan, J., Pesaresi, L., Salles, L., Nonlinear vibrational analysis for integrally bladed disk using frictional ring damper. J. Phys. Conf. Ser., 1106(1), 2018, 10.1088/1742-6596/1106/1/012026.
Krack, M., Bergman, L.A., Vakakis, A.F., On the efficacy of friction damping in the presence of nonlinear modal interactions. J. Sound Vib. 370 (2016), 209–220, 10.1016/j.jsv.2016.01.039.
Cameron, T.M., Griffin, J.H., An Alternating frequency/time domain method for calculating the steady-state response of nonlinear dynamic systems. J. Appl. Mech. Trans. ASME, 57(1), 1990, 251, 10.1115/1.2888315.
Allgower, E.L., Georg, K., Introduction to Numerical Continuation Methods. 1990, Springer, Fort Collins, Colorado, 1–382, 10.1137/1.9780898719154.