[en] This paper describes the MAKE-NMTVIZ Systems trained for the WMT 2023 Literary task. As a primary submission, we used Train, Valid1, test1 as part of the GuoFeng corpus (Wang et al., 2023) to fine-tune the mBART50 model with Chinese-English data. We followed very similar training parameters to (Lee et al. 2022) when fine-tuning mBART50. We trained for 3 epochs, using gelu as an activation function, with a learning rate of 0.05, dropout of 0.1 and a batch size of 16. We decoded using a beam search of size 5. For our contrastive1 submission, we implemented a fine-tuned concatenation transformer (Lupo et al., 2023). The training was developed in two steps: (i) a sentence-level transformer was implemented for 10 epochs trained using general, test1, and valid1 data (more details in contrastive2 system); (ii) second, we fine-tuned at document-level using 3-sentence concatenation for 4 epochs using train, test2, and valid2 data. During the fine-tuning, we used ReLU as an activation function, with an inverse square root learning rate, dropout of 0.1, and a batch size of 64. We decoded using a beam search of size. Four our contrastive2 and last submission, we implemented a sentence-level transformer model (Vaswani et al., 2017). The model was trained with general data for 10 epochs using general-purpose, test1, and valid 1 data. The training parameters were an inverse square root scheduled learning rate, a dropout of 0.1, and a batch size of 64. We decoded using a beam search of size 4. We then compared the three translation outputs from an interdisciplinary perspective, investigating some of the effects of sentence- vs document-based training. Computer scientists, translators and corpus linguists discussed the linguistic remaining issues for this discourse-level literary translation.
Research Center/Unit :
CIRTI - Centre Interdisciplinaire de Recherches en Traduction et en Interprétation - ULiège LIG - Laboratoire d'Informatique de Grenoble - Université Grenoble Alpes GETALP - Groupe d'Étude pour la Traduction Automatique et le Traitement Automatisé des Langues et de la Parole - Université Grenoble Alpes
Disciplines :
Computer science
Author, co-author :
Lopez, Fabien; Université Grenoble Alpes - UGA > Laboratoire d'Informatique de Grenoble (LIG) > Groupe d’Étude en Traduction Automatique/Traitement Automatisé des Langues et de la Parole (GETALP)
González, Gabriela; Université Grenoble Alpes - UGA > Laboratoire d'Informatique de Grenoble (LIG) > Groupe d’Étude en Traduction Automatique/Traitement Automatisé des Langues et de la Parole (GETALP)
Hansen, Damien ; Université de Liège - ULiège > Centre Interdisciplinaire de Recherches en Traduction et en Interprétation (CIRTI) ; Université Grenoble Alpes - UGA > Laboratoire d'Informatique de Grenoble (LIG) > Groupe d’Étude en Traduction Automatique/Traitement Automatisé des Langues et de la Parole (GETALP)
Nakhle, Mariam; Université Grenoble Alpes - UGA > Laboratoire d'Informatique de Grenoble (LIG) > Groupe d’Étude en Traduction Automatique/Traitement Automatisé des Langues et de la Parole (GETALP) ; Lingua Custodia
Namdarzadeh, Behnoosh; Université Paris Cité > Centre de Linguistique Inter-langues, de Lexicologie, de Linguistique Anglaise et de Corpus-Atelier de Recherche sur la Parole (CLILLAC-ARP)
Dinarelli, Marco; Université Grenoble Alpes - UGA > Laboratoire d'Informatique de Grenoble (LIG) > Groupe d’Étude en Traduction Automatique/Traitement Automatisé des Langues et de la Parole (GETALP)
Esperança-Rodier, Emmanuelle; Université Grenoble Alpes - UGA > Laboratoire d'Informatique de Grenoble (LIG) > Groupe d’Étude en Traduction Automatique/Traitement Automatisé des Langues et de la Parole (GETALP)
He, Sui; Swansea University
Mohseni, Sadaf; Université Paris Cité > Centre de Linguistique Inter-langues, de Lexicologie, de Linguistique Anglaise et de Corpus-Atelier de Recherche sur la Parole (CLILLAC-ARP)
Rossi, Caroline; Universite Grenoble Alpes - UGA > Institut des langues et cultures d'Europe, Amérique, Afrique, Asie et Australie (ILCEA4)
Schwab, Didier; Université Grenoble Alpes - UGA > Laboratoire d'Informatique de Grenoble (LIG) > Groupe d’Étude en Traduction Automatique/Traitement Automatisé des Langues et de la Parole (GETALP)
Yang, Jun; Swansea University
Yunès, Jean-Baptiste; Université Paris Cité > Institut de Recherche en Informatique Fondamentale (IRIF)
Zhu, Lichao; Université Paris Cité > Etudes Interculturelles de Langues Appliquées (EILA)
Ballier, Nicolas; Université Paris Cité > Centre de Linguistique Inter-langues, de Lexicologie, de Linguistique Anglaise et de Corpus-Atelier de Recherche sur la Parole (CLILLAC-ARP)
R. H. Baayen and Elnaz Shafaei-Bajestan. 2019. languageR: Analyzing Linguistic Data: A Practical Introduction to Statistics. R package version 1.5.0.
Laurent Besacier and Lane Schwartz. 2015. Automated Translation of a Literary Work: A Pilot Study. In Proceedings of the Fourth Workshop on Computational Linguistics for Literature, pages 114-122. ACL.
Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Unsupervised cross-lingual representation learning at scale. arXiv preprint arXiv:1911.02116.
J.L. Fleiss et al. 1971. Measuring nominal scale agreement among many raters. Psychological Bulletin, 76(5):378-382.
Ana Guerberof-Arenas and Antonio Toral. 2022. Creativity in Translation: Machine Translation as a Constraint for Literary Texts. Translation Spaces, 11(2):184-212.
Damien Hansen and Emmanuelle Esperança-Rodier. V.2023. Human-Adapted MT for Literary Texts: Reality or Fantasy? In Proceedings of the New Trends in Translation and Technology Conference - NeTTT 2022, pages 178-190. Incoma Ltd.
Yue Jiang and Jiang Niu. 2022. How are neural machine-translated chinese-to-english short stories constructed and cohered? an exploratory study based on theme-rheme structure. Lingua, 273:103318.
Yue Jiang and Biyan Yu. 2017. A Contrastive Study on the Rendition of Adjectival Possessive Pronouns in Pride and Prejudice by Human Translation and Online Machine Translation. Journal of Xidian University, 2:147-155.
Dorothy Kenny and Marion Winters. forthcoming. Customization, Personalization and Style in Literary Machine Translation. In Marion Winters, Sharon Deane-Cox, and Ursula Böser, editors, Translation, Interpreting and Technological Changes: Innovations in Research, Practice and Training. Bloomsburry.
Waltraud Kolb. 2020. Less room for engagement. Counterpoint, 4: 26-27.
Taja Kuzman, Špela Vintar, and Mihael Arčan. 2019. Neural Machine Translation of Literary Texts from English to Slovene. In Proceedings of the Qualities of Literary Machine Translation, pages 1-9. EAMT.
J. Richard Landis and Gary G. Koch. 1977. The measurement of observer agreement for categorical data. biometrics, pages 159-174.
En-Shiun Annie Lee, Sarubi Thillainathan, Shravan Nayak, Surangika Ranathunga, David Ifeoluwa Adelani, Ruisi Su, and Arya D McCarthy. 2022. Pretrained multilingual sequence-to-sequence models: A hope for low-resource language translation? Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL'22), pages 58-67.
Katherine Lee, Orhan Firat, Ashish Agarwal, Clara Fan-njiang, and David Sussillo. 2018. Hallucinations in neural machine translation.
Lorenzo Lupo, Marco Dinarelli, and Laurent Besacier. 2022. Focused concatenation for context-aware neural machine translation. In Proceedings of the Seventh Conference on Machine Translation (WMT), pages 830-842, Abu Dhabi, United Arab Emirates (Hybrid). Association for Computational Linguistics.
Lorenzo Lupo, Marco Dinarelli, and Laurent Besacier. 2023. Encoding sentence position in context-aware neural machine translation with concatenation. In The Fourth Workshop on Insights from Negative Results in NLP, pages 33-44.
Evgeny Matusov. 2019. The Challenges of Using Neural Machine Translation for Literature. In Proceedings of the Qualities of Literary Machine Translation, pages 10-19. EAMT.
Mathias Müller, Annette Rios, Elena Voita, and Rico Sennrich. 2018. A large-scale test set for the evaluation of context-aware pronoun translation in neural machine translation. In Proceedings of the Third Conference on Machine Translation: Research Papers, pages 61-72, Brussels, Belgium. Association for Computational Linguistics.
Behnoosh Namdarzadeh, Sadaf Mohseni, Lichao Zhu, Guillaume Wisniewski, and Nicolas Ballier. 2023. Fine-tuning mbart-50 with french and farsi data to improve the translation of farsi dislocations into english and french. In Proceedings of Machine Translation Summit XIX: Users Track, pages 152-162, Virtual. Association for Machine Translation in the Americas.
Antoni Oliver González. 2017. InLéctor: Automatic Creation of Bilingual E-Books. Tradumàtica, 15:21-47.
Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association for Computational Linguistics, pages 311-318.
Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. 2022. Bloom: A 176b-parameter open-access multilingual language model. arXiv preprint arXiv:2211.05100.
Chung-ling Shih. 2016. Can Machine Translation Declare a New Realm of Service? Online Folktales as a Case Study. Theory and Practice in Language Studies, 6(2):252-259.
Kristiina Taivalkoski-Shilov. 2019. Ethical Issues Regarding Machine(-Assisted) Translation of Literary Texts. Perspectives, 27(5):689-703.
Katherine Thai, Marzena Karpinska, Kalpesh Krishna, Bill Ray, Moira Inghilleri, John Wieting, and Mo-hit Iyyer. 2022. Exploring Document-Level Literary Machine Translation with Parallel Paragraphs from World Literature. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 9882-9902, Abu Dhabi. ACL.
Antonio Toral and Andy Way. 2018. What level of quality can neural machine translation attain on literary text? In Joss Moorkens, Sheila Castilho, Federico Gaspari, and Stephen Doherty, editors, Translation Quality Assessment: From Principles to Practice, pages 263-287. Springer.
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems 30, pages 5998-6008. Curran Associates, Inc.
Elena Voita, Rico Sennrich, and Ivan Titov. 2019. When a good translation is wrong in context: Context-aware machine translation improves on deixis, ellipsis, and lexical cohesion. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 1198-1212, Florence, Italy. Association for Computational Linguistics.
Longyue Wang, Zefeng Du, DongHuai Liu, Deng Cai, Dian Yu, Haiyun Jiang, Yan Wang, Shuming Shi, and Zhaopeng Tu. 2023a. Guofeng: A discourse-aware evaluation benchmark for language understanding, translation and generation.
Longyue Wang, Zefeng Du, Dian Yu, Liting Zhou, Siyou Liu, Yan Gu, Yufeng Ma, Bonnie Webber, Philipp Koehn, Yvette Graham, Andy Wray, Shuming Shi, and Zhaopeng Tu. 2023b. Findings of the wmt 2023 shared task on discourse-level literary translation. proceedings of the eighth conference on machine translation (wmt).
Shijie Wu and Mark Dredze. 2019. Beto, bentz, becas: The surprising cross-lingual effectiveness of BERT. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 833-844, Hong Kong, China. Association for Computational Linguistics.
Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and Colin Raffel. 2020. mt5: A massively multilingual pre-trained text-to-text transformer. arXiv preprint arXiv:2010.11934.