Article (Scientific journals)
Investigating the Monte-Carlo Tree Search Approach for the Job Shop Scheduling Problem
Boveroux, Laurie; Ernst, Damien; Louveaux, Quentin
2025In EURO Journal on Computational Optimization, 13
Peer Reviewed verified by ORBi
 

Files


Full Text
1-s2.0-S2192440625000152-main.pdf
Publisher postprint (5.81 MB) Creative Commons License - Attribution
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Monte-Carlo Tree Search; Job Shop Scheduling Problem
Abstract :
[en] The Job Shop Scheduling Problem (JSSP) is a well-known optimization problem in manufacturing, where the goal is to determine the optimal sequence of jobs across different machines to minimize a given objective. In this work, we focus on minimising the weighted sum of job completion times. We explore the potential of Monte Carlo Tree Search (MCTS), a heuristic-based reinforcement learning technique, to solve large-scale JSSPs, especially those with recirculation. We propose several Markov Decision Process (MDP) formulations to model the JSSP for the MCTS algorithm. In addition, we introduce a new synthetic benchmark derived from real manufacturing data, which captures the complexity of large, non-rectangular instances often encountered in practice. Our experimental results show that MCTS effectively produces good-quality solutions for large-scale JSSP instances, outperforming our constraint programming approach. This study highlights the potential of using MCTS to tackle large and complex job shop scheduling problems.
Disciplines :
Computer science
Author, co-author :
Boveroux, Laurie ;  Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
Ernst, Damien  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Smart grids
Louveaux, Quentin  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Systèmes et modélisation : Optimisation discrète
Language :
English
Title :
Investigating the Monte-Carlo Tree Search Approach for the Job Shop Scheduling Problem
Publication date :
14 October 2025
Journal title :
EURO Journal on Computational Optimization
ISSN :
2192-4406
eISSN :
2192-4414
Publisher :
Oxford Elsevier Ltd., United Kingdom
Volume :
13
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 29 November 2024

Statistics


Number of views
111 (31 by ULiège)
Number of downloads
101 (10 by ULiège)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenCitations
 
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBi