
Abstract

The Job Shop Scheduling Problem (JSSP) is a well-known opti-
mization problem in manufacturing, where the goal is to determine
the optimal sequence of jobs across different machines to minimize a
given objective. In this work, we focus on minimising the weighted
sum of job completion times. We explore the potential of Monte Carlo
Tree Search (MCTS), a heuristic-based reinforcement learning tech-
nique, to solve large-scale JSSPs, especially those with recirculation.
We propose several Markov Decision Process (MDP) formulations to
model the JSSP for the MCTS algorithm. In addition, we introduce a
new synthetic benchmark derived from real manufacturing data, which
captures the complexity of large, non-rectangular instances often en-
countered in practice. Our experimental results show that MCTS
effectively produces good-quality solutions for large-scale JSSP in-
stances, outperforming our constraint programming approach.

1

Investigating the Monte-Carlo Tree Search
Approach for the Job Shop Scheduling

Problem

Boveroux Laurie1, Ernst Damien1, and Louveaux Quentin1

1University of Liege

December 11, 2024

1 Introduction

The Job Shop Scheduling Problem (JSSP) is a complex challenge faced by
manufacturers. The JSSP involves determining the optimal sequence of jobs
on different machines to ensure that production processes are carried out
efficiently. This problem is important because it directly impacts a company’s
productivity, operating costs and ability to meet delivery schedules. For
example, delays in the production schedule can cause bottlenecks, higher
inventory costs, and missed deadlines. These issues can lead to unhappy
customers and financial penalties. Therefore, optimizing job scheduling is a
practical need and a decisive strategy for success.

Many mathematical programming-based approaches exist to solve the
JSSP, such as mixed-integer linear programming and constraint program-
ming. These methods are exact as they find optimal solutions by exhaustively
exploring the search space.

However, they have limitations in practice. The JSSP is known to be
NP-hard. As the number of jobs and machines increases, the complexity of
the problem grows exponentially. In practice, scheduling problems are often
large-scale, dynamic and imbalanced. In such scenarios, some machines may
be heavily loaded while others are idle and processing times of the tasks can
vary widely from a few units of time to several hundreds units. In large-scale
environments, exact methods often become impractical.

To address these limitations, approximate solutions have been developed.
Commonly used heuristics are Priority Dispatching Rules (PDRs) [1]. PDRs

2

are simple heuristics that select the next operation to be scheduled based
on a specific criterion. These rules are easy to implement and computation-
ally efficient, but they often offer low-quality solutions. Another well-known
heuristic approach is the Shifting Bottleneck Heuristic [2]. This procedure
solves the problem by iteratively identifying the machine that creates a bot-
tleneck and solving the schedule optimally on that unique machine using the
one-machine schedule method by Carlier [3].

Different meta-heuristic approaches such as simulated annealing, tabu
search and genetic algorithms have been used to produce good quality so-
lutions for the JSSP. Simulated annealing [4], an optimisation algorithm in-
spired by the process of physical annealing [5], starts with an initial solution
and iteratively refines it by making small random changes. The algorithm
evaluates the modified solution and accepts improvements. However, it can
also accept worse solutions with a probability that decreases over time, al-
lowing the algorithm to escape local optima and explore a wider search space.
Tabu search [6, 7, 8] also follows an iterative framework, but uses a deter-
ministic acceptance-rejection criterion. The key of this heuristic is a “tabu
list” that prevents the algorithm from revisiting previously explored states or
undoing recent modifications. By searching the neighbourhood of the current
solution and occasionally accepting worse schedules, the algorithm explores
different solutions. The tabu list ensures that unnecessary moves leading to
revisited states are not allowed, so the algorithm can bypass local optima
and explore potentially global solutions.

In recent years, learning-based methods have been developed. Techniques
such as deep reinforcement learning have been applied to learn scheduling
policies. For example, Zhang et al. [9] proposed a graph neural network
model with an actor-critic algorithm to learn effective dispatching rules.

One promising approach is the Monte Carlo Tree Search (MCTS) algo-
rithm. MCTS is a heuristic search algorithm that combines tree search with
random sampling to find solutions in large search spaces. Initially applied
to the game domain, this reinforcement learning (RL) algorithm has shown
its effectiveness in finding good strategies for complex games such as chess
and Go [10]. The JSSP shares similarities with these games, as both involve
making sequential decisions and optimizing outcomes based on a series of
actions. More specifically, we note that MCTS algorithm as been applied
successfully to solve Markov Decision, which suggests their applicability to
JSSP as they can be effectively framed as a Markov Decision Process (MDP).
States, actions, transition probabilities and rewards define an MDP. Different
MDP formulations can be employed to represent the scheduling problems.

Existing benchmarks, such as those proposed by Taillard et al. [11] and
Adams et al. [2], are commonly used for testing new algorithms. However,

3

these benchmarks are designed for smaller and simplified cases. Such bench-
marks do not capture the complexities of real-world scenarios, where machine
loads can vary significantly, with some machines heavily loaded while others
are idle. These benchmarks are less suitable for evaluating algorithm perfor-
mance in large-scale industrial scheduling problems. To address this gap, we
introduce a new synthetic benchmark derived from real-world manufacturing
data that captures the complexity typical of large-scale industrial environ-
ments. In this work, we investigate the potential of MCTS in solving the real
large-scale JSSP. The main contributions of this work are:

1. We investigate and evaluate different ways to model JSSP as an MDP
for the MCTS algorithm.

2. We deliver a new benchmark created from anonymised real-world data
1.

The rest of the paper is organized as follows. In Section 2, we formally
define the JSSP. Section 3 describes our approach, including how we model
JSSP as an MDP for MCTS and the constraint programming model used
for comparison. In Section 4, we explain the process of generating a new
benchmark from anonymized real-world data. Section 5 presents the experi-
mental setup and results. Finally, Section 6 concludes the paper and outlines
directions for future research.

2 Problem Statement

We consider the JSSP. In a general JSSP, we are given a set J of n jobs
J1, J2, ..., Jn and a set M of m machines. Each job Ji ∈ J has an oper-
ation set Oi which contains ni operations Oij that must be processed in a
specific order (i.e., with precedence constraints). Each operation Oij of job
Ji requires a processing time pij on a specific machine M(ij). A job can have
several operations that must be processed on the same machine (i.e., recir-
culation). Each machine can process at most one operation at a time with
no preemption.

To solve the JSSP, we must find a schedule that determines the order in
which the operations are processed to minimize a specific objective function.
The objective most commonly minimized in the literature is the makespan,
the maximum completion time of all operations in the schedule. However,
this objective does not consider the schedule’s internal structure. As we look
only at the last operation to finish, we can open all jobs from the beginning.

1https://github.com/LaurieBvrx/large-scale-complex-JSSP-benchmark.git

4

https://github.com/LaurieBvrx/large-scale-complex-JSSP-benchmark.git

Some jobs may be completed very late, making the open jobs wait for a
long time and taking space in the inventory. An objective that seems more
realistic for real industrial problems is the weighted sum of the completion
times of the n jobs. This objective is in line with the companies’ objective
of maximizing billings over time and should limit ongoing activities. It can
be formulated as follows:

minimize
∑
j∈J

wj Cj

where wj is the weight of the job j and Cj its completion time.
To describe a scheduling problem accurately, the standard notation in

literature is the triplet α|β|γ where α represents the machine environment,
β the processing characteristics and the constraints and γ the objective. The
problem we consider can be characterized by the triplet

Jm|prec, rcrc|wjCj

This triplet refers to a job shop environment with m machines (Jm). There
are precedence constraints (prec), meaning that there are certain jobs or
operations that must be completed before others can begin. The other pro-
cessing characteristic is the recirculation (rcrc), which implies that two or
more operations of a job can be processed on the same machine. In contrast
to a classic job shop, where each job has exactly one operation on each ma-
chine, recirculation allows jobs to visit a machine more than once. Finally,
the objective is the minimisation of the total weighted completion times.

3 Approach

This section presents different approaches to solving the JSSP using MCTS.
First, we detail the basic concepts of a MDP. Afterwards, we discuss how
MCTS algorithms can be used to solve MDPs. And, finally, we show various
ways for casting the JSSP introduced in Section 3.3 as an MDP.

Recent studies have demonstrated the potential of MCTS in solving schedul-
ing problems. For instance, Saqlain, Ali, and Lee [12] proposed an MCTS-
based algorithm for the flexible JSSP to minimize makespan. Similarly, Chou
et al. [13] developed an approach that minimizes a multi-objective function
using MCTS. Building on this prior work, we propose additional MDP frame-
works tailored to JSSPs and demonstrate how they can be effectively solved
using MCTS methods.

5

3.1 Markov Decision Process

A Markov Decision Process (MDP) is a mathematical framework for mod-
elling decision-making problems. It is defined through the following objects:
a state space S, an action space A, transition probabilities p(s′|s, a)∀s, s′ ∈
S, a ∈ A and a reward function r(s, a). The function p(s′|s, a) gives the
probability of reaching a state s′ after taking the action a while being in
state s. At each time step t, the decision-maker observes the current state
st and selects an action ut, which influences both the immediate reward and
the state transition.

3.2 Monte-Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a heuristic search algorithm used in
decision processes [14]. It combines classic tree search implementations with
machine learning principles of reinforcement learning to balance exploration
and exploitation. The algorithm is based on the building of a search tree.
The MCTS algorithm can be used to solve MDPs as it incrementally builds a
search tree representing the states and actions of the MDP, using simulation-
based techniques to evaluate potential policies. Indeed, each node of the tree
represents a state of the decision process and each edge represents an action
leading to a new state. This algorithm aims to determine an optimal policy,
i.e., a mapping from states to actions, that maximizes the expected cumu-
lative reward over time, often defined as a discounted sum of rewards. The
algorithm is composed of four fundamental steps: selection, expansion, sim-
ulation and backpropagation. These are schematically represented in Figure
1 [14].

In the selection phase, the algorithm starts from the root node at time
0 and from a node at deep t at time t that corresponds to the state st. It
successively selects a child node following a tree policy until it reaches a
node that is not fully expanded. A tree policy that has promising properties
is the Upper Confidence Bound (UCB) formula. This formula balances the
exploitation of the best-known nodes and the exploration of less visited nodes.
A child node j is selected based on the UCB formula:

UCB = X̄j + C

√
lnN

nj

(1)

The first part of the equation is the exploitation part, where X̄j is the average
reward of the node, and must be in [0, 1]. The higher the average reward, the
more the node is exploited. The second part of the equation is the exploration

6

Figure 1: The four fundamental steps of the MCTS algorithm and the addi-
tional step.

part. The total number of visits of the parent node is N and the number of
visits of the child node is nj. The lower the number of visits, the more the
node is explored. C is a constant that controls the exploration-exploitation
trade-off. It is usually tuned empirically. Note that if several child nodes
have the same UCB value, one is selected randomly.

During the expansion phase, a child node is added to the selected node
according to the available actions.

In the simulation phase, the algorithm extends nodes until a terminal
state is reached following a default policy. The default policy can be random
or based on a heuristic. In large-scale problems, the simulation step can be
computationally expensive. To reduce the computational cost, the simulation
step follows a random policy. Several simulations are performed from the
current state to obtain a robust estimate of the value of the state, exploiting
randomness to cover a wide range of possible outcomes.

Finally, in the backpropagation phase, the algorithm updates the statis-
tics of the nodes selected during the expansion and simulation steps. The
statistics are updated by backpropagating the evaluation of the simulation
from the leaf node to the root node. The evaluation is based on the reward
function of the problem.

The algorithm repeats these steps until a stopping criterion is met. The
stopping criterion can be a fixed number of iterations or a time limit.

An additional step step can be added to the MCTS algorithm to improve
the search space exploration. This step consists of selecting the best action to
take at the current depth (starting from the root) and continuing the search
from this node, i.e. from a deeper node in the tree. This step is added after

7

a certain number of repetitions when the node at the current depth is well
explored.

3.3 Modelling JSSP as an MDP

This article explores different environments for the MCTS applied to the
JSSP. Each environment is defined by its state space, action space and re-
ward function. These three components can be defined in multiple ways,
each influencing the performance and behaviour of the MCTS algorithm dif-
ferently. We explore a few of possible combinations of these components in
the following.

State Space

In reinforcement learning, the state st is a representation of the situation
of the agent at the decision step t. In the context of JSSP, the state st
corresponds to the partial schedule of jobs at decision step t. Here, t in the
MDP refers to the sequence of decision steps during the schedule construction
and is unrelated to the actual physical timeline of the schedule. We introduce
two distinct state representations for the partial schedule:

1. Absolute Representation: This representation maintains the comple-
tion times of each operation, directly encoding the timing information
of the partial schedule. This approach is greedy regarding the order of
operations and the completion times.

2. Relative Representation: This representation maintains the order of
the operations on each machine, encoding the sequence of operations
on each machine rather than their precise timing. This approach is
greedy only on the order of operations and it maintains flexibility in
terms of scheduling completion time.

We can readily convert the representation of one type to the other. These two
representations are convertible. Starting from the relative representation, we
can compute the completion times Cj for all operations, provided the order
of operations on every machine is known. This computation can be achieved
in O(n log n) where n is the total number of operations. On the other hand,
we can derive the relative representation from the absolute one by ordering
the operations on each machine based on their completion times.

8

Action Space

The action space is the set of possible actions that the agent can take in a
given state. In the context of the JSSP, the action space can be defined by
the selection of the operation(s) to be scheduled. We propose four types of
actions.

1. The first approach is to select a single operation based on different
dispatching rules (PDRs). PDRs are simple heuristics that select the
next operation to be scheduled based on some criterion. For exam-
ple, the first in first out (FIFO) rule schedules the next operation in
order of appearance, the shortest processing time (SPT) rule selects
the operation with the shortest processing time and the most opera-
tion remaining (MOR) rule selects the first operation available of the
job with the most remaining operations. More details on the different
PDRs used are given in Section 3.4.

A = {a | a = PDR(Ō),PDR ∈ {FIFO, SPT,MOR, . . .}}

where Ō is the set of operations that have not yet been scheduled,
and PDR represents a dispatching priority rule. All operations in the
selected job are scheduled in the order they appear.

2. A second approach is to select an entire job based on a PDR. All
operations in the selected job are scheduled in the order they appear
in the job.

A = {a | a = PDR(J̄),PDR ∈ {FIFO, SPT,MOR, . . .}}

where J̄ is the set of jobs that have not yet been scheduled, and PDR
represents a dispatching priority rule. All operations in the selected
job are scheduled in the order they appear. Scheduling a whole job
as a single action allows the search tree to be less deep, making the
exploration space more manageable.

3. A third approach is to select an operation based on a single PDR and
then select a percentage. This percentage determines the size of the gap
in the schedule of the corresponding machine in which the operation is
scheduled. For example, if the percentage is 50%, the operation will be
scheduled in the first idle time in the schedule that is greater than 50%
of the operation’s processing time. This action type is feasible when
using the relative state representation, where the completion times of
operations are not explicitly encoded and only the sequencing of oper-
ations is maintained. In this representation, even if there appears to be

9

insufficient space theoretically, all subsequent operations can be shifted
to accommodate the new operation, as the representation focuses sol,
as the representation focuses only on the order of operations. Formally,
let A be the action space, then:

A = {a | a = (PDR(J̄), p),PDR ∈ {FIFO, SPT,MOR, . . .}, p ∈ [0, 1]}

where Ō is the set of operations that have not yet been scheduled, PDR
represents a dispatching priority rule. and p is the percentage gap for
the scheduling of the selected operation in the corresponding machine’s
schedule.

4. The fourth approach is similar to the third one except that we schedule
all the operations of the selected job in one step.

A = {a | a = (PDR(J̄), p),PDR ∈ {FIFO, SPT,MOR, . . .}, p ∈ [0, 1]}

where J̄ is the set of jobs that have not yet been scheduled, PDR
represents a dispatching priority rule.

Reward

The reward function is related to the objective function of the problem and
is designed to reflect the quality of the solution. The most intuitive way to
define the reward function in the context of the JSSP would be to set the
reward to 0 unless a terminal state has been reached. A terminal state is a
state reached when the problem is solved (i.e., all jobs are completed) or it
is impossible to continue (for example, due to infeasibility, such as exceeding
resource limits or invalid machine assignments). In such cases, the reward is
defined differently:

• If the terminal state represents a successfully completed schedule, the
reward is the negative weighted sum of the completion times of all jobs,
aligning with the objective to minimize the total weighted completion
time.

• If the terminal state represents an infeasible solution, the reward is
−∞.

The reward can also be normalised between 0 and 1:

r̂ =
r − rmin

rmax − rmin

10

where rmin and rmax are the minimum and maximum possible rewards, re-
spectively. The variable rmin represents the total processing time of all op-
erations, corresponding to a scenario where all jobs are processed in parallel
without any restrictions. On the other hand, rmax is defined as the sum of
the completion times when jobs are processed sequentially. In this case, the
completion time of a job i is the completion time of the previous job i − 1
plus the total processing time of all operations of job i. Normalisation is
necessary to ensure the UCB formula is in the range [0, 1].

3.4 Priority Dispatching Rules

PDRs are simple heuristics that select the next operation or job to be sched-
uled based on a specific criterion [15]. They are widely used in practice be-
cause they are easy to implement and computationally efficient, particularly
for large-scale problems. They can either focus on entire jobs or individual
operations. At a job-level selection, a PDR prioritizes jobs based on the
characteristics of different jobs. On the other hand, at the operation-level
selection, a PDR prioritizes an individual operation. The operation can be
selected based on their own characteristics (e.g., processing time) or because
they are the first available operation of the job chosen by a job-level selection.

The list of the job-level PDRs are listed in the following:

• The FIFO rule (first in first out) processes jobs in the order they are
given in the instance.
If Ji and Jj are two jobs, then under FIFO:

If i < j, then Ji is processed before Jj.

• The Least Work First (LWF) rule selects the job with the shortest
total processing time. The processing time of a job is the sum of the
processing times of all its operations. If Ji and Jj are two jobs and Pi

represents the total processing time for job Ji, then under LWF:

If Pi < Pj, then Ji is scheduled before Jj.

• The Most Work First (MWF) rule selects the job with the longest total
processing time.

• The Shortest Job First (SJF) rule prioritizes jobs with the least number
of operations.
If Ji and Jj are two jobs and ni represents the number of operations of
job Ji, then under SJF:

If ni < nj, then Ji is scheduled before Jj.

11

• The Largest Job First (LJF) rule selects the job with the largest number
of operations.

The list of the operation-level PDRs are listed in the following:

• The FIFO rule (first in first out) processes operations in the order they
are given in the instance.
If Oi and Oj are two operations, then under FIFO:

If i < j, then Oi is processed before Oj.

• The Least Work Remaining (LWR) rule prioritizes the first available
operation of the job with the least total processing time remaining
across all jobs. If Ji and Jj are two jobs, Oi and Oj are the first available
operations of jobs Ji and Jj and Pi,t represents the total processing time
remaining for job Ji at step t, then under LWR:

If Pi,t < Pj,t, then Oi is scheduled before Oj.

• The Most Work Remaining (MWR) rule is similar to the LWR rule,
but instead of prioritizing the least total processing time, it prioritises
the first available operation of the job with the most total processing
time remaining.

• The Least Operations Remaining (LOR) rule prioritizes the first avail-
able operation of the job with the least number of operations remaining
across all jobs.
If Ji and Jj are two jobs, Oi and Oj are the first available operations of
jobs Ji and Jj respectively and ni,t represents the number of operations
that still have to be scheduled for job Ji at step t, then under LOR:

If ni,t < nj,t, then Oi is scheduled before Oj.

• The Most Operations Remaining (MOR) rule is similar to the LOR
rule, but instead of prioritizing the least number of operations, it pri-
oritizes the first available operation of the job with the most operations
remaining.

• The Shortest Processing Time (SPT) rule selects the operation with
the shortest processing time. If Oi and Oj are two operations and pi
and pj are their processing times, then under SPT:

If pi < pj, then Oi is processed before Oj.

• The Longest Processing Time (LPT) rule selects the operation with
the longest processing time.

12

3.5 Constraint programming

Constraint programming is a declarative programming paradigm for mod-
elling and solving combinatorial problems. By integrating constraint pro-
gramming into our analysis, we can compare its performance with the MCTS
approach. This method is more sophisticated and involves a longer computa-
tional process than PDRs. As MCTS typically requires considerable comput-
ing time to converge on good solutions, the use of constraint programming
allows a fairer comparison of results.

The constraint programming model we use is defined in the following:

Variables

• starti: Start time of operation i, where i = 1, . . . , n (where n is the
number of operations).

• endi: End time of operation i, where i = 1, . . . , n.

Data

• durationi: Processing time of operation i.

• machinei: Machine assigned to operation i.

Objective

Minimize the total completion time of jobs, i.e. of the last operations of each
job:

min
∑

i∈terminal operations

endi

Constraints

• Precedence constraints: For each operation i, and its predecessors j ∈
predecessors[i]:

endi ≥ endj + durationi

• No-Overlap Constraints: For each machine m, ensure that two intervals
do not overlap:

NoOverlap({(starti, durationi) | machine i = m})

Along with the constraint programming model, we guide the search pro-
cess by using the LWR PDR, which helps refine the search strategy and
improve the efficiency of finding solutions.

13

4 Data Generation

There is a gap in the existing literature regarding job shop scheduling bench-
marks. Most commonly referenced instances, such as those proposed by Tail-
lard et al. [11], Adams et al. [2] or Demirkol et al. [16], focus on small and
rectangular configurations where the number of machines equals the num-
ber of operations of each job. This structure does not adequately represent
the complexities of larger, unbalanced scenarios commonly encountered in
real-world manufacturing.

To address this gap, we analyze a job shop instance derived from a real-
world manufacturing industry that includes 51 machines, 828 jobs and a total
of 6057 operations. In this instance, the workload distribution is unbalanced,
with some machines heavily loaded while others are lightly used. Further-
more, the number of operations per job varies significantly, ranging from 1
to 20.

To better simulate our real-world case, we generate a synthetic job shop
scheduling benchmark based on the original instance. The data generation
process includes the creation of job and machine configurations that reflect
the original conditions while including some level of variability and noise. An
overview of this process is detailed in the following.

1. Job Configuration: we first generate a random integer between 600
and 1000 to determine the number of jobs. A type and a size are
assigned to each job. We have two different types of jobs: common and
unique. Common jobs are job types that occur more frequently in the
job shop scheduling environment. They correspond to more frequent
sets of pieces to manufacture. Unique jobs are job types that occur less
frequently. They correspond to unique orders a manufacturing industry
can receive. The sizes are drawn from a Gaussian distribution with a
mean and standard deviation derived from the original instance.

2. Machine configuration: we first generate a random integer between 50
and 70 to define the number of machines. They are then split into
different types based on their operational characteristics. A specific
distribution of the number of operations is assigned to each type. Once
the machine types are identified, we introduce noise to the probability
distribution of these types. The number of machines of each type is
then determined by sampling from this noisy distribution and their
number of operations are drawn.

3. Operations to jobs assignment: with machine types and their distribu-
tions defined, we assign operations to jobs. Each job’s operations are

14

distributed across the available machines based on the machine type
distribution. We also ensure that the processing times for each op-
eration are generated from a normal distribution centred around the
mean processing time for the machine type, with a specified standard
deviation.

By following this process, we generated 20 instances of the JSSP based on
the original data. These instances are used to evaluate the performance of
the MCTS algorithm with different scenarios.

5 Experiments

5.1 Setup

In this work, we evaluate the performance of five different types of environ-
ments for the MCTS algorithm. Each of these types of environment has three
possible actions in its action space, except for the fourth type, which has six
actions. The state representation, the type of action and the corresponding
set of dispatching rules and, if needed, the percentages are listed in the Table
1.

We note that we encountered significant computational problems due
to the long-running time when evaluating the performance of the MCTS
algorithm in environment type 3. Specifically, the number of operations
is high, making the search process computationally expensive. One of the
key issues arises from the need to recompute the completion times of all
operations to identify the idle time at each new state. This means that at
each new scheduled operation, we recompute all the completion times. As a
result, this type of environment is not feasible for our use.

The MCTS algorithm is run for six repetition steps and 30 evaluations
for the backpropagation phase. The results are compared to the constraint
programming model 3.5. All the algorithms are coded in Python and the
constraint programming model is solved using the Google OR-Tools library
[17]. The computations are executed on a calculation server with 48 Intel
Xeon E7 v4 2.20 GHz processors with a total RAM of 128 GB.

5.2 Results

Using performance profiles, we first explore the different configurations with
the same environment type and then compare the best configurations across
all environment types. A performance profile represents the percentage y of
instances for which a specific method produces a solution whose objective

15

Env.
Type

State
Representation

Type of
Action

PDR and p

Type 1.1 absolute 1 {FIFO, LWR, MWR}
Type 1.2 absolute 1 {FIFO, LOR, MOR}
Type 1.3 absolute 1 {FIFO, SPT, LPT}
Type 1.4 absolute 1 {LWR, LOR, SPT}

Type 2.1 [12] absolute 2 {FIFO, SJF, LJF}
Type 2.2 absolute 2 {FIFO, LWF, MWF}
Type 2.3 absolute 2 {FIFO, SJF, LWF}

Type 3 relative 3
Not applicable due to

high computational cost

Type 4.1 relative 4 {LWF}, [0.6, 0.8, 1.0]

Type 4.2 relative 4 {LWF}, [0.3, 0.6, 0.8]

Type 4.3 relative 4 {MWF}, [0.6, 0.8, 1.0]

Type 4.4 relative 4 {MWF}, [0.3, 0.6, 0.8]

Type 4.5 relative 4 {SJF}, [0.6, 0.8, 1.0]

Type 4.6 relative 4 {SJF}, [0.3, 0.6, 0.8]

Type 4.7 relative 4 {LJF}, [0.6, 0.8, 1.0]

Type 4.8 relative 4 {LJF}, [0.3, 0.6, 0.8]

Type 5.1 relative 4 {LWF, MWF}, [0.6, 0.8, 1.0]

Type 5.2 relative 4 {LWF, MWF}, [0.3, 0.6, 0.8]

Type 5.3 relative 4 {SJF, LJF}, [0.6, 0.8, 1.0]

Type 5.4 relative 4 {SJF, LJF}, [0.3, 0.6, 0.8]

Type 5.5 relative 4 {LWF, SJF}, [0.6, 0.8, 1.0]

Type 5.6 relative 4 {LWF, SJF}, [0.3, 0.6, 0.8]

Table 1: Summary of Environment Types and Characteristics for MCTS
Algorithm Evaluation

16

function is not worse than x times the best solution found by any of the
studied methods.

Each figure compares all the variants of one specific type of environment
outlined in Table 1. In Figure 2, the performance profiles indicate that Con-
figuration 1.4 consistently outperforms all other configurations of Type 1.
Figure 3 evaluates the configurations of Type 2. Configuration 2.3 dominates
the other configurations, achieving the best performance across all instances
for the configuration Type 2. Figure 4 presents the results for configura-
tions of Type 4. Configurations 4.1 and 4.2 achieve the best performance,
dominating the other configurations. Configurations with the same PDR but
different percentages have similar performance, indicating that the PDR is
a key determining factor. The results suggest that configurations using the
LWF PDR consistently perform better, followed by those with SJF, MWF
and finally LJF. Figure 5 compares configurations of Type 5, which demon-
strate a similar pattern to Type 4. Configurations 5.6 and 5.7 outperform the
other configurations. Again, configurations with the same pair of PDRs but
different percentages perform equivalently. Configurations with LWF and
SJF outperform those using LWF and MWF, which in turn perform better
than those using SJF and LJF.

Additionally, the detailed results, including the mean performance across
all instances for each configuration, are presented in Table 2.

Finally, we compare the best-performing configurations of Types 1, 2, 4,
and 5 alongside the constraint programming results. Figure 6 gives the re-
sulting performance profiles. We observe that configurations from Types 4, 5
and 2 achieve the best performance for 50%, 40% and 10% of the instances,
respectively. This highlights the benefit of using a less greedy and more
flexible environment, as seen in Types 4 and 5, which process operations
during idle time even if the operation processing time exceeds the available
time. Additionally, the results indicate that the MCTS-based algorithm out-
performs the CP approach on the large instances we have considered, even
when the latter is paired with a search heuristic.

6 Conclusion

In this study, we explore the potential of using MCTS to solve large-scale
and real-world instances of the JSSP. We introduced various MDP formu-
lations to model the JSSP for the MCTS algorithm and compared their
performance with a constraint programming model. In addition, we deliver
a new synthetic benchmark derived from anonymised real-world manufactur-
ing data that captures the complexity and variability of industrial scheduling

17

Figure 2: Performance profiles of the configurations of Type 1.

Figure 3: Performance profiles of the configurations of Type 2.

18

Figure 4: Performance profiles of configurations of Type 4.

Figure 5: Performance profiles of the configurations of Type 5.

19

Method Mean
Constraint programming 1.7136

MCTS - Type 1.1 2.4014
MCTS - Type 1.2 2.2852
MCTS - Type 1.3 2.2859
MCTS - Type 1.4 1.6837
MCTS - Type 2.1 2.0226
MCTS - Type 2.2 1.9875
MCTS - Type 2.3 1.6792
MCTS - Type 4.1 1.5532
MCTS - Type 4.2 1.5533
MCTS - Type 4.3 1.5815
MCTS - Type 4.4 1.5786
MCTS - Type 4.5 1.6234
MCTS - Type 4.6 1.6225
MCTS - Type 4.7 1.6586
MCTS - Type 4.8 1.6552
MCTS - Type 5.1 1.6312
MCTS - Type 5.2 1.6249
MCTS - Type 5.3 1.6763
MCTS - Type 5.4 1.6644
MCTS - Type 5.5 1.5415
MCTS - Type 5.6 1.5437

Table 2: Mean of the Weighted Sum of the Completion Times (scaled down
by a factor of 108) Across All Instances of Each Configuration of the MCTS
and of the Constraint Programming Approach.

20

Figure 6: Performance profiles comparing the best-performing configuration
of Types 1, 2, 4 and 5, along with the Constraint Programming results.

environments. Our experimental results showed that MCTS is a promising
approach for solving large-scale JSSPs, consistently outperforming our con-
straint programming approach. The MCTS-based algorithm showed better
performance in different MDP formulations. In particular, configurations
that allow operations to be inserted in idle time lower than their processing
time are beneficial. The proposed MDP formulations provide a flexible frame-
work for representing different scheduling problems and the new benchmark
is a valuable tool for testing and evaluating scheduling algorithms in indus-
trial contexts. Future research could further refine the MCTS approach by
exploring a machine-learning-based reward function allowing the evaluation
of a partial schedule. In conclusion, our results support the utility of MCTS
as an alternative heuristic to solve large job shop scheduling problems.

References

[1] Michael L Pinedo. Modeling and solving scheduling problems in practice.
Scheduling: Theory, Algorithms, and Systems, pages 431–458, 2012.

[2] Joseph Adams, Egon Balas, and Daniel Zawack. The shifting bottleneck
procedure for job shop scheduling. Management science, 34(3):391–401,

21

1988.

[3] Jacques Carlier. The one-machine sequencing problem. European Jour-
nal of Operational Research, 11(1):42–47, 1982.

[4] Scott Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by simulated
annealing. Science (New York, N.Y.), 220:671–80, 06 1983.

[5] R.A. Rutenbar. Simulated annealing algorithms: an overview. IEEE
Circuits and Devices Magazine, 5(1):19–26, 1989.

[6] Mauro Dell’Amico and Marco Trubian. Applying tabu search to the job-
shop scheduling problem. Annals of Operations Research, 41:231–252,
09 1993.

[7] E. Nowicki and C. Smutnicki. A fast taboo search algorithm for the job
shop problem. Management Science, 42(6):797–813, 1996.

[8] Eugeniusz Nowicki and Czes law Smutnicki. An advanced tabu search
algorithm for the job shop problem. Journal of Scheduling, 8:145–159,
04 2005.

[9] Cong Zhang, Wen Song, Zhiguang Cao, Jie Zhang, Puay Siew Tan, and
Xu Chi. Learning to dispatch for job shop scheduling via deep rein-
forcement learning. Advances in neural information processing systems,
33:1621–1632, 2020.

[10] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou,
Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. nature, 529(7587):484–489,
2016.

[11] Eric Taillard. Benchmarks for basic scheduling problems. european
journal of operational research, 64(2):278–285, 1993.

[12] M Saqlain, S Ali, and JY Lee. A monte-carlo tree search algorithm
for the flexible job-shop scheduling in manufacturing systems. Flexible
Services and Manufacturing Journal, 35(2):548–571, 2023.

[13] Jen-Jai Chou, Chao-Chin Liang, Hung-Chun Wu, I-Chen Wu, and Tung-
Ying Wu. A new mcts-based algorithm for multi-objective flexible job
shop scheduling problem. In 2015 Conference on technologies and ap-
plications of artificial intelligence (TAAI), pages 136–141. IEEE, 2015.

22

[14] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M
Lucas, Peter I Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego
Perez, Spyridon Samothrakis, and Simon Colton. A survey of monte
carlo tree search methods. IEEE Transactions on Computational Intel-
ligence and AI in games, 4(1):1–43, 2012.

[15] Robbert Reijnen, Kjell van Straaten, Zaharah Bukhsh, and Yingqian
Zhang. Job shop scheduling benchmark: Environments and instances for
learning and non-learning methods. arXiv preprint arXiv:2308.12794,
2023.

[16] Ebru Demirkol, Sanjay Mehta, and Reha Uzsoy. Benchmarks for
shop scheduling problems. European Journal of Operational Research,
109(1):137–141, 1998.

[17] Laurent Perron and Frédéric Didier. Cp-sat.

23

	Introduction
	Problem Statement
	Approach
	Markov Decision Process
	Monte-Carlo Tree Search
	Modelling JSSP as an MDP
	Priority Dispatching Rules
	Constraint programming

	Data Generation
	Experiments
	Setup
	Results

	Conclusion

