[en] In recent years, interest in pure casein fractions has grown, especially the β-casein due to its physicochemical, biological and techno-functional properties. Camel milk represents a source of β-casein with higher contents than those of cow's milk which makes its isolation more feasible and economical. The present review deals with the current technologies for the purification and isolation of β-casein from camel milk on a laboratory scale. Furthermore, antioxidant, antimicrobial, chaperone, foaming and emulsifying properties of camel β-casein are presented. The examination of the biological activities and technological functionalities of the camel β-casein highlights its potential as a valuable ingredient in the food industry due to its nutritional value which is of significant scientific and industrial interest.
Disciplines :
Sciences des denrées alimentaires
Auteur, co-auteur :
Lajnaf, Roua ; Alimentary Analysis Unit, National Engineering School of Sfax, Sfax, Tunisia ; Montpellier University, UMR IATE, Montpellier, France
Attia, Hamadi; Alimentary Analysis Unit, National Engineering School of Sfax, Sfax, Tunisia
Ayadi, Mohamed ; Université de Liège - ULiège > Département GxABT > Chemistry for Sustainable Food and Environmental Systems (CSFES)
Langue du document :
Anglais
Titre :
A review of camel β-casein: From purification processes, to bioactivity and techno-functionality
Ahmed, A.S., El-Bassiony, T., Elmalt, L.M., Ibrahim, H.R., Identification of potent antioxidant bioactive peptides from goat milk proteins. Food Research International 74 (2015), 80–88.
Al haj, O.A., Al Kanhal, H.A., Compositional, technological and nutritional aspects of dromedary camel milk. International Dairy Journal 20:12 (2010), 811–821.
Al-Shamsi, K.A., Mudgil, P., Hassan, H.M., Maqsood, S., Camel milk protein hydrolysates with improved technofunctional properties and enhanced antioxidant potential in in vitro and in food model systems. Journal of Dairy Science 101:1 (2018), 47–60.
ALKaisy, Q.H., Al‐Saadi, J.S., Al‐Rikabi, A.K.J., Altemimi, A.B., Hesarinejad, M.A., Abedelmaksoud, T.G., Exploring the health benefits and functional properties of goat milk proteins. Food Science and Nutrition 11:10 (2023), 5641–5656.
Almi-Sebbane, D., Adt, I., Degraeve, P., Jardin, J., Bettler, E., Terreux, R., Oulahal, N., Mati, A., Casesidin-like anti-bacterial peptides in peptic hydrolysate of camel milk β-casein. International Dairy Journal 86 (2018), 49–56.
Barzegar, A., Yousefi, R., Sharifzadeh, A., Dalgalarrondo, M., Chobert, J.M., Ganjali, M.R., Norouzi, P., Ehsani, M.R., Niasari-Naslaji, A., Saboury, A.A., Haertlé, T., Moosavi-Movahedi, A.A., Chaperone activities of bovine and camel β-caseins: Importance of their surface hydrophobicity in protection against alcohol dehydrogenase aggregation. International Journal of Biological Macromolecules 42:4 (2008), 392–399.
Bernard, H., Créminon, C., Yvon, M., Wal, J.-M., Specificity of the human IgE response to the different purified caseins in allergy to cow's milk proteins. International Archives of Allergy and Immunology 115:3 (1998), 235–244.
Borcherding, K., Lorenzen, P.C., Hoffmann, W., Schrader, K., Effect of foaming temperature and varying time/temperature-conditions of pre-heating on the foaming properties of skimmed milk. International Dairy Journal 18:4 (2008), 349–358.
Broyard, C., Gaucheron, F., Modifications of structures and functions of caseins: A scientific and technological challenge. Dairy Science & Technology 95 (2015), 831–862.
Cao, X., He, Y., Kong, Y., Mei, X., Huo, Y., He, Y., Liu, J., Elucidating the interaction mechanism of eriocitrin with β-casein by multi-spectroscopic and molecular simulation methods. Food Hydrocolloids 94 (2019), 63–70.
Carroccio, A., Cavataio, F., Montalto, G., D'amico, D., Alabrese, L., Iacono, G., Intolerance to hydrolysed cow's milk proteins in infants: Clinical characteristics and dietary treatment. Clinical and Experimental Allergy 30:11 (2000), 1598–1603.
Cases, E., Rampini, C., Cayot, P., Interfacial properties of acidified skim milk. Journal of Colloid and Interface Science 282:1 (2005), 133–141.
Cervato, B.C., Giovanna, R.C., Studies on the antioxidant activity of milk caseins. International Journal of Food Sciences & Nutrition 50:4 (1999), 291–296.
Chen, X., Fan, R., Li, C., Wang, C., Liu, L., Wang, Y., Munir, M., Hou, Z., Zhang, G., Bovine milk β -casein : Structure, properties, isolation, and targeted application of isolated products. Comprehensive Reviews in Food Science and Food Safety, 23, 2024, e13311.
Corrochano, A.R., Sariçay, Y., Arranz, E., Kelly, P.M., Buckin, V., Giblin, L., Comparison of antioxidant activities of bovine whey proteins before and after simulated gastrointestinal digestion. Journal of Dairy Science 102:1 (2019), 54–67.
Curadi, M.C., Giampietro, P.G., Use of mare milk in pediatric allergology Animal assisted therapy. Proc ASPA Congr Recent Progr Anim Prod Sci 2:January 2001 (2001), 647–649.
Dalgleish, D.G., On the structural models of bovine casein micelles—review and possible improvements. Soft Matter 7:6 (2011), 2265–2272.
Damodaran, S., Food proteins and their applications. 1997, CRC Press, New York, NY, USA Marcel Dekker.
Daniloski, D., Petkoska, A.T., Lee, N.A., Bekhit, A.E.-D., Carne, A., Vaskoska, R., Vasiljevic, T., Active edible packaging based on milk proteins: A route to carry and deliver nutraceuticals. Trends in Food Science & Technology 111 (2021), 688–705.
Dickinson, E., Horne, D.S., Phipps, J.S., Richardson, R.M., A neutron reflectivity study of the adsorption of .beta.-casein at fluid interfaces. Langmuir 9:1 (1993), 242–248.
Dickinson, E., Matsumura, Y., Proteins at liquid interfaces: Role of the molten globule state. Colloids and Surfaces B: Biointerfaces 3:1–2 (1994), 1–17.
Dupont, D., Tomé, D., Milk proteins: Digestion and absorption in the gastrointestinal tract. Boland, M., Singh, H., (eds.) Milk proteins: From expression to food, 2020, Academic Press, 701–714.
El-Agamy, E.I., Bioactive components in camel milk. Park, Y.W., (eds.) Bioactive components in milk and dairy products, 2009, John Wiley & Sons, 107–159.
El-Agamy, E.I., Nawar, M., Shamsia, S.M., Awad, S., Haenlein, G.F.W., Are camel milk proteins convenient to the nutrition of cow milk allergic children?. Small Ruminant Research 82:1 (2009), 1–6.
Ellouze, M., Vial, C., Attia, H., Ayadi, M.A., Effect of pH and heat treatment on structure, surface characteristics and emulsifying properties of purified camel β-casein. Food Chemistry, 365, 2021, 130421.
Ereifej, K.I., Alu'datt, M.H., Alkhalidy, H.A., Alli, I., Rababah, T., Comparison and characterisation of fat and protein composition for camel milk from eight Jordanian locations. Food Chemistry 127:1 (2011), 282–289.
Esmaili, M., Ghaffari, S.M., Moosavi-Movahedi, Z., Atri, M.S., Sharifizadeh, A., Farhadi, M., Yousefi, R., Chobert, J.M., Haertlé, T., Moosavi-Movahedi, A.A., Beta casein-micelle as a nano vehicle for solubility enhancement of curcumin; food industry application. LWT - Food Science and Technology 44:10 (2011), 2166–2172.
Ettelaie, R., Zengin, A., Lee, H., Fragmented proteins as food emulsion stabilizers: A theoretical study. Biopolymers 101:9 (2014), 945–958.
FAOSTAT. Crops and livestock products. Food and Agriculture Organization of the United Nations, 2022 Retrieved from https://www.fao.org/faostat/en/#data/QC. (Accessed 30 June 2024)
Farah, Z., Ruegg, M.W., The size distribution of casein micelles in camel milk. Food Structure, 8(2), 1989, 6.
Farrell, J.H.M., Jimenez-Flores, R., Bleck, G.T., Brown, E.M., Butler, J.E., Creamer, L.K., Hicks, C.L., Hollar, C.M., Ng-Kwai-Hang, K.F., Swaisgood, H.E., Nomenclature of the proteins of cows' milk—sixth revision. Journal of Dairy Science 87:6 (2004), 1641–1674.
Felfoul, I., Lopez, C., Gaucheron, F., Attia, H., Ayadi, M.A., A laboratory investigation of cow and camel whey proteins deposition under different heat treatments. Food and Bioproducts Processing 96 (2015), 256–263.
Fernandez, F.M., Oliver, G., Proteins present in llama milk. I. Quantitative aspects and general characteristics. Milchwissenschaft 43 (1988), 299–302.
Guagliardi, A., Cerchia, L., Rossi, M., Prevention of in vitro protein thermal aggregation by the sulfolobus solfataricus chaperonin: Evidence for nonequivalent binding surfaces on the chaperonin molecule. Journal of Biological Chemistry 270:47 (1995), 28126–28132.
Guantario, B., Giribaldi, M., Devirgiliis, C., Finamore, A., Colombino, E., Capucchio, M.T., Evangelista, R., Motta, V., Zinno, P., Cirrincione, S., A comprehensive evaluation of the impact of bovine milk containing different beta-casein profiles on gut health of ageing mice. Nutrients, 12(7), 2020, 2147.
Guzey, D., McClements, D.J., Formation, stability and properties of multilayer emulsions for application in the food industry. Advances in Colloid and Interface Science 128 (2006), 227–248.
Hailu, Y., Hansen, E.B., Seifu, E., Eshetu, M., Ipsen, R., Kappeler, S., Functional and technological properties of camel milk proteins: A review. Journal of Dairy Research 83:4 (2016), 422–429.
Hambraeus, L., Lönnerdal, B., Nutritional aspects of milk proteins. Advanced dairy chemistry—1 proteins: Part A/Part B, 2003, Springer, 605–645.
Hazebrouck, S., Laits de chèvre, d’ânesse et de chamelle: une alternative en cas d'allergie au lait de vache?. Innovations Agronomiques 52 (2016), 73–84.
Huppertz, T., Hennebel, J.-B., Considine, T., Kelly, A.L., Fox, P.F., A method for the large-scale isolation of β-casein. Food Chemistry 99:1 (2006), 45–50.
Izadi, A., Khedmat, L., Mojtahedi, S.Y., Nutritional and therapeutic perspectives of camel milk and its protein hydrolysates: A review on versatile biofunctional properties. Journal of Functional Foods, 60, 2019, 103441.
Jensen, H.B., Poulsen, N.A., Møller, H.S., Stensballe, A., Larsen, L.B., Comparative proteomic analysis of casein and whey as prepared by chymosin-induced separation, isoelectric precipitation or ultracentrifugation. Journal of Dairy Research 79:4 (2012), 451–458.
Jrad, Z., El Hatmi, H., Adt, I., Khorchani, T., Degraeve, P., Oulahal, N., Antimicrobial activity of camel milk casein and its hydrolysates. Acta Alimentaria 44:4 (2015), 609–616.
Kappeler, S., Farah, Z., Puhan, Z., Sequence analysis of Camelus dromedarius milk caseins. Journal of Dairy Research 65:2 (1998), 209–222.
Kappeler, S.R., Farah, Z., Puhan, Z., 5′-Flanking regions of camel milk genes are highly similar to homologue regions of other species and can be divided into two distinct groups. Journal of Dairy Science 86:2 (2003), 498–508.
Konuspayeva, G., Faye, B., Loiseau, G., The composition of camel milk: A meta-analysis of the literature data. Journal of Food Composition and Analysis 22:2 (2009), 95–101.
Korish, A.A., Arafah, M.M., Camel milk ameliorates steatohepatitis, insulin resistance and lipid peroxidation in experimental non-alcoholic fatty liver disease. BMC Complementary and Alternative Medicine 13 (2013), 1–12.
Kumar, D., Chatli, M.K., Singh, R., Mehta, N., Kumar, P., Antioxidant and antimicrobial activity of camel milk casein hydrolysates and its fractions. Small Ruminant Research 139 (2016), 20–25.
Lajnaf, R., Attia, H., Ayadi, M.A., Technological properties and biological activities of camel α-lactalbumin-A review. International Dairy Journal, 139, 2022, 105563.
Lajnaf, R., Attia, H., Ayadi, M.A., Effect of heat treatments on foaming and physico-chemical properties of bovine and camel sodium caseinate. Journal of Dairy Research 88:4 (2022), 440–444.
Lajnaf, R., Feki, S., Ameur, S.B., Attia, H., Kammoun, T., Ayadi, M.A., Masmoudi, H., Cow's milk alternatives for children with cow's milk protein allergy-Review of health benefits and risks of allergic reaction. International Dairy Journal, 141, 2023, 105624.
Lajnaf, R., Gharsallah, H., Attia, H., Ayadi, M.A., Comparative study on antioxidant, antimicrobial, emulsifying and physico-chemical properties of purified bovine and camel β-casein. LWT, 140, 2021, 110842.
Lajnaf, R., Picart-Palmade, L., Attia, H., Marchesseau, S., Ayadi, M.A., Foaming and adsorption behavior of bovine and camel proteins mixed layers at the air/water interface. Colloids and Surfaces B: Biointerfaces 151 (2016), 287–294.
Lajnaf, R., Picart-palmade, L., Attia, H., Marchesseau, S., Ayadi, M.A., Foaming and air-water interfacial properties of camel milk proteins compared to bovine milk proteins. Food Hydrocolloids, 126(May 2021), 2022, 107470.
Lajnaf, R., Trigui, I., Samet-Bali, O., Attia, H., Ayadi, M.A., Comparative study on emulsifying and physico-chemical properties of bovine and camel acid and sweet wheys. Journal of Food Engineering, 268, 2019, 109741.
Lajnaf, R., Zouari, A., Trigui, I., Attia, H., Ayadi, M.A., Effect of different heating temperatures on foaming properties of camel milk proteins: A comparison with bovine milk proteins. International Dairy Journal, 104, 2020.
Lam, R.S.H., Nickerson, M.T., The effect of pH and temperature pre-treatments on the physicochemical and emulsifying properties of whey protein isolate. LWT - Food Science and Technology 60:1 (2015), 427–434.
Law, A.J.R., Effects of heat treatment and acidification on the dissociation of bovine casein micelles. Journal of Dairy Research 63:1 (1996), 35–48.
Le Magnen, C., Maugas, J.-J., Method for obtaining beta casein. US patent 5 (1995), 397–577 Eurial-Parc Club du Perray.
Li, X., Spencer, G.W.K., Ong, L., Gras, S.L., Beta casein proteins–A comparison between caprine and bovine milk. Trends in Food Science & Technology 121 (2022), 30–43.
Liang, L.I., Luo, Y., Casein and pectin: Structures, interactions, and applications. Trends in Food Science & Technology 97 (2020), 391–403.
Liu, B., Qiao, W., Zhang, M., Liu, Y., Zhao, J., Chen, L., Bovine milk with variant β-casein types on immunological mediated intestinal changes and gut health of mice. Frontiers in Nutrition, 9, 2022, 970685.
Marinova, K.G., Basheva, E.S., Nenova, B., Temelska, M., Mirarefi, A.Y., Campbell, B., Ivanov, I.B., Physico-chemical factors controlling the foamability and foam stability of milk proteins : Sodium caseinate and whey protein concentrates. Food Hydrocolloids 23:7 (2009), 1864–1876.
Markoska, T., Daniloski, D., Vasiljevic, T., Huppertz, T., Structural changes of β-casein induced by temperature and pH analysed by nuclear magnetic resonance, Fourier-transform infrared spectroscopy, and chemometrics. Molecules, 26(24), 2021, 7650.
Martin, P., Cebo, C., Miranda, G., Leroux, C., Inter-species comparison of milk proteins: Quantitative variability and molecular diversity. Reference module in food science encyclopedia of dairy sciences, 2nd ed., 2011 2011.
Martini, M., Altomonte, I., da Silva Sant'ana, A.M., Del Plavignano, G., Salari, F., Gross, mineral and fatty acid composition of alpaca (Vicugna pacos) milk at 30 and 60 days of lactation. Small Ruminant Research 132 (2015), 50–54.
Maryniak, N.Z., Hansen, E.B., Ballegaard, A.S.R., Sancho, A.I., Bøgh, K.L., Comparison of the allergenicity and immunogenicity of Camel and cow's milk—a study in brown Norway rats. Nutrients, 10(12), 2018, 1903.
Mellema, M., Isenbart, J.G., Effect of acidification and heating on the rheological properties of oil-water interfaces with adsorbed milk proteins. Journal of Dairy Science 87:9 (2004), 2769–2778.
Miclo, L., Girardet, J., Egito, A.S., Mollé, D., Martin, P., Gaillard, J., The primary structure of a low‐Mr multiphosphorylated variant of β‐casein in equine milk. Proteomics 7:8 (2007), 1327–1335.
Mohamed, H., Johansson, M., Lundh, Å., Nagy, P., Kamal-Eldin, A., Short communication: Caseins and α-lactalbumin content of camel milk (Camelus dromedarius) determined by capillary electrophoresis. Journal of Dairy Science 103:12 (2020), 11094–11099.
Nair, A., Gopi, S., Curcumin as dietary supplements against various diseases: An insight into the new trends and future perspectives. Gopi, S., Thomas, S., Kunnumakkara, A.B., Aggarwal, B.B., Amalraj, A., (eds.) The chemistry and bioactive components of turmeric, 2020, Royal Society of Chemistry, 349–380.
Ochirkhuyag, B., Chobert, J.M., Dalgalarrondo, M., Choiset, Y., Haertlé, T., Characterization of caseins from Mongolian yak, khainak, and bactrian camel. Le Lait 77:5 (1997), 601–613.
Omar, A., Harbourne, N., Oruna-concha, M.J., Quantification of major camel milk proteins by capillary electrophoresis. International Dairy Journal 58 (2016), 31–35.
Osman, A., Zuffa, S., Walton, G., Fagbodun, E., Zanos, P., Georgiou, P., Kitchen, I., Swann, J., Bailey, A., Post-weaning A1/A2 β-casein milk intake modulates depressive-like behavior, brain μ-opioid receptors, and the metabolome of rats. iScience, 24(9), 2021, 103048.
Pauciullo, A., Giambra, I.J., Iannuzzi, L., Erhardt, G., The β-casein in camels: Molecular characterization of the CSN2 gene, promoter analysis and genetic variability. Gene 547:1 (2014), 159–168.
Peñas, E., Snel, H., Floris, R., Préstamo, G., Gomez, R., High pressure can reduce the antigenicity of bovine whey protein hydrolysates. International Dairy Journal 16:9 (2006), 969–975.
Perinelli, D.R., Bonacucina, G., Cespi, M., Bonazza, F., Palmieri, G.F., Pucciarelli, S., Polzonetti, V., Attarian, L., Polidori, P., Vincenzetti, S., A comparison among β-caseins purified from milk of different species: Self-assembling behaviour and immunogenicity potential. Colloids and Surfaces B: Biointerfaces 173 (2019), 210–216.
Plaisancié, P., Boutrou, R., Estienne, M., Henry, G., Jardin, J., Paquet, A., Léonil, J., β-Casein (94-123)-derived peptides differently modulate production of mucins in intestinal goblet cells. Journal of Dairy Research 82:1 (2015), 36–46.
Priyadarshini, P., Mishra, C., Mishra, B., Swain, K., Rout, M., Mishra, S.P., Impact of milk protein on human health: A1 verses A2. International Journal of Communication Systems 6:1 (2018), 531–535.
Rosenberg, M., Llama milk. Park, Y.W., Haenlein, G.F., Wendorff, W.L., (eds.) Handbook of milk of non-bovine mammals, 2006, Blackwell, London, 383–391.
Ryskaliyeva, A., Henry, C., Miranda, G., Faye, B., Konuspayeva, G., Martin, P., Combining different proteomic approaches to resolve complexity of the milk protein fraction of dromedary, Bactrian camels and hybrids, from different regions of Kazakhstan. PLoS One 13:5 (2018), 1–26.
Saadaoui, B., Bianchi, L., Henry, C., Miranda, G., Martin, P., Cebo, C., Combining proteomic tools to characterize the protein fraction of llama (Lama glama) milk. Electrophoresis 35:10 (2014), 1406–1418.
Salami, M., Moosavi-Movahedi, A.A., Moosavi-Movahedi, F., Ehsani, M.R., Yousefi, R., Farhadi, M., Niasari-Naslaji, A., Saboury, A.A., Chobert, J.-M., Haertlé, T., Biological activity of camel milk casein following enzymatic digestion. Journal of Dairy Research 78:4 (2011), 471–478.
Salami, M., Yousefi, R., Ehsani, M.R., Dalgalarrondo, M., Chobert, J.-M., Haertlé, T., Razavi, S.H., Saboury, A.A., Niasari-Naslaji, A., Moosavi-Movahedi, A.A., Kinetic characterization of hydrolysis of camel and bovine milk proteins by pancreatic enzymes. International Dairy Journal 18:12 (2008), 1097–1102.
Salmen, S.H., Abu-Tarboush, H.M., Al-Saleh, A.a., Metwalli, A.A., Amino acids content and electrophoretic profile of camel milk casein from different camel breeds in Saudi Arabia. Saudi Journal of Biological Sciences 19:2 (2012), 177–183.
Souroullas, K., Aspri, M., Papademas, P., Donkey milk as a supplement in infant formula: Benefits and technological challenges. Food Research International 109 (2018), 416–425.
Sun, Y., Ding, Y., Liu, B., Guo, J., Su, Y., Yang, X., Man, C., Zhang, Y., Jiang, Y., Recent advances in the bovine β-casein gene mutants on functional characteristics and nutritional health of dairy products: Status, challenges, and prospects. Food Chemistry, 2024, 138510.
Thorn, D.C., Meehan, S., Sunde, M., Rekas, A., Gras, S.L., MacPhee, C.E., Dobson, C.M., Wilson, M.R., Carver, J.A., Amyloid fibril formation by bovine milk κ-casein and its inhibition by the molecular chaperones αS-and β-casein. Biochemistry 44:51 (2005), 17027–17036.
Todd, M.J., Lorimer, G.H., Thirumalai, D., Chaperonin-facilitated protein folding: Optimization of rate and yield by an iterative annealing mechanism. Proceedings of the National Academy of Sciences 93:9 (1996), 4030–4035.
Triprisila, L.F., Suharjono, S., Christianto, A., Fatchiyah, F., The comparing of antimicrobial activity of CSN1S2 protein of fresh milk and yoghurt goat breed ethawah inhibited the pathogenic bacteria. Materia Socio Medica, 28(4), 2016, 244.
Uversky, V.N., El-Fakharany, E.M., Abu-Serie, M.M., Almehdar, H.A., Redwan, E.M., Divergent anticancer activity of free and formulated camel milk α-lactalbumin. Cancer Investigation 35:9 (2017), 610–623.
Verduci, E., D'Elios, S., Cerrato, L., Comberiati, P., Calvani, M., Palazzo, S., Martelli, A., Landi, M., Trikamjee, T., Peroni, D.G., Cow's milk substitutes for children: Nutritional aspects of milk from different mammalian species, special formula and plant-based beverages. Nutrients, 11(8), 2019, 1739.
Wangoh, J., Farah, Z., Puhan, Z., Iso-electric focusing of camel milk proteins. International Dairy Journal 8:7 (1998), 617–621.
Ward, L.S., Bastian, E.D., A method for isolating β-casein. Journal of Dairy Science 79:8 (1996), 1332–1339.
Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., Zhang, Y., The I-TASSER suite: Protein structure and function prediction. Nature Methods 12:1 (2015), 7–8.
Zhang, Z., Dalgleish, D.G., Goff, H.D., Effect of pH and ionic strength on competitive protein adsorption to air/water interfaces in aqueous foams made with mixed milk proteins. Colloids and Surfaces B: Biointerfaces 34 (2004), 113–121.
Zhang, X., Fu, X., Zhang, H., Liu, C., Jiao, W., Chang, Z., Chaperone-like activity of β-casein. The International Journal of Biochemistry & Cell Biology 37:6 (2005), 1232–1240.
Zhang, H., Yao, J., Zhao, D., Liu, H., Li, J., Guo, M., Changes in chemical composition of Alxa Bactrian camel milk during lactation. Journal of Dairy Science 88:10 (2005), 3402–3410.
Zhou, Z., Zhu, M., Zhang, G., Hu, X., Pan, J., Novel insights into the interaction mechanism of 5-hydroxymethyl-2-furaldehyde with β-casein and its effects on the structure and function of β-casein. LWT, 152, 2021, 112360.