Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. J. Control Decis. 5(1), 42–60 (2018). https://doi.org/10.1080/23307706.2017.1397554
Boudiaf, M., Mueller, R., Ayed, I.B., Bertinetto, L.: Parameter-free online test-time adaptation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8334–8343. Institute of Electrical and Electronics Engineers (IEEE), New Orleans, Louisiana, USA (2022). https://doi.org/10.1109/CVPR52688.2022.00816
Colwell, I., Phan, B., Saleem, S., Salay, R., Czarnecki, K.: An automated vehicle safety concept based on runtime restriction of the operational design domain. In: 2018 IEEE Intelligent Vehicles Symposium (IV) (2018). https://doi.org/10.1109/IVS.2018.8500530
Cranmer, K., Brehmer, J., Louppe, G.: The frontier of simulation-based inference. Proc. Nat. Acad. Sci. (PNAS) 117(48), 30055–30062 (2020). https://doi.org/10.1073/pnas.1912789117
Diamond, S., Boyd, S.: CVXPY: a Python-embedded modeling language for convex optimization. J. Mach. Learn. Res. 17(83), 1–5 (2016)
Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open urban driving simulator. In: Annual Conference on Robot Learning. Proceedings of Machine Learning Research, vol. 78, pp. 1–16. Mountain View, California, USA (2017). https://proceedings.mlr.press/v78/dosovitskiy17a.html
Durkan, C., Bekasov, A., Murray, I., Papamakarios, G.: Neural spline flows. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 32 (2019)
Gérin, B., et al.: Multi-stream cellular test-time adaptation of real-time models evolving in dynamic environments. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), vol. 33, pp. 4472–4482. Institute of Electrical and Electronics Engineers (IEEE), Seattle, Washington, USA (2024). https://doi.org/10.1109/CVPRW63382.2024.00450
Gérin, B., Zanella, M., Wynen, M., Mahmoudi, S., Macq, B., De Vleeschouwer, C.: Exploring viability of test-time training: Application to 3D segmentation in multiple sclerosis. In: IEEE Conference on Artificial Intelligence (CAI), vol. 34, pp. 557–562. Institute of Electrical and Electronics Engineers (IEEE), Singapore, Singapore (2024). https://doi.org/10.1109/CAI59869.2024.00110
Gong, T., Jeong, J., Kim, T., Kim, Y., Shin, J., Lee, S.J.: NOTE: robust continual test-time adaptation against temporal correlation. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 35, pp. 27253–27266. Curran Associates, Inc. (2022). https://openreview.net/forum?id=E9HNxrCFZPV
Greenberg, D., Nonnenmacher, M., Macke, J.H.: Automatic posterior transformation for likelihood-free inference. In: International Conference on Machine Learning (ICML). Proceedings of Machine Learning Research, vol. 97, pp. 2404–2414 (2019). https://proceedings.mlr.press/v97/greenberg19a.html
Gyllenhammar, M., et al.: Towards an operational design domain that supports the safety argumentation of an automated driving system. In: European congress on embedded real time systems (ERTS), pp. 1–10. Toulouse, France (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. Las Vegas, Nevada, USA (2016). https://doi.org/10.1109/CVPR.2016.90
Hermans, J., Delaunoy, A., Rozet, F., Wehenkel, A., Begy, V., Louppe, G.: A trust crisis in simulation-based inference? your posterior approximations can be unfaithful. arXiv abs/2110.06581 (2021). https://doi.org/10.48550/arXiv.2110.06581
Houyon, J., et al.: Online distillation with continual learning for cyclic domain shifts. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), vol. abs 2211 16234, pp. 2437–2446. Institute of Electrical and Electronics Engineers (IEEE), Vancouver, Canada (2023). https://doi.org/10.1109/CVPRW59228.2023.00242
Hyndman, R.J.: Computing and graphing highest density regions. Am. Stat. 50(2), 120–126 (1996). https://doi.org/10.1080/00031305.1996.10474359
Ibrahim, M., Haworth, J., Cheng, T.: WeatherNet: recognising weather and visual conditions from street-level images using deep residual learning. ISPRS Int. J. Geo-Inf. 8(12), 1–18 (2019). https://doi.org/10.3390/ijgi8120549
Introvigne, M., Ramazzina, A., Walz, S., Scheuble, D., Bijelic, M.: Real-time environment condition classification for autonomous vehicles. In: IEEE Intelligent Vehicles Symposium (IV). Institute of Electrical and Electronics Engineers (IEEE), Jeju Island, Republic of Korea (2024). https://doi.org/10.1109/iv55156.2024.10588692
Jeon, M., Seo, J., Min, J.: DA-RAW: Domain adaptive object detection for real-world adverse weather conditions. In: IEEE International Conference on Robotics and Automation (ICRA), vol. 17, pp. 2013–2020. Institute of Electrical and Electronics Engineers (IEEE), Yokohama, Japan (2024). https://doi.org/10.1109/ICRA57147.2024.10611219
Kobyzev, I., Prince, S.J., Brubaker, M.A.: Normalizing flows: An introduction and review of current methods. IEEE Trans. Pattern Anal. Mach. Intell. 43(11), 3964– 3979 (2021). https://doi.org/10.1109/TPAMI.2020.2992934
Kolmogorov, A.N.: Grundbegriffe der wahrscheinlichkeitsrechnung. In: Grundbegriffe der Wahrscheinlichkeitsrechnung, Ergebnisse der Mathematik und Ihrer Grenzgebiete, vol. 2, p. 62. Springer, Heidelberg (1933). https://doi.org/10.1007/978-3-642-49888-6
Kolmogorov, A.N.: Foundations of the Theory of Probability. Chelsea Publishing Company (1950). https://archive.org/details/foundationsofthe00kolm
Lee, C.W., Nayeer, N., Garcia, D.E., Agrawal, A., Liu, B.: Identifying the operational design domain for an automated driving system through assessed risk. In: IEEE Intelligent Vehicles Symposium (IV). Institute of Electrical and Electronics Engineers (IEEE) (2020). https://doi.org/10.1109/IV47402.2020.9304552
Lee, S., Kim, D., Kim, N., Jeong, S.G.: Drop to adapt: learning discriminative features for unsupervised domain adaptation. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 91–100. Institute of Electrical and Electronics Engineers (IEEE) (2019). https://doi.org/10.1109/ICCV.2019.00018
Li, J., Xu, R., Ma, J., Zou, Q., Ma, J., Yu, H.: Domain adaptive object detection for autonomous driving under foggy weather. In: IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 612–622. Institute of Electrical and Electronics Engineers (IEEE), Waikoloa, Hawaii, USA (2023). https://doi.org/10. 1109/WACV56688.2023.00068
Li, X., Wang, Z., Lu, X.: A multi-task framework for weather recognition. In: ACM International Conference on Multimedia, pp. 1318–1326. Mountain View, California, USA (2017). https://doi.org/10.1145/3123266.3123382
Li, Z., Li, Y., Zhong, J., Chen, Y.: Multi-class weather classification based on multi-feature weighted fusion method. In: Earth and Environmental Science. Journal of Physics: Conference Series, vol. 558, pp. 1–13. IOP Publishing (2020). https://doi.org/10.1088/1755-1315/558/4/042038
Lueckmann, J.M., Goncalves, P.J., Bassetto, G., Öcal, K., Nonnenmacher, M., Macke, J.H.: Flexible statistical inference for mechanistic models of neural dynamics. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 30, pp. 1–11. Curran Associates, Inc., Long Beach, California, USA (November 2017)
Mansour, Y., Mohri, M., Rostamizadeh, R.: Domain adaptation with multiple sources. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 21, pp. 1041–1048. Vancouver, Canada (December 2008), https://papers.nips. cc/paper_files/paper/2008/hash/0e65972dce68dad4d52d063967f0a705-Abstract. html
Oquab, M., et al.: DINOv2: learning robust visual features without supervision. arXiv abs/2304.07193 (2023). https://doi.org/10.48550/arXiv.2304.07193
Papamakarios, G., Nalisnick, E., Rezende, D.J., Mohamed, S., Lakshminarayanan, B.: Normalizing flows for probabilistic modeling and inference. J. Mach. Learn. Res. 22(57), 1–64 (2021). http://jmlr.org/papers/v22/19-1028.html
Pappalardo, G., Caponetto, R., Varrica, R., Cafiso, S.: Assessing the operational design domain of lane support system for automated vehicles in different weather and road conditions. J. Traffic Transp. Eng. 9(4), 631–644 (2022). https://doi.org/10.1016/j.jtte.2021.12.002
Perrels, A., Votsis, A., Nurmi, V., Pilli-Sihvola, K.: Weather conditions, weather information and car crashes. ISPRS Int. J. Geo-Inf. 4(4), 1–23 (2015). https://doi.org/10.3390/ijgi4042681
Piérard, S., et al.: Mixture domain adaptation to improve semantic segmentation in real-world surveillance. In: IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW), pp. 22–31. Institute of Electrical and Electronics Engineers (IEEE), Waikoloa, Hawaii, USA (2023). https://doi.org/10.1109/WACVW58289.2023.00007
Piérard, S., Marcos Alvarez, A., Lejeune, A., Van Droogenbroeck, M.: On-the-fly domain adaptation of binary classifiers. In: Belgian-Dutch Conference on Machine Learning (BENELEARN), pp. 20–28. Brussels, Belgium (2014)
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning (ICML). Proceedings of Machine Learning Research, vol. 139, pp. 8748–8763. Proceedings of Machine Learning Research (2021). https://proceedings.mlr.press/v139/radford21a.html
Rebut, J., Bursuc, A., Perez, P.: StyleLess layer: improving robustness for real-world driving. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 8992–8999. Institute of Electrical and Electronics Engineers (IEEE), Prague, Czech Republic (2021). https://doi.org/10.1109/IROS51168.2021. 9636204
Robertson, C., Long, J.A., Nathoo, F.S., Nelson, T.A., Plouffe, C.C.F.: Assessing quality of spatial models using the structural similarity index and posterior predictive checks. Geogr. Anal. 46(1), 53–74 (2014). https://doi.org/10.1111/gean. 12028
SAE International: Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles. Tech. Rep. SAE Standard J3016 202104, Society of Automobile Engineers, Warrendale, PA, USA (2021). https://doi.org/10.4271/J3016_202104
Shoker, A., Yasmin, R., Esteves-Verissimo, P.: Savvy: Trustworthy autonomous vehicles architecture. In: Symposium on Vehicles Security and Privacy (VehicleSec), pp. 1–7. San Diego, California, USA (2024). https://www.ndss-symposium.org/ndss-paper/auto-draft-465/
Sun, C., Deng, Z., Chu, W., Li, S., Cao, D.: Acclimatizing the operational design domain for autonomous driving systems. IEEE Intell. Transp. Syst. Mag. 14(2), 10–24 (2022). https://doi.org/10.1109/MITS.2021.3070651
Tang, H., Chen, K., Jia, K.: Unsupervised domain adaptation via structurally regularized deep clustering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8722–8732. Institute of Electrical and Electronics Engineers (IEEE), Seattle, WA, USA (2020). https://doi.org/10.1109/CVPR42600.2020.00875
Tonk, A., Boussif, A.: Operational design domain or operational envelope; seeking a suitable concept for autonomous railway systems. In: European Safety and Reliability Conference, pp. 2104–2111. Research Publishing Services (2022). https://doi.org/10.3850/978-981-18-5183-4_S06-08-245-cd
Vasist, M., Rozet, F., Absil, O., Mollière, P., Nasedkin, E., Louppe, G.: Neural posterior estimation for exoplanetary atmospheric retrieval. Astron. Astrophys. 672, A147 (2023). https://doi.org/10.1051/0004-6361/202245263
Villarreal Guerra, J.C., Khanam, Z., Ehsan, S., Stolkin, R., McDonald-Maier, K.: Weather classification: a new multi-class dataset, data augmentation approach and comprehensive evaluations of convolutional neural networks. In: NASA/ESA Conference on Adaptive Hardware and Systems (AHS), pp. 305–310. Institute of Electrical and Electronics Engineers (IEEE), Edinburgh, UK (2018). https://doi.org/10.1109/AHS.2018.8541482
Wang, D., Shelhamer, E., Liu, S., Olshausen, B., Darrell, T.: Tent: Fully test-time adaptation by entropy minimization. arXiv abs/2006.10726 (2020). https://doi. org/10.48550/arXiv.2006.10726
Wang, Q., Fink, O., Van Gool, L., Dai, D.: Continual test-time domain adaptation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7191–7201. Institute of Electrical and Electronics Engineers (IEEE), New Orleans, Louisiana, USA (2022). https://doi.org/10.1109/CVPR52688.2022. 00706
Wang, W., et al.: Dynamically instance-guided adaptation: A backward-free approach for test-time domain adaptive semantic segmentation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 24090–24099. Institute of Electrical and Electronics Engineers (IEEE), Vancouver, Canada (2023). https://doi.org/10.1109/CVPR52729.2023.02307
Yuan, L., Xie, B., Li, S.: Robust test-time adaptation in dynamic scenarios. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15922–15932. Institute of Electrical and Electronics Engineers (IEEE), Vancouver, Canada (2023). https://doi.org/10.1109/CVPR52729.2023.01528
Zanella, M., Ayed, I.B.: On the test-time zero-shot generalization of vision-language models: Do we really need prompt learning? In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), vol. 33, pp. 23783–23793. Institute of Electrical and Electronics Engineers (IEEE), Seattle, Washington, USA (2024). https://doi.org/10.1109/CVPR52733.2024.02245
Zanella, M., Gérin, B., Ayed, I.B.: Boosting vision-language models with transduc-tion. arXiv abs/2406.01837 (2024). https://doi.org/10.48550/arXiv.2406.01837
Zhang, Y., Sun, J., Chen, M., Wang, Q., Yuan, Y., Ma, R.: Multi-weather classification using evolutionary algorithm on EfficientNet. In: IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops), pp. 546–551. Institute of Electrical and Electronics Engineers (IEEE), Kassel, Germany (2021). https://doi.org/10.1109/PerComWorkshops51409.2021.9430939