[en] Pretreatment of lignocellulosic biomass is crucial yet challenging for sustainable energy production. This study focuses on enhancing enzymatic accessibility of cellulose in oil palm empty fruit bunches by optimizing pretreatment parameters to improve glucose and ethanol yields while reducing fermentation inhibitors. It evaluates the impact of maleic acid concentrations on biorefinery processes. High maleic acid concentrations (>25% w/w) may allow reuse and offer benefits over lower concentrations, such as enhanced delignification and increased sugar yield under milder conditions. Biomass undergoes pretreatment, enzymatic saccharification, and fermentation using Saccharomyces cerevisiae F118. Pretreatment with 75% maleic acid (w/w) for 60 min at 180 °C effectively removes lignin and hemicellulose, increasing cellulose accessibility but results in 74.8% crystallinity, hindering saccharification. A 50% maleic acid pretreatment yielded higher glucose (77.1%). Optimal ethanol production is achieved with 1% maleic acid pretreatment. However, the ethanol yield is negatively impacted by residual maleic acid on the solid matrix.
Disciplines :
Chemistry Biotechnology Environmental sciences & ecology Chemical engineering Energy
Author, co-author :
Postiaux, Annaëlle ; Université de Liège - ULiège > Département GxABT > Chemistry for Sustainable Food and Environmental Systems (CSFES)
Putra, Filemon Jalu Nusantara; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-Ku, Kobe 657-8501, Japan
Kahar, Prihardi; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-Ku, Kobe 657-8501, Japan
Richel, Aurore ; Université de Liège - ULiège > TERRA Research Centre > Chemistry for Sustainable Food and Environmental Systems (CSFES)
Ogino, Chiaki ; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-Ku, Kobe 657-8501, Japan
Language :
English
Title :
Maleic Acid-Butanol Pretreatment to Enhance Cellulose Accessibility for Enzymatic Hydrolysis and Ethanol Production from Oil Palm Empty Fruit Bunch
Alternative titles :
[fr] Prétraitement à l'acide maléique et au butanol pour améliorer l'accessibilité de la cellulose à l'hydrolyse enzymatique et à la production d'éthanol à partir des régimes de fruits vides du palmier à huile.
Publication date :
21 November 2024
Journal title :
ACS Environmental Au
eISSN :
2694-2518
Publisher :
American Chemical Society (ACS)
Peer reviewed :
Peer Reviewed verified by ORBi
Development Goals :
9. Industry, innovation and infrastructure 12. Responsible consumption and production 13. Climate action 7. Affordable and clean energy
Kumar, R.; Strezov, V.; Weldekidan, H.; He, J.; Singh, S.; Kan, T.; Dastjerdi, B. Lignocellulose Biomass Pyrolysis for Bio-Oil Production: A Review of Biomass Pre-Treatment Methods for Production of Drop-in Fuels. Renewable Sustainable Energy Rev. 2020, 123, 109763 10.1016/j.rser.2020.109763
Kumar, B.; Bhardwaj, N.; Agrawal, K.; Chaturvedi, V.; Verma, P. Current Perspective on Pretreatment Technologies Using Lignocellulosic Biomass: An Emerging Biorefinery Concept. Fuel Process. Technol. 2020, 199, 106244 10.1016/j.fuproc.2019.106244
Khaw, T. S.; Katakura, Y.; Ninomiya, K.; Moukamnerd, C.; Kondo, A.; Ueda, M.; Shioya, S. Enhancement of Ethanol Production by Promoting Surface Contact between Starch Granules and Arming Yeast in Direct Ethanol Fermentation. J. Biosci. Bioeng. 2007, 103 ( 1), 95- 97, 10.1263/jbb.103.95
Kodama, S.; Nakanishi, H.; Thalagala, T. A. T. P.; Isono, N.; Hisamatsu, M. A Wild and Tolerant Yeast Suitable for Ethanol Fermentation from Lignocellulose. J. Biosci. Bioeng. 2013, 115 ( 5), 557- 561, 10.1016/j.jbiosc.2012.11.006
United Nations Department of Economic and Social Affairs . The Sustainable Development Goals Report 2023; United Nations: 2023.
Ferreira, A. F. Biorefinery Concept. In Biorefineries: Targeting Energy, High Value Products and Waste Valorisation; Rabaçal, M.; Ferreira, A. F.; Silva, C. A. M.; Costa, M., Eds.; Springer International Publishing: Cham, 2017; pp 1- 20 10.1007/978-3a319-48288-0_1.
Wang, L.; Littlewood, J.; Murphy, R. J. Environmental Sustainability of Bioethanol Production from Wheat Straw in the UK. Renewable Sustainable Energy Rev. 2013, 28, 715- 725, 10.1016/j.rser.2013.08.031
Hahn-Hägerdal, B.; Galbe, M.; Gorwa-Grauslund, M. F.; Lidén, G.; Zacchi, G. Bio-Ethanol─the Fuel of Tomorrow from the Residues of Today. Trends Biotechnol. 2006, 24 ( 12), 549- 556, 10.1016/j.tibtech.2006.10.004
Thomsen, M. H.; Holm-Nielsen, J. B.; Oleskowicz-Popiel, P.; Thomsen, A. B. Pretreatment of Whole-Crop Harvested, Ensiled Maize for Ethanol Production. In Biotechnology for Fuels and Chemicals; Adney, W. S.; McMillan, J. D.; Mielenz, J.; Klasson, K. T., Eds.; ABAB Symposium; Humana Press: Totowa, NJ, 2008; pp 541- 551.
Wobiwo, F. A.; Chaturvedi, T.; Boda, M.; Fokou, E.; Emaga, T. H.; Cybulska, I.; Deleu, M.; Gerin, P. A.; Thomsen, M. H. Bioethanol Potential of Raw and Hydrothermally Pretreated Banana Bulbs Biomass in Simultaneous Saccharification and Fermentation Process with Saccharomyces cerevisiae. Biomass Convers. Biorefin. 2019, 9 ( 3), 553- 563, 10.1007/s13399-018-00367-0
Kosugi, A.; Kondo, A.; Ueda, M.; Murata, Y.; Vaithanomsat, P.; Thanapase, W.; Arai, T.; Mori, Y. Production of Ethanol from Cassava Pulp via Fermentation with a Surface-Engineered Yeast Strain Displaying Glucoamylase. Renewable Energy 2009, 34 ( 5), 1354- 1358, 10.1016/j.renene.2008.09.002
Ben Taher, I.; Fickers, P.; Chniti, S.; Hassouna, M. Optimization of Enzymatic Hydrolysis and Fermentation Conditions for Improved Bioethanol Production from Potato Peel Residues. Biotechnol. Prog. 2017, 33 ( 2), 397- 406, 10.1002/btpr.2427
Risanto, L.; Adi, D. T. N.; Fajriutami, T.; Teramura, H.; Fatriasari, W.; Hermiati, E.; Kahar, P.; Kondo, A.; Ogino, C. Pretreatment with Dilute Maleic Acid Enhances the Enzymatic Digestibility of Sugarcane Bagasse and Oil Palm Empty Fruit Bunch Fiber. Bioresour. Technol. 2023, 369, 128382 10.1016/j.biortech.2022.128382
Ramlee, N. A.; Naveen, J.; Jawaid, M. Potential of Oil Palm Empty Fruit Bunch (OPEFB) and Sugarcane Bagasse Fibers for Thermal Insulation Application - A Review. Constr. Build. Mater. 2021, 271, 121519 10.1016/j.conbuildmat.2020.121519
Amidon, T. E.; Liu, S. Water-Based Woody Biorefinery. Biotechnol. Adv. 2009, 27 ( 5), 542- 550, 10.1016/j.biotechadv.2009.04.012
Zhang, C.; Wang, F. Catalytic Lignin Depolymerization to Aromatic Chemicals. Acc. Chem. Res. 2020, 53 ( 2), 470- 484, 10.1021/acs.accounts.9b00573
Rogner, H.-H. Energy Resources. In Energy for Development: Resources, Technologies, Environment; Toth, F. L., Ed.; Environment & Policy; Springer Netherlands: Dordrecht, 2012; pp 149- 160.
Mosier, N.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y. Y.; Holtzapple, M.; Ladisch, M. Features of Promising Technologies for Pretreatment of Lignocellulosic Biomass. Bioresour. Technol. 2005, 96 ( 6), 673- 686, 10.1016/j.biortech.2004.06.025
Liu, Z.; Ho, S.-H.; Sasaki, K.; den Haan, R.; Inokuma, K.; Ogino, C.; van Zyl, W. H.; Hasunuma, T.; Kondo, A. Engineering of a Novel Cellulose-Adherent Cellulolytic Saccharomyces Cerevisiae for Cellulosic Biofuel Production. Sci. Rep. 2016, 6 ( 1), 24550 10.1038/srep24550
Pérez, J.; Muñoz-Dorado, J.; de la Rubia, T.; Martínez, J. Biodegradation and Biological Treatments of Cellulose, Hemicellulose and Lignin: An Overview. Int. Microbiol. 2002, 5 ( 2), 53- 63, 10.1007/s10123-002-0062-3
Kawaguchi, H.; Hasunuma, T.; Ogino, C.; Kondo, A. Bioprocessing of Bio-Based Chemicals Produced from Lignocellulosic Feedstocks. Curr. Opin. Biotechnol. 2016, 42, 30- 39, 10.1016/j.copbio.2016.02.031
Mood, S. H.; Golfeshan, A. H.; Tabatabaei, M.; Jouzani, G. S.; Najafi, G. H.; Gholami, M.; Ardjmand, M. Lignocellulosic Biomass to Bioethanol, a Comprehensive Review with a Focus on Pretreatment. Renewable Sustainable Energy Rev. 2013, 27, 77- 93, 10.1016/j.rser.2013.06.033
Ibbett, R.; Gaddipati, S.; Davies, S.; Hill, S.; Tucker, G. The Mechanisms of Hydrothermal Deconstruction of Lignocellulose: New Insights from Thermal-Analytical and Complementary Studies. Bioresour. Technol. 2011, 102 ( 19), 9272- 9278, 10.1016/j.biortech.2011.06.044
Yang, B.; Wyman, C. E. Pretreatment: The Key to Unlocking Low-Cost Cellulosic Ethanol. Biofuels, Bioprod. Biorefin. 2008, 2 ( 1), 26- 40, 10.1002/bbb.49
Kahar, P.; Itomi, A.; Tsuboi, H.; Ishizaki, M.; Yasuda, M.; Kihira, C.; Otsuka, H.; Azmi, N. b.; Matsumoto, H.; Ogino, C.; Kondo, A. The Flocculant Saccharomyces Cerevisiae Strain Gains Robustness via Alteration of the Cell Wall Hydrophobicity. Metab. Eng. 2022, 72, 82- 96, 10.1016/j.ymben.2022.03.001
Zimmermann, C. J.; Bollar, N. V.; Wettstein, S. G. Liquid Phase Conversion of Lignocellulosic Biomass Using Biphasic Systems. Biomass Bioenergy 2018, 118, 163- 171, 10.1016/j.biombioe.2018.08.009
Schmetz, Q.; Teramura, H.; Morita, K.; Oshima, T.; Richel, A.; Ogino, C.; Kondo, A. Versatility of a Dilute Acid/Butanol Pretreatment Investigated on Various Lignocellulosic Biomasses to Produce Lignin, Monosaccharides and Cellulose in Distinct Phases. ACS Sustainable Chem. Eng. 2019, 7 ( 13), 11069- 11079, 10.1021/acssuschemeng.8b05841
K N, Y.; T M, M. U.; S, K.; Sachdeva, S.; Thakur, S.; S, A. K.; J, R. B. Lignocellulosic Biorefinery Technologies: A Perception into Recent Advances in Biomass Fractionation, Biorefineries, Economic Hurdles and Market Outlook. Fermentation 2023, 9 ( 3), 238 10.3390/fermentation9030238
Guo, H.; Chang, Y.; Lee, D.-J. Enzymatic Saccharification of Lignocellulosic Biorefinery: Research Focuses. Bioresour. Technol. 2018, 252, 198- 215, 10.1016/j.biortech.2017.12.062
Joshi, D. R.; Adhikari, N. An Overview on Common Organic Solvents and Their Toxicity. J. Pharm. Res. Int. 2019, 1- 18, 10.9734/jpri/2019/v28i330203
Alfonsi, K.; Colberg, J.; Dunn, P. J.; Fevig, T.; Jennings, S.; Johnson, T. A.; Kleine, H. P.; Knight, C.; Nagy, M. A.; Perry, D. A.; Stefaniak, M. Green Chemistry Tools to Influence a Medicinal Chemistry and Research Chemistry Based Organisation. Green Chem. 2008, 10 ( 1), 31- 36, 10.1039/B711717E
Cai, C.; Hirth, K.; Gleisner, R.; Lou, H.; Qiu, X.; Zhu, J. Y. Maleic Acid as a Dicarboxylic Acid Hydrotrope for Sustainable Fractionation of Wood at Atmospheric Pressure and ≤ 100 °C: Mode and Utility of Lignin Esterification. Green Chem. 2020, 22 ( 5), 1605- 1617, 10.1039/C9GC04267A
Zhu, J. Y.; Pan, X. J. Woody Biomass Pretreatment for Cellulosic Ethanol Production: Technology and Energy Consumption Evaluation. Bioresour. Technol. 2010, 101 ( 13), 4992- 5002, 10.1016/j.biortech.2009.11.007
Khare, S. K.; Pandey, A.; Larroche, C. Current Perspectives in Enzymatic Saccharification of Lignocellulosic Biomass. Biochem. Eng. J. 2015, 102, 38- 44, 10.1016/j.bej.2015.02.033
Leu, S.-Y.; Zhu, J. Y. Substrate-Related Factors Affecting Enzymatic Saccharification of Lignocelluloses: Our Recent Understanding. BioEnergy Res. 2013, 6 ( 2), 405- 415, 10.1007/s12155-012-9276-1
Bayer, E. A.; Chanzy, H.; Lamed, R.; Shoham, Y. Cellulose, Cellulases and Cellulosomes. Curr. Opin. Struct. Biol. 1998, 8 ( 5), 548- 557, 10.1016/S0959-440X(98)80143-7
Piškur, J.; Rozpędowska, E.; Polakova, S.; Merico, A.; Compagno, C. How Did Saccharomyces Evolve to Become a Good Brewer?. Trends Genet. 2006, 22 ( 4), 183- 186, 10.1016/j.tig.2006.02.002
Prasertwasu, S.; Khumsupan, D.; Komolwanich, T.; Chaisuwan, T.; Luengnaruemitchai, A.; Wongkasemjit, S. Efficient Process for Ethanol Production from Thai Mission Grass (Pennisetum Polystachion). Bioresour. Technol. 2014, 163, 152- 159, 10.1016/j.biortech.2014.04.043
Lorenzo, J. M.; Munekata, P. E.; Dominguez, R.; Pateiro, M.; Saraiva, J. A.; Franco, D. Main Groups of Microorganisms of Relevance for Food Safety and Stability: General Aspects and Overall Description. In Innovative Technologies for Food Preservation; Barba, F. J.; Sant’Ana, A. S.; Orlien, V.; Koubaa, M., Eds.; Academic Press, 2018; Chapter 3, pp 53- 107.
Juanssilfero, A. B.; Kahar, P.; Amza, R. L.; Miyamoto, N.; Otsuka, H.; Matsumoto, H.; Kihira, C.; Thontowi, A.; Yopi; Ogino, C.; Prasetya, B.; Kondo, A. Effect of Inoculum Size on Single-Cell Oil Production from Glucose and Xylose Using Oleaginous Yeast Lipomyces Starkeyi. J. Biosci. Bioeng. 2018, 125 ( 6), 695- 702, 10.1016/j.jbiosc.2017.12.020
Wijaya, H.; Sasaki, K.; Kahar, P.; Yopi; Kawaguchi, H.; Sazuka, T.; Ogino, C.; Prasetya, B.; Kondo, A. Repeated Ethanol Fermentation from Membrane-Concentrated Sweet Sorghum Juice Using the Flocculating Yeast Saccharomyces Cerevisiae F118 Strain. Bioresour. Technol. 2018, 265, 542- 547, 10.1016/j.biortech.2018.07.039
Su, T.; Zhao, D.; Khodadadi, M.; Len, C. Lignocellulosic Biomass for Bioethanol: Recent Advances, Technology Trends, and Barriers to Industrial Development. Curr. Opin. Green Sustainable Chem. 2020, 24, 56- 60, 10.1016/j.cogsc.2020.04.005
Nakagawa-Izumi, A.; H’ng, Y. Y.; Mulyantara, L. T.; Maryana, R.; Do, V. T.; Ohi, H. Characterization of Syringyl and Guaiacyl Lignins in Thermomechanical Pulp from Oil Palm Empty Fruit Bunch by Pyrolysis-Gas Chromatography-Mass Spectrometry Using Ion Intensity Calibration. Ind. Crops Prod. 2017, 95, 615- 620, 10.1016/j.indcrop.2016.11.030
Cui, T.; Li, J.; Yan, Z.; Yu, M.; Li, S. The Correlation between the Enzymatic Saccharification and the Multidimensional Structure of Cellulose Changed by Different Pretreatments. Biotechnol. Biofuels 2014, 7 ( 1), 134 10.1186/s13068-014-0134-6
Schell, D. J.; Dowe, N.; Chapeaux, A.; Nelson, R. S.; Jennings, E. W. Accounting for All Sugars Produced during Integrated Production of Ethanol from Lignocellulosic Biomass. Bioresour. Technol. 2016, 205, 153- 158, 10.1016/j.biortech.2016.01.024
Kahar, P. Synergistic Effects of Pretreatment Process on Enzymatic Digestion of Rice Straw for Efficient Ethanol Fermentation. In Environmental Biotechnology─New Approaches and Prospective Applications; IntechOpen, 2013.
Segal, L.; Creely, J. J.; Martin, A. E.; Conrad, C. M. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Text. Res. J. 1959, 29 ( 10), 786- 794, 10.1177/004051755902901003
Park, S.; Baker, J. O.; Himmel, M. E.; Parilla, P. A.; Johnson, D. K. Cellulose Crystallinity Index: Measurement Techniques and Their Impact on Interpreting Cellulase Performance. Biotechnol. Biofuels 2010, 3 ( 1), 10 10.1186/1754-6834-3-10
Kahar, P.; Rachmadona, N.; Pangestu, R.; Palar, R.; Adi, D. T. N.; Juanssilfero, A. B.; Yopi; Manurung, I.; Hama, S.; Ogino, C. An Integrated Biorefinery Strategy for the Utilization of Palm-Oil Wastes. Bioresour. Technol. 2022, 344, 126266 10.1016/j.biortech.2021.126266
Santos, C. C.; de Souza, W.; Sant’Anna, C.; Brienzo, M. Elephant Grass Leaves Have Lower Recalcitrance to Acid Pretreatment than Stems, with Higher Potential for Ethanol Production. Ind. Crops Prod. 2018, 111, 193- 200, 10.1016/j.indcrop.2017.10.013
Kumar, V.; Yadav, S. K.; Kumar, J.; Ahluwalia, V. A Critical Review on Current Strategies and Trends Employed for Removal of Inhibitors and Toxic Materials Generated during Biomass Pretreatment. Bioresour. Technol. 2020, 299, 122633 10.1016/j.biortech.2019.122633
Ferrer, A.; Alciaturi, C.; Faneite, A.; Ríos, J. Analyses of Biomass Fibers by XRD, FT-IR, and NIR. In Analytical Techniques and Methods for Biomass; Vaz, S., Jr., Ed.; Springer International Publishing: Cham, 2016; pp 45- 83.
Chauhan, A.; Chauhan, P. Powder XRD Technique and Its Applications in Science and Technology. J. Anal. Bioanal. Technol. 2014, 5 ( 6), 212 10.4172/2155-9872.1000212
Lakshmipriya, M.; Vizhi, R. E.; Babu, D. R. Growth and Characterization of Maleic Acid Single Crystal. Optik 2015, 126 ( 23), 4259- 4262, 10.1016/j.ijleo.2015.08.126