Abstract :
[en] Due to the environmental challenges of petroleum-based packaging, new biodegradable and active food packaging has garnered significant attention. In this work, active films were generated with xylan/polyvinyl alcohol (PVA) as the film-forming matrix, combined with ginger essential oil nanoemulsions (GEO-NEs) at varying concentrations (2.0 %, 4.0 %, 6.0 %, and 8.0 % w/w). The GEO-NEs, produced via ultrasound, had a mean particle size measuring 176.4 ± 1.2 nm and demonstrated excellent stability for up to 28 d. FTIR and XRD analyses revealed that interactions between GEO-NEs and the film matrix occurred through hydrogen bonding, indicating good compatibility between the components. Incorporating GEO-NEs significantly enhanced the UV shielding performance and mechanical characteristics of the composite films, achieving mechanical characteristics comparable to those of commercial packaging materials such as high-density polyethylene (HDPE). Additionally, composite films with 2 % and 4 % GEO-NEs exhibited lower water vapor permeability (WVP) than the control film, indicating improved water barrier performance. GEO-NEs also significantly improved the antioxidant activity of the composite films and imparted certain antimicrobial properties. As a result, these films hold promise for applications in active food packaging.
Scopus citations®
without self-citations
1