Agrivoltaics; Crop model; Efficiency; Modelling; Ray tracing; Forestry; Agronomy and Crop Science
Abstract :
[en] Driven by the urge to expand renewable energy generation and mitigate the intensifying extreme climatic events effects on crops, development of agrivoltaics is currently accelerating. However, harmonious deployment requires to assess both photovoltaic and crop yields to ensure simultaneous compliance with energetic and agricultural objectives of stakeholders within evolving local legal contexts. Based on the community’s priority modelling needs, this paper presents the Python Agrivoltaic Simulation Environment (PASE), an MIT-licensed framework developed in partnership to assess the land productivity of agrivoltaic systems. The various expected benefits of this development are outlined, along with the open-source business model established with partners and the subsequent developments stemming from it. Examples illustrate how PASE effectively fulfils two primary requirements encountered by agrivoltaics stakeholders: predict irradiation on relevant surfaces and estimate agricultural and energy yields. In a dedicated experiment, PASE light model assumptions resulted in 1% error in the daily irradiation received by a sensor under two contrasted types of sky conditions. PASE’s ability to predict photovoltaic and crop yields and land equivalent ratio over several years is demonstrated for wheat on the BIODIV-SOLAR pilot. Ultimately, a sensitivity analysis of inter-row spacing demonstrates its usefulness to optimise systems according to different criteria.
Disciplines :
Energy Agriculture & agronomy Computer science
Author, co-author :
Bruhwyler, Roxane ; Université de Liège - ULiège > TERRA Research Centre
De Cock, Nicolas; DC-Core, Belgium
Brunet, Pascal; Naldeo Technologies Industries, Tarnos, France
Leloux, Jonathan; LuciSun, Belgium
Souquet, Pierre; TotalEnergies OneTech, PERL, Lacq, France
Perez, Etienne; Ombrea, Aix-en-Provence, France
Drahi, Etienne; TotalEnergies OneTech, Courbevoie, France
Dittmann, Sebastian; Fraunhofer-Center for Silicon Photovoltaics CSP, Halle, Germany ; Hochschule Anhalt University of Applied Sciences, Köthen, Germany
Lebeau, Frédéric ; Université de Liège - ULiège > Département GxABT > Biosystems Dynamics and Exchanges (BIODYNE)
Language :
English
Title :
Modelling light-sharing in agrivoltaics: the open-source Python Agrivoltaic Simulation Environment (PASE 1.0)
H2020 - 953016 - SERENDI-PV - Smooth, REliable aNd Dispatchable Integration of PV in EU Grids
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture EU - European Union BMBF - Bundesministerium für Bildung und Forschung
M.S. Ahmed M.R. Khan A. Haque M.R. Khan Agrivoltaics analysis in a techno-economic framework: understanding why agrivoltaics on rice will always be profitable Appl Energy 2022 10.1016/j.apenergy.2022.119560
Alexa M (2020) Super-fibonacci spirals: fast, low-discrepancy sampling of so (3). In: CVF conference on computer vision and pattern recognition, pp. 8281–8290
M. AlMarzouq L. Zheng G. Rong V. Grover Open source: concepts, benefits, and challenges Commun Assoc Inf Syst 2005 5 10 10.17705/1cais.01637
S. Amaducci X. Yin M. Colauzzi Agrivoltaic systems to optimise land use for electric energy production Appl Energy 2018 10.1016/j.apenergy.2018.03.081
Anderson K, Mikofski M (2020) Slope-aware backtracking for single-axis trackers. National Renewable Energy Laboratory. https://www.nrel.gov/docs/fy20osti/76626.pdf
Beaudoin N, Lecharpentier P, Ripoche-Wachter D, Strullu L, Mary B, Léonard J, Launay M, Justes E (2023) Stics soil-crop model. Conceptual framework, equations and uses
M. Björn H. Laura A. Alfons K. Klaus R. Christian Yield predictions for photovoltaic power plants: empirical validation, recent advances and remaining uncertainties Prog Photovolt Res Appl 2016 10.1002/pip.2616
R. Bruhwyler H. Sánchez C. Meza F. Lebeau P. Brunet G. Dabadie S. Dittmann R. Gottschalg J.J. Negroni Vertical agrivoltaics and its potential for electricity production and agricultural water demand: a case study in the area of chanco, chile Sustain Energy Technol Assess 2023 10.1016/j.seta.2023.103425
A.J. Buitenhuis J.M. Pearce Open-source development of solar photovoltaic technology Energy Sustain Dev 2012 10.1016/j.esd.2012.06.006
P.E. Campana B. Stridh S. Amaducci M. Colauzzi Optimisation of vertically mounted agrivoltaic systems J Clean Prod 2021 10.1016/j.jclepro.2021.129091
Chatzipanagi A, Taylor N, Jaeger-Waldau A (2023) Overview of the potential and challenges for Agri-Photovoltaics in the European Union. Scientific analysis or review, Policy assessment KJ-NA-31-482-EN-N (online). Luxembourg (Luxembourg). https://doi.org/10.2760/208702
de Wit A (2024) Pcse: the Python crop simulation environment. https://pcse.readthedocs.io/en/stable/index.html. Accessed 17 Apr 2024
Dinesh H, Pearce JM (2016) The potential of agrivoltaic systems. https://doi.org/10.1016/j.rser.2015.10.024
J.A. Duffie W.A. Beckman Available solar radiation, chapter 2 1982 New York Wiley 43 137 10.1002/9781118671603
C. Dupraz Assessment of the ground coverage ratio of agrivoltaic systems as a proxy for potential crop productivity Agrofor Syst 2023 10.1007/s10457-023-00906-3
C. Dupraz H. Marrou G. Talbot L. Dufour A. Nogier Y. Ferard Combining solar photovoltaic panels and food crops for optimising land use: towards new agrivoltaic schemes Renew Energy 2011 10.1016/j.renene.2011.03.005
Y. Elamri B. Cheviron J.M. Lopez C. Dejean G. Belaud Water budget and crop modelling for agrivoltaic systems: application to irrigated lettuces Agric Water Manag 2018 208 440 453 10.1016/j.agwat.2018.07.001
Embree I (n.d.) High performance ray tracing. https://www.embree.org/. Accessed 15 Apr 2024
J.A. Franke C. Müller J. Elliott A.C. Ruane J. Jägermeyr J. Balkovic P. Ciais M. Dury P.D. Falloon C. Folberth L. François T. Hank M. Hoffmann R.C. Izaurralde I. Jacquemin C. Jones N. Khabarov M. Koch M. Li W. Liu S. Olin M. Phillips T.A. Pugh A. Reddy X. Wang K. Williams F. Zabel E.J. Moyer The ggcmi phase 2 experiment: Global gridded crop model simulations under uniform changes in co2, temperature, water, and nitrogen levels (protocol version 1.0) Geosci Model Dev 2020 10.5194/gmd-13-2315-2020
M. Giraud L. Samuel M. Harings M. Javaux D. Leitner F. Meunier Y. Rothfuss D. Dusschoten J. Vanderborght H. Vereecken G. Lobet A. Schnepf Cplantbox: a fully coupled modeling platform for the water and carbon fluxes in the soil-plant-atmosphere-continuum In Silico Plants 2023 10.1093/insilicoplants/diad009
A. Goetzberger A. Zastrow On the coexistence of solar-energy conversion and plant cultivation Int J Solar Energy 1982 10.1080/01425918208909875
E. Grubbs S. Gruss V. Schull M. Gosney M. Mickelbart S. Brouder M. Gitau P. Bermel M. Tuinstra R. Agrawal Optimized agrivoltaic tracking for nearly-full commodity crop and energy production Renew Sustain Energy Rev 2024 191 10.1016/j.rser.2023.114018
JRC (2022) Photovoltaic geographical information system (pvgis). https://joint-research-centre.ec.europa.eu/photovoltaic-geographical-information-system-pvgis. Accessed 02 Apr 2024
O.A. Katsikogiannis H. Ziar O. Isabella Integration of bifacial photovoltaics in agrivoltaic systems: a synergistic design approach Appl Energy 2022 309 10.1016/j.apenergy.2021.118475
S. Kim S. Kim K. An An integrated multi-modeling framework to estimate potential rice and energy production under an agrivoltaic system Comput Electron Agric 2023 213 10.1016/j.compag.2023.108157
E.U. Kokah D. Knoden R. Lambert H. Himdi B. Dumont J. Bindelle Modeling the daily dynamics of grass growth of several species according to their functional type, based on soil water and nitrogen dynamics: Gras-sim model definition, parametrization and evaluation J Agric Food Res 2023 10.1016/j.jafr.2023.100875
E. Mengi O.A. Samara T.I. Zohdi Crop-driven optimization of agrivoltaics using a digital-replica framework Smart Agric Technol 2023 10.1016/j.atech.2022.100168
Perez E (n.d.) pystics v1.0. https://github.com/OmbreaPV/pySTICS/tree/main. Accessed 18 Jun 2024
Perens B, Sroka M (2007) The open source definition. http://perens.com/OSD.html
PyVista (n.d.) 3d plotting and mesh analysis through a streamlined interface for the visualization toolkit (vtk). https://docs.pyvista.org/version/stable/. Accessed 10 Apr 2024
M.H. Riaz H. Imran R. Younas N.Z. Butt The optimization of vertical bifacial photovoltaic farms for efficient agrivoltaic systems Sol Energy 2021 10.1016/j.solener.2021.10.051
J. Robledo J. Leloux E. Lorenzo C.A. Gueymard From video games to solar energy: 3d shading simulation for pv using gpu Sol Energy 2019 10.1016/j.solener.2019.09.041
R.P. Rötter T. Palosuo K.C. Kersebaum C. Angulo M. Bindi F. Ewert R. Ferrise P. Hlavinka M. Moriondo C. Nendel J.E. Olesen R.H. Patil F. Ruget J. Takáč M. Trnka Simulation of spring barley yield in different climatic zones of northern and central Europe: a comparison of nine crop models Field Crops Res 2012 133 23 36 10.1016/j.fcr.2012.03.016
W. Schroeder K. Martin B. Lorensen The visualization toolkit 2006 4 New York Kitware
M. Trommsdorff J. Kang C. Reise S. Schindele G. Bopp A. Ehmann A. Weselek P. Högy T. Obergfell Combining food and energy production: design of an agrivoltaic system applied in arable and vegetable farming in germany Renew Sustain Energy Rev 2021 10.1016/j.rser.2020.110694
R. Turner Modularity 2018 Berlin Springer 10.1007/978-3-662-55565-1_17
B. Valle T. Simonneau F. Sourd P. Pechier P. Hamard T. Frisson M. Ryckewaert A. Christophe Increasing the total productivity of a land by combining mobile photovoltaic panels and food crops Appl Energy 2017 10.1016/j.apenergy.2017.09.113
Willockx B, Herteleer B, Cappelle J (2020) Theoretical potential of agrovoltaic systems in Europe: a preliminary study with winter wheat. In: Conference record of the IEEE photovoltaic specialists conference 2020-June, 0996–1001. https://doi.org/10.1109/PVSC45281.2020.9300652
C. Zhao B. Liu L. Xiao G. Hoogenboom K.J. Boote B.T. Kassie W. Pavan V. Shelia K.S. Kim I.M. Hernandez-Ochoa D. Wallach C.H. Porter C.O. Stockle Y. Zhu S. Asseng A simple crop model Eur J Agron 2019 10.1016/j.eja.2019.01.009