[en] The Greenland ice sheet (GrIS) is at present the largest single contributor to global-mass-induced sea-level rise, primarily because of Arctic amplification on an increasingly warmer Earth1-5. However, the processes of englacial water accumulation, storage and ultimate release remain poorly constrained. Here we show that a noticeable amount of the summertime meltwater mass is temporally buffered along the entire GrIS periphery, peaking in July and gradually reducing thereafter. Our results arise from quantifying the spatiotemporal behaviour of the total mass of water leaving the GrIS by analysing bedrock elastic deformation measured by Global Navigation Satellite System (GNSS) stations. The buffered meltwater causes a subsidence of the bedrock close to GNSS stations of at most approximately 5 mm during the melt season. Regionally, the duration of meltwater storage ranges from 4.5 weeks in the southeast to 9 weeks elsewhere. We also show that the meltwater runoff modelled from regional climate models may contain systematic errors, requiring further scaling of up to about 20% for the warmest years. These results reveal a high potential for GNSS data to constrain poorly known hydrological processes in Greenland, forming the basis for improved projections of future GrIS melt behaviour and the associated sea-level rise6.
Research Center/Unit :
SPHERES - ULiège
Disciplines :
Earth sciences & physical geography
Author, co-author :
Ran, Jiangjun ; Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen, China. ranjj@sustech.edu.cn
Ditmar, Pavel; Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, The Netherlands
van den Broeke, Michiel R ; Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, The Netherlands
Liu, Lin ; Department of Earth and Environmental Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
Klees, Roland ; Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, The Netherlands
Khan, Shfaqat Abbas ; Department of Geodesy and Earth Observation, DTU Space-National Space Institute, Technical University of Denmark, Kongens Lyngby, Denmark
Moon, Twila ; National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Boulder, CO, USA
Li, Jiancheng; School of Geosciences and Info-Physics, Central South University, Changsha, China ; MOE Key Laboratory of Geospace Environment and Geodesy, School of Geodesy and Geomatics, Wuhan University, Wuhan, China ; Hubei Luojia Laboratory, Wuhan University, Wuhan, China
Bevis, Michael; Division of Geodetic Science, School of Earth Sciences, Ohio State University, Columbus, OH, USA
Zhong, Min; School of Geospatial Engineering and Science, Sun Yat-sen University, Zhuhai, China
Fettweis, Xavier ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
Liu, Junguo ; Yellow River Research Institute, North China University of Water Resources and Electric Power, Zhengzhou, China ; Henan Provincial Key Laboratory of Hydrosphere and Watershed Water Security, North China University of Water Resources and Electric Power, Zhengzhou, China
Noël, Brice ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
Shum, C K; Division of Geodetic Science, School of Earth Sciences, Ohio State University, Columbus, OH, USA
Chen, Jianli ; Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, China ; Research Institute for Land and Space, The Hong Kong Polytechnic University, Hong Kong, China ; Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
Jiang, Liming; State Key Laboratory of Geodesy and Earth's Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China ; College of Earth and Planetary Science, University of Chinese Academy of Sciences, Beijing, China
van Dam, Tonie ; Department of Geology and Geophysics, College of Mines and Earth Science, University of Utah, Salt Lake City, UT, USA
A. Cazenave F. Remy Sea level and climate: measurements and causes of changes Wiley Interdiscip. Rev. Clim. Change 2011 2 647 662 10.1002/wcc.139
M.R. Van den Broeke et al. On the recent contribution of the Greenland ice sheet to sea level change Cryosphere 2016 10 1933 1946 2016TCry..10.1933V 10.5194/tc-10-1933-2016
S. Hofer et al. Greater Greenland Ice Sheet contribution to global sea level rise in CMIP6 Nat. Commun. 2020 11 6289 2020NatCo.11.6289H 1:CAS:528:DC%2BB3MXjvFyrsA%3D%3D 33323939 10.1038/s41467-020-20011-8
Masson-Delmotte, V. et al. (eds) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2021).
G.E. Flowers Hydrology and the future of the Greenland Ice Sheet Nat. Commun. 2018 9 2018NatCo..9.2729F 30013134 10.1038/s41467-018-05002-0
J. Mouginot et al. Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018 Proc. Natl Acad. Sci. USA 2019 116 9239 9244 2019PNAS.116.9239M 1:CAS:528:DC%2BC1MXovFGlsLg%3D 31010924 10.1073/pnas.1904242116
J. Harper N. Humphrey W.T. Pfeffer J. Brown X. Fettweis Greenland ice-sheet contribution to sea-level rise buffered by meltwater storage in firn Nature 2012 491 240 243 2012Natur.491.240H 1:CAS:528:DC%2BC38Xhs1elsLvJ 23135470 10.1038/nature11566
P.L. Langen R.S. Fausto B. Vandecrux R.H. Mottram J.E. Box Liquid water flow and retention on the Greenland ice sheet in the regional climate model HIRHAM5: local and large-scale impacts Front. Earth Sci. 2017 4 2296 6463 10.3389/feart.2016.00110
L.S. Koenig C. Miège R.R. Forster L. Brucker Initial in situ measurements of perennial meltwater storage in the Greenland firn aquifer Geophys. Res. Lett. 2014 41 81 85 2014GeoRL.41..81K 10.1002/2013GL058083
C.R. Steger et al. Firn meltwater retention on the Greenland ice sheet: a model comparison Front. Earth Sci. 2017 5 3 2017FrEaS..5..3S 10.3389/feart.2017.00003
V. Verjans et al. Development of physically based liquid water schemes for Greenland firn-densification models Cryosphere 2019 13 1819 1842 2019TCry..13.1819V 10.5194/tc-13-1819-2019
B. Vandecrux et al. Firn data compilation reveals widespread decrease of firn air content in western Greenland Cryosphere 2019 13 845 859 2019TCry..13.845V 10.5194/tc-13-845-2019
H. Machguth et al. Greenland meltwater storage in firn limited by near-surface ice formation Nat. Clim. Change 2016 6 390 393 2016NatCC..6.390M 10.1038/nclimate2899
M. MacFerrin et al. Rapid expansion of Greenland’s low-permeability ice slabs Nature 2019 573 403 407 2019Natur.573.403M 1:CAS:528:DC%2BC1MXhvVWit7%2FN 31534244 10.1038/s41586-019-1550-3
R. Culberg D.M. Schroeder W. Chu Extreme melt season ice layers reduce firn permeability across Greenland Nat. Commun. 2021 12 2336 2021NatCo.12.2336C 1:CAS:528:DC%2BB3MXpsVKrtL0%3D 33879796 10.1038/s41467-021-22656-5
J.H. van Angelen J.T.M. Lenaerts M.R. van den Broeke X. Fettweis E. Van Meijgaard Rapid loss of firn pore space accelerates 21st century Greenland mass loss Geophys. Res. Lett. 2013 40 2109 2113 2013GeoRL.40.2109V 10.1002/grl.50490
B. Noël J.T.M. Lenaerts W.H. Lipscomb L.K. Thayer-Calder M.R. van den Broeke Peak refreezing in the Greenland firn layer under future warming scenarios Nat. Commun. 2022 13 2022NatCo.13.6870N 36369265 10.1038/s41467-022-34524-x
A.K. Rennermalm et al. Evidence of meltwater retention within the Greenland ice sheet Cryosphere 2013 7 1433 1445 2013TCry..7.1433R 10.5194/tc-7-1433-2013
R.R. Forster et al. Extensive liquid meltwater storage in firn within the Greenland ice sheet Nat. Geosci. 2014 7 95 98 2014NatGe..7..95F 1:CAS:528:DC%2BC3sXhvFOltLrK 10.1038/ngeo2043
G.A. Catania T.A. Neumann Persistent englacial drainage features in the Greenland Ice Sheet Geophys. Res. Lett. 2010 37 L02501 2010GeoRL.37.2501C 10.1029/2009GL041108
L.C. Smith et al. Efficient meltwater drainage through supraglacial streams and rivers on the southwest Greenland ice sheet Proc. Natl Acad. Sci. USA 2015 112 1001 1006 2015PNAS.112.1001S 1:CAS:528:DC%2BC2MXmtFCnsQ%3D%3D 25583477 10.1073/pnas.1413024112
K. Yang L.C. Smith Internally drained catchments dominate supraglacial hydrology of the southwest Greenland Ice Sheet J. Geophys. Res. Earth Surf. 2016 121 1891 1910 2016JGRF.121.1891Y 10.1002/2016JF003927
L.C. Smith et al. Direct measurements of meltwater runoff on the Greenland ice sheet surface Proc. Natl Acad. Sci. USA 2017 114 E10622 E10631 2017PNAS.11410622S 1:CAS:528:DC%2BC2sXhvFWmtLrL 29208716 10.1073/pnas.1707743114
H.J. Zwally et al. Surface melt-induced acceleration of Greenland ice-sheet flow Science 2002 297 218 222 2002Sci..297.218Z 1:CAS:528:DC%2BD38XlsVCnsr8%3D 12052902 10.1126/science.1072708
S.B. Das et al. Fracture propagation to the base of the Greenland Ice Sheet during supraglacial lake drainage Science 2008 320 778 781 2008Sci..320.778D 1:CAS:528:DC%2BD1cXlsVGlsbc%3D 18420900 10.1126/science.1153360
C. Schoof Ice-sheet acceleration driven by melt supply variability Nature 2010 468 803 806 2010Natur.468.803S 1:CAS:528:DC%2BC3cXhsFCjsrrP 21150994 10.1038/nature09618
E. Rignot J. Mouginot Ice flow in Greenland for the International Polar Year 2008–2009 Geophys. Res. Lett. 2012 39 L11501 2012GeoRL.3911501R 10.1029/2012GL051634
D.M. Chandler et al. Evolution of the subglacial drainage system beneath the Greenland Ice Sheet revealed by tracers Nat. Geosci. 2013 6 195 198 2013NatGe..6.195C 1:CAS:528:DC%2BC3sXivFyhsrw%3D 10.1038/ngeo1737
M.A. Werder I.J. Hewitt C.G. Schoof G.E. Flowers Modeling channelized and distributed subglacial drainage in two dimensions J. Geophys. Res. Earth Surf. 2013 118 2140 2158 2013JGRF.118.2140W 10.1002/jgrf.20146
M. Hoffman et al. Greenland subglacial drainage evolution regulated by weakly connected regions of the bed Nat. Commun. 2016 7 2016NatCo..713903H 1:CAS:528:DC%2BC28XitFalsrfL 27991518 5187425 10.1038/ncomms13903
L.C. Andrews et al. Direct observations of evolving subglacial drainage beneath the Greenland Ice Sheet Nature 2014 514 80 83 2014Natur.514..80A 1:CAS:528:DC%2BC2cXhs1yhsLjI 25279921 10.1038/nature13796
W. Chu et al. Extensive winter subglacial water storage beneath the Greenland Ice Sheet Geophys. Res. Lett. 2016 43 12,484 12,492 10.1002/2016GL071538
J. Ran et al. Seasonal mass variations show timing and magnitude of meltwater storage in the Greenland Ice Sheet Cryosphere 2018 12 2981 2999 2018TCry..12.2981R 10.5194/tc-12-2981-2018
B. Noël L. van Kampenhout J.T.M. Lenaerts W.J. van de Berg M.R. van den Broeke A 21st century warming threshold for sustained Greenland ice sheet mass loss Geophys. Res. Lett. 2021 48 e2020GL090471 2021GeoRL.4890471N 10.1029/2020GL090471
M. Tedesco et al. The role of albedo and accumulation in the 2010 melting record in Greenland Environ. Res. Lett. 2011 6 014005 2011ERL...6a4005T 10.1088/1748-9326/6/1/014005
H. Hersbach et al. The ERA5 global reanalysis Q. J. R. Meteorol. Soc. 2020 146 1999 2049 2020QJRMS.146.1999H 10.1002/qj.3803
X. Fettweis et al. GrSMBMIP: intercomparison of the modelled 1980–2012 surface mass balance over the Greenland Ice Sheet Cryosphere 2020 14 3935 3958 2020TCry..14.3935F 10.5194/tc-14-3935-2020
Gardner, A. S., Fahnestock, M. A. & Scambos, T. A. MEaSUREs ITS_LIVE Landsat Image-Pair Glacier and Ice Sheet Surface Velocities, Version 1 (2019).
K. Hansen et al. Estimating ice discharge at Greenland's three largest outlet glaciers using local bedrock uplift Geophys. Res. Lett. 2021 48 e2021GL094252 2021GeoRL.4894252H 10.1029/2021GL094252
T.M. van Dam J.M. Wahr Displacements of the Earth's surface due to atmospheric loading: effects on gravity and baseline measurements J. Geophys. Res. Solid Earth 1987 92 1281 1286 10.1029/JB092iB02p01281
W.E.M. Farrell Deformation of the Earth by surface loads Rev. Geophys. 1972 10 761 797 1972RvGeo.10.761F 10.1029/RG010i003p00761
M. Bevis et al. Accelerating changes in ice mass within Greenland, and the ice sheet’s sensitivity to atmospheric forcing Proc. Natl Acad. Sci. USA 2019 116 1934 1939 2019PNAS.116.1934B 1:CAS:528:DC%2BC1MXis1WhurY%3D 30670639 10.1073/pnas.1806562116
J. Lei W. Chen Z. Li F. Li S. Zhang A full-spectrum bedrock thermal expansion model and its impact on the Global Positioning System height time series Geophys. Res. Lett. 2020 47 e2019GL086022 2020GeoRL.4786022L 10.1029/2019GL086022 (2020)
G. Blewitt W.C. Hammond C. Kreemer Harnessing the GPS data explosion for interdisciplinary science Eos 2018 99 EO104623 10.1029/2018EO104623
Petrov, L. in REFAG 2014. International Association of Geodesy Symposia Vol. 146 (ed. van Dam, T.) 79–83 (Springer, 2015).
E.H. Sutanudjaja et al. PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model Geosci. Model Dev. 2018 11 2429 2453 2018GMD..11.2429S 10.5194/gmd-11-2429-2018
H. Müller Schmied et al. The global water resources and use model WaterGAP v2.2d: model description and evaluation Geosci. Model Dev. 2021 14 1037 1079 2021GMD..14.1037M 10.5194/gmd-14-1037-2021
I. Velicogna J. Wahr Time-variable gravity observations of ice sheet mass balance: precision and limitations of the GRACE satellite data Geophys. Res. Lett. 2013 40 3055 3063 2013GeoRL.40.3055V 10.1002/grl.50527
T. Moon et al. Distinct patterns of seasonal Greenland glacier velocity Geophys. Res. Lett. 2014 41 7209 7216 2014GeoRL.41.7209M 25821275 10.1002/2014GL061836
K.D. Mankoff et al. Greenland ice sheet mass balance from 1840 through next week Earth Syst. Sci. Data 2021 13 5001 5025 2021ESSD..13.5001M 10.5194/essd-13-5001-2021
B. Zhang et al. Geodetic and model data reveal different spatio-temporal patterns of transient mass changes over Greenland from 2007 to 2017 Earth Planet. Sci. Lett. 2019 515 154 163 2019E&PSL.515.154Z 1:CAS:528:DC%2BC1MXmtVOlu7k%3D 10.1016/j.epsl.2019.03.028
I. Joughin B. Smith I. Howat T. Scambos T. Moon Greenland flow variability from ice-sheet-wide velocity mapping J. Glaciol. 2010 56 415 430 2010JGlac.56.415J 10.3189/002214310792447734
M. Morlighem et al. BedMachine v3: complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation Geophys. Res. Lett. 2017 44 11051 11061 2017GeoRL.4411051M 1:STN:280:DC%2BC1Mzjslamuw%3D%3D 29263561 10.1002/2017GL074954
F. Yao et al. Satellites reveal widespread decline in global lake water storage Science 2023 380 743 749 2023Sci..380.743Y 1:CAS:528:DC%2BB3sXhtVaqurjE 37200445 10.1126/science.abo2812
J.-F. Cretaux et al. SOLS: a lake database to monitor in the Near Real Time water level and storage variations from remote sensing data Adv. Space Res. 2011 47 1497 1507 2011AdSpR.47.1497C 1:CAS:528:DC%2BC3MXjvVKrsbo%3D 10.1016/j.asr.2011.01.004
Birkett, C. M. et al. in Coastal Altimetry (eds Vignudelli, S., Kostianoy, A. G., Cipollini, P. & Benveniste, J.) Ch. 2 (Springer, 2009).
C. Schwatke et al. DAHITI – an innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry Hydrol. Earth Syst. Sci. 2015 19 4345 4364 2015HESS..19.4345S 10.5194/hess-19-4345-2015
C. Song B. Huang L. Ke Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data Remote Sens. Environ. 2013 135 25 35 2013RSEnv.135..25S 10.1016/j.rse.2013.03.013
M.L. Messager et al. Estimating the volume and age of water stored in global lakes using a geo-statistical approach Nat. Commun. 2016 7 2016NatCo..713603M 1:CAS:528:DC%2BC28XitFamsbvK 27976671 10.1038/ncomms13603
Z. Fair et al. Using ICESat-2 and Operation IceBridge altimetry for supraglacial lake depth retrievals Cryosphere 2020 14 4253 4263 2020TCry..14.4253F 10.5194/tc-14-4253-2020
W. Xiao et al. An automated algorithm to retrieve the location and depth of supraglacial lakes from ICESat-2 ATL03 data Remote Sens. Environ. 2023 298 113730 10.1016/j.rse.2023.113730
L.C. Liljedahl et al. Rapid and sensitive response of Greenland’s groundwater system to ice sheet change Nat. Geosci. 2021 14 751 755 2021NatGe.14.751L 1:CAS:528:DC%2BB3MXitFSgurjL 10.1038/s41561-021-00813-1
H. Save S. Bettadpur B.D. Tapley High-resolution CSR GRACE RL05 mascons J. Geophys. Res. Solid Earth 2016 121 7547 7569 2016JGRB.121.7547S 10.1002/2016JB013007
M.M. Watkins D.N. Wiese D.-N. Yuan C. Boening F.W. Landerer Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons J. Geophys. Res. Solid Earth 2015 120 2648 2671 2015JGRB.120.2648W 10.1002/2014JB011547
D.D. Rowlands et al. Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements Geophys. Res. Lett. 2005 32 L04310 2005GeoRL.32.4310R 10.1029/2004GL021908
S.B. Luthcke et al. Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution J. Glaciol. 2013 59 613 631 2013JGlac.59.613L 10.3189/2013JoG12J147
B.D. Loomis S.B. Luthcke T.J. Sabaka Regularization and error characterization of GRACE mascons J. Geod. 2019 93 1381 1398 2019JGeod.93.1381L 1:STN:280:DC%2BB38rhsFOrsw%3D%3D 32454568 10.1007/s00190-019-01252-y
J. Ran P. Ditmar R. Klees H.H. Farahani Statistically optimal estimation of Greenland Ice Sheet mass variations from GRACE monthly solutions using an improved mascon approach J. Geod. 2018 92 299 319 2018JGeod.92.299R 1:STN:280:DC%2BB38%2FkslWguw%3D%3D 31983812 10.1007/s00190-017-1063-5
J. Ran et al. Analysis and mitigation of biases in Greenland ice sheet mass balance trend estimates from GRACE mascon products J. Geophys. Res. Solid Earth 2021 126 e2020JB020880 2021JGRB.12620880R 10.1029/2020JB020880
W.R. Peltier D.F. Argus R. Drummond Space geodesy constrains ice age terminal deglaciation: the global ICE-6G_C (VM5a) model J. Geophys. Res. Solid Earth 2015 120 450 487 2015JGRB.120.450P 10.1002/2014JB011176
G. Botter A. Porporato I. Rodriguez-Iturbe A. Rinaldo Nonlinear storage-discharge relations and catchment streamflow regimes Water Resour. Res. 2009 45 W10427 2009WRR..4510427B 10.1029/2008WR007658
M. Bevis D. Melini G. Spada On computing the geoelastic response to a disk load Geophys. J. Int. 2016 205 1804 1812 2016GeoJI.205.1804B 10.1093/gji/ggw115
B. Harding C. Tremblay D. Cousineau Standard errors: a review and evaluation of standard error estimators using Monte Carlo simulations Quant. Methods Psychol. 2014 10 107 123 10.20982/tqmp.10.2.p107
L. Liu S.A. Khan T. van Dam J.H.Y. Ma M. Bevis Annual variations in GPS-measured vertical displacements near Upernavik Isstrøm (Greenland) and contributions from surface mass loading J. Geophys. Res. Solid Earth 2017 122 677 691 2017JGRB.122.677L 10.1002/2016JB013494
M.D. King et al. Dynamic ice loss from the Greenland Ice Sheet driven by sustained glacier retreat Commun. Earth Environ. 2020 1 2776
J. Wahr et al. The use of GPS horizontals for loading studies, with applications to northern California and southeast Greenland J. Geophys. Res. Solid Earth 2013 118 1795 1806 2013JGRB.118.1795W 10.1002/jgrb.50104
E. Kalnay et al. The NCEP/NCAR 40-year reanalysis project Bull. Am. Meteorol. Soc. 1996 77 437 471 1996BAMS..77.437K 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
R. Gelaro et al. The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) J. Climate 2017 30 5419 5454 2017JCli..30.5419G 10.1175/JCLI-D-16-0758.1
FP-IT, Forward Processing for Instrument Teams. https://gmao.gsfc.nasa.gov/GMAO_products/ (2016).
I. Fukumori A partitioned Kalman filter and smoother Mon. Weather Rev. 2002 130 1370 1383 2002MWRv.130.1370F 10.1175/1520-0493(2002)130<1370:APKFAS>2.0.CO;2
S.-B. Kim T. Lee I. Fukumori Mechanisms controlling the interannual variation of mixed layer temperature averaged over the Niño-3 region J. Climate 2007 20 3822 3843 2007JCli..20.3822K 10.1175/JCLI4206.1
S.J. Marsland H. Haak J.H. Jungclaus M. Latif F.J. Röske The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates Ocean Model. 2003 5 91 127 2003OcMod..5..91M 10.1016/S1463-5003(02)00015-X
M. Rodell et al. The Global Land Data Assimilation System Bull. Am. Meteorol. Soc. 2004 85 381 394 2004BAMS..85.381R 10.1175/BAMS-85-3-381
Ran, J. et al. Water-related vertical displacements for all GNET stations studied. Zenodo https://doi.org/10.5281/zenodo.8313531 (2023).
Qiu, J. & Ran, J. Time series of supraglacial lake area across Greenland Ice Sheet. Zenodo https://doi.org/10.5281/zenodo.8348430 (2023).
Ran, J & Ditmar, P. Melt water storage derived from GNSS data. Zenodo https://doi.org/10.5281/zenodo.13836132 (2024).
Ran, J. ANGELS-Mascon. Zenodo https://doi.org/10.5281/zenodo.13836135 (2024).